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The explicit solution of the problem of maximization of information divergence from the
family of multinomial distributions is presented, using result of N. Ay and A. Knauf for
the problem of maximization of multi-information [3], which is the special case of maxi-
mization of information divergence from hierarchical models [10].
The problem studied in this paper is a generalization of the binomial case, which was
solved in [8].
The problem of maximization of information divergence from an exponential family has
emerged in probabilistic models for evolution and learning in neural networks that are
based on infomax principles [1].
The maximizers admit interpretation as stochastic systems with high complexity w.r.t. ex-
ponential family [3].

1. I n t r o d u c t i o n

Let ν be a nonzero measure on a finite set Z.
Let F = Eν, f = {Qν, f ,ϑ : ϑ ∈ Rd} be the (full) exponential family determined by

the reference measure ν and the directional statistic f : Z → Rd, d ∈ N, where Qν, f ,ϑ
is a probability measure (pm) given by

Qν, f ,ϑ(x) = e〈ϑ, f (z)〉−Λν, f (ϑ)µ(z), z ∈ Z,
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〈·, ·〉 denotes the scalar product and

Λν, f (ϑ) = ln
∑
z∈Z

e〈ϑ, f (z)〉ν(z).

The information divergence (relative entropy; Kullback-Leibler divergence) of a
pm P (on Z) from ν is

D(P‖ν) =
{ ∑

z∈s(P) P(z) ln P(z)
ν(z) , s(P) ⊆ s(ν),

+∞, otherwise,

s(·) is the support of a measure, i.e. s(ν) = {z ∈ Z : ν(z) > 0}. The (information)
divergence of a pm P from the family F is defined by

D(P‖F ) = inf
Q∈F

D(P‖Q). (1)

The general problem of maximization of information divergence from an arbitrary
exponential family has emerged in probabilistic models for evolution and learning in
neural networks based on infomax principles [1], [2]. Maximizers of D(·‖F ) admit
interpretation as stochastic systems with high complexity w.r.t. exponential family
F . This maximization problem goes back to [1], for later progress, see [7], [8], [9],
[10]. Another equivalent optimization problem is stated in [11, Theorem 3].

From now on, assume s(ν) = Z, i.e. ν is strictly positive on Z. In this case, by
[5, Theorem 1 (2)] and [9, Fact 2.10], the infimum in (1) is finite and uniquely attained
in F , the (topological) closure of the exponential family F = Eν, f . The unique
minimizing pm is called the generalized rI-projection of P and denoted by PF

D(P‖F ) = D(P‖F ) = min
Q∈F

D(P‖Q) = D(P‖PF ).

Function P �→ D(P|F ) is continuous [9, p. 4] on the simplex of all pm’s on Z and
therefore has a maximizer, see also [11, p. 7].

This work studies the global maximizers in the special case of multinomial family,
hence a generalization of the binomial case [8, Proposition 2].

1.1 Formulation of the main result

Let n, d ∈ N, p1, . . . , pd ≥ 0 s.t.
∑d

j=1 p j = 1 and denote [d] = {1, . . . , d}. The
multinomial distribution with paramaters n, d, p = (p1, . . . , pd) is the frequency dis-
tribution of the i.i.d. sequence of n d-ary random variables taking values in [d] with
probabilities p1, . . . , pd respectively, i.e. is determined by the pm qp on Z s.t.

qp(z) =
(
n
z

) d∏
j=1

pzj

j , z ∈ Z =
{
(z1, . . . , zd) ∈ {0, . . . , n}d :

∑d
j=1 z j = n

}
, (2)

denoting by
(

n
z

)
= n!∏d

j=1 z j!
the multinomial coefficient.

To simplify the notation let measures on an arbitrary finite set A be identified with
the points in RA.

The multinomial family M n,d = {qp : p is a pm} is the closure of the exponential
family Mn,d = {qp : p > 0 is a pm} = Eν, f = {Qν, f ,ϑ : ϑ ∈ Rd} with ν(z) =

(
n
z

)
, f (z) =

= z.
Parametrization by p corresponds to the mean value parametrization (dp is the

qp mean) while ϑ ∈ Rd is the natural (canonical) parameter [4] and qp = Qν, f ,ϑ for
p j =

eϑ j
∑

j′∈[d] eϑ j′
.

The main result of this paper is the explicit description of the set of maximizers of
D(‖M n,d) over all pm’s on Z. This result is formulated in Theorem 1.1 and its proof
is given in Section 3.

The remarkable fact of Theorem 1.1 is that the form of maximizers splits up into
two cases, n = 2 and n > 2. For n = 2, the form is rather non-trivial.

Denote by e j = e j,d = (0, . . . , 0, 1
j
, 0, . . . , 0

d
) the j-th standard basis vector in Rd, by

δz the Dirac measure concentrated at the point z ∈ Z and by SA the symmetric group
on an arbitrary finite set A; S[d] shortens to Sd. To avoid the trivial cases let n, d ≥ 2.

Theorem 1.1 (Maximizers of divergence from multinomial family)
(i) The maximum value of D(·‖M n,d) is equal to (n − 1) ln d.

(ii) The maximizers project to the unique pm µ s.t. µ(z) = (n
z)

dn , z ∈ Z.

(iii) If n > 2, the unique maximizer is the pm uniformly concentrated on the set

{(n, 0, . . . , 0), . . . , (0, . . . , 0, n)}, i.e. it has the form
1
d

d∑
j=1

δne j .

(iv) If n = 2, the maximizers have the form
1
d

d∑
j=1

δe j+eπ( j) , π ∈ Sd : π = π−1, i.e. π is

such a permutation on [d] that it is a composition of independent cycles of lengths at
most two, hence, only of transpositions (and identities).

Remark 1.2 The rI-projection µ of any maximizer is proportional to ν, the refer-
ence measure of naturally parametrized multinomial family, i.e. µ ∝ ν.

For π the identity on [d], the two forms coincide.
For n = 2 and any fixed π s.t. π = π−1, the maximizing pm sits on

(0, . . . , 0, 2
j=π( j)
, 0, . . . , 0), j ∈ [d] : j = π( j) with mass 1

d

and (0, . . . , 0, 1
k
, 0, . . . , 0, 1

π(k)
, 0, . . . , 0), k ∈ [d] : k < π(k) with mass 2

d .

Let γ : [d]n → Z be a transformation of outcomes of the original i.i.d. sequence to
frequencies, i.e.

γ : (x1, . . . , xn) �→ (z1, . . . , zd), z j = |{i ∈ [n] : xi = j}|, j ∈ [d]. (3)

Remark 1.3 In statistical terms, γ defined by (3) is the sufficient statistics for the
parameter p in the model M n,d.
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The multinomial family M n,d = {qp : p is a pm} is the closure of the exponential
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π(k)
, 0, . . . , 0), k ∈ [d] : k < π(k) with mass 2
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parameter p in the model M n,d.
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It is going to be shown, that the maximizers of D(·‖M n,d) over all pm’s on Z, de-
scribed in Theorem 1.1, are the γ-images of the subset of maximizers of D(·‖F ), the
divergence from the family F of all positive product pm’s over all pm’s on [d]n, de-
scribed in [3, Corollary 4.10] and stated here as Theorem 2.7. Moreover, projection
of maximizers of D(·‖M n,d) is the γ-image of the pm uniformly concentrated on
[d]n, the projection of maximizers of D(·‖F ) and the maximal value of D(·‖M n,d) is
equal to the maximal value of D(·‖F ).

2. P r e l i m i n a r i e s

The previous idea of transformation of the problem by sufficient statistics is intro-
duced in a more general setting.

Denote by P(X) the simplex of all pm’s on a finite set X and by P(X) its interior,
i.e. the family of all strictly positive pm’s on X.

Let Z be a nonempty finite set and γ be a surjection γ : X
onto→ Z. For P ∈P(X) let

γ(P) ∈P(Z) be its γ-image, i.e. γ(P)(z) = P
(
γ−1(z)

)
, z ∈ Z.

For arbitrary families E ⊆P(X) and G ⊆P(Z) let

γ(E ) =
{
γ(P) : P ∈ E

}
and γ−1(G ) = {P ∈P(X) : γ(P) ∈ G }.

2.1 Exchangeable and symmetrical families

Recall that SX denotes the symmetric group (of all permutations) on X. For a
permutation π ∈ SX and a pm P ∈ P(X) denote by πP the π−1-image of P, i.e.
πP(x) = P

(
π(x)
)
, x ∈ X.

Definition 2.1 Let G ≤ SX be a subgroup of SX . A family F ⊆ P(X) is said to
be G-symmetrical iff ∀P ∈F ∀π ∈ G : πP ∈F .

Remarks 2.2
(a) The closure of a G-symmetrical family is again G-symmetrical.
(b) The family of maximizers of divergence from a G-symmetrical exponential

family over G-symmetrical family is again G-symmetrical, as well as the set
of projections of maximizers.

Definition 2.3 Let G ≤ SX . A pm P ∈P(X) is G-exchangeable iff

∀π ∈ G : πP = P.

Let E = E G(X) be the family of all G-exchangeable pm’s on X.

Remarks 2.4
(a) For x ∈ X let Gx = {π(x) : π ∈ G} be the x-orbit of G and denote by

GX = {Gx : x ∈ X} the set of all orbits (the coinvariants). As G is a group,
GX forms a partition of X.

(b) E is the closure of the exponential family E = Eν, f with f = ( fg)g∈GX s.t.
fg(x) = I(x ∈ g) and ν(x) = 1, where I(·) is the identificator

(c) P is G-exchangeable on X iff it is constant on every orbit Gx, x ∈ X.

Theorem 2.5 Let G ≤ SX, F ⊂P(X) be G-symmetrical exponential family and
E = E G(X) be the the family of all G-exchangeable pm’s on X.

For any G-exchangeable pm P ∈ E : PF = PE∩F .

Proof. It is assumed by contradiction, that PF ∈ F \ E . Thus, there exists π ∈ G
s.t. πPF � PF and πPF ∈F by symmetry.

By exchangeability of P ∈ E : D(P‖PF ) = D(πP‖πPF ) = D(P‖πPF ) and this is
in contradiction with the uniqueness of the rI-projection PF .

In conclusion, the symbol PE∩F is well defined because E ∩ F = E ∩ F is
intersection of two exponential families and it is nonempty due to the fact that PF ∈
∈ E ∩F , thus E ∩F is again an exponential family. �

Corollary 2.6 Let G ≤ SX, F ⊂P(X) be G-symmetrical exponential family and
E = E G(X) be the the family of all G-exchangeable pm’s on X.

Define γG : X → GX s.t. γG : x �→ Gx, x ∈ X.

The following statements are equivalent
(i) P is a maximizer of D(·‖F ) over E ;

(ii) P is a maximizer of D(·‖E ∩F ) over E ;
(iii) γG(P) is a maximizer of D

( · ‖γG(E ∩F )
)

over P(GX),
γG(P) projects to γG(PF ) and D

(
γG(P)‖γG(PF )

)
= D(P‖PF ).

If there exists a maximizer of D(·‖F ) over P(X) that is G-exchangeable, i.e. E ∩
∩ arg maxP(X) D(·‖F ) � ∅, then

arg maxP(GX) D
( · ‖γG(E ∩F )

)
= γG

(
E ∩ arg maxP(X) D(·‖F )

)
and maxP(GX) D

( · ‖γG(E ∩F )
)
= maxP(X) D(·‖F ).

Proof. Propositions (i) and (ii) are equivalent by Theorem 2.5.
The remaining part follows from the following facts:
(a) γG maps measures of E bijectively onto PG

(
and E ∩F onto γ(E ∩F )

)
:

Q ∈PG : γ−1
G (Q) ∩ E = P, s.t. P(x) =

Q(Gx)
|Gx| , x ∈ X;
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(b) γG preserves the divergence on E , i.e. ∀ P,R ∈ E s.t. D(P‖R) < ∞:

D(P‖R) =
∑

x∈s(P)

P(x) ln
P(x)
R(x)

=
∑

g∈GX

∑

x∈γ−1
G (g)∩s(P)

P(x) ln
P(x)
R(x)

=

(∗)
=

∑

g∈s
(
γG(P)
) γG(P)(g)

∑

x∈γ−1
G (g)∩s(P)

ln
P(x)
R(x)

=

(∗∗)
=

∑

g∈s
(
γG(P)
) γG(P)(g) ln

γG(P)(g)
γG(R)(g)

= D(γG(P)‖γG(R)).

Equalities (∗) and (∗∗) follow from the fact that P and R are constant on each
orbit of G by Remark 2.4(c). �

2.2 Maximization of the multi-information

Let F be the family of all positive product pm’s on X = [d]n, i.e.

F = {Q = Q1 × . . . × Qn : Qi is a strictly positive pm on [d], i ∈ [n]}. (4)

It is easy to see, that F is an exponential family: F = Eν, f with ν(x) = 1 and
f (x) = x. The divergence of a pm P ∈ P(X) from F is in other words the multi-
information of P and is denoted by M(P) = D(P‖F ), see [3].

Theorem 2.7 (Maximizers of multi-information)
(i) The maximum value of M(·) over all pm’s on [d]n is equal to (n − 1) ln d.

(ii) The maximizers project to the unique pm, uniformly concetrated on [d]n.
(iii) The maximizers have the form 1

d
∑d

j=1 δ( j,π2( j),...,πn( j)), π2, . . . , πn ∈ Sd.

Proof. In [3, Corollary 4.10]. �

Remark 2.8 For a fixed π2, . . . , πn ∈ Sd, the maximizer is uniformly concentrated
on the set {(1, π2(1), . . . , πn(1)), . . . , (d, π2(d), . . . , πn(d))} .

In fact, a more general form of Theorem 2.7 holds true [3, Theorem 4.3] (for a
more general form of X).

3. P r o o f o f T h e o r e m 1.1

Let X = [d]n, define (the permutation group) G ≤ SX as

G = {πρ ∈ SX : πρ(x) = (xρ(1), . . . , xρ(n))�, x ∈ X, ρ ∈ Sn} (5)

and E = E G(X) be the family of all G-exchangeable pm’s on X.

Recall that the multinomial family M n,d and its state space Z are defined by (2)
and the sufficient statistics γ is defined by (3).

Remarks 3.1
(a) For z, z′ ∈ Z and x, x′ ∈ X s.t. z = γ(x) and z′ = γ(x′) :

z = z′ ⇔ γ(x) = γ(x′) ⇔ x′ ∈ Gx ⇔ Gx = Gx′ ⇔ γG(x) = γG(x′);

(b) F defined by (4) is G-symmetrical;
(c) E ∩F = {p × . . . × p︸�������︷︷�������︸

n

: p is a strictly positive pm on [d]};

(d) Mn,d =M n,d ∩P(Z) = γ(E ∩F ).

Denote by Pπ2,...,πn the maximizer of D(·‖F ) from Theorem 2.7 corresponding to
π2, . . . , πn ∈ Sd and let Id be the identity on [d].

PId,...,Id is maximizer of D(‖F ) over P(X) and even PId,...,Id is G-exchangeable, i.e.
PId,...,Id ∈ E . Therefore, by Corollary 2.6 and Remarks 3.1, the assertions (i) and (ii)
follow.

Assume that P = Pπ2,...,πn ∈ E is such a maximizer that P � PId,...,Id, i.e. there exists
i ∈ {2, . . . , n} s.t. πi � Id, w.l.o.g. let π2 � Id. Thus, there exists j ∈ [d] s.t. π2( j) � j.
By the fact that P ∈ E , there exist x3, . . . , xn ∈ [d] s.t. ( j, π2( j), x3, . . . , xn) ∈ s(P) and
also (π2( j), j, x3, . . . , xn) ∈ s(P).

If n = 2, then the assertion (iv) simply follows (with π = π2).
If n > 2, then xk = πk( j) = πk

(
π2( j)

)
, k = 3, . . . , n and j � π2( j), hence π3, . . . , πn

are not injective and therefore are not permutations and the assertion (iii) follows by
contradiction. �

4. E x a m p l e s

The theoretical results are illustrated by examples summarized in Table 1.
Maximizers of divergence from multinomial family M n,d are computed and the

results of the corresponding problem of maximization of multi-information are listed.

5. D i s c u s s i o n

Application of Corollary 2.6 of Theorem 2.5 and the result of N. Ay and A. Knauf,
Theorem 2.7 [3, Corollary 4.10], substantially simplified the proof of [8, Proposi-
tion 2], and in a more general setting.

Considering Corollary 2.6, a natural problem arises, i.e. to represent forms of the
space X, permutation groups G (i.e. the families E = E G(X) of all G-exchangeable
pm’s on X) and G-symmetrical exponential families F for which there exists a
G-exchangeable maximizer of D(·‖F ) over all pm’s on X. In this situation, it is
possible to reduce the dimensionality of the problem by sufficient statistics γG.
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Remarks 3.1
(a) For z, z′ ∈ Z and x, x′ ∈ X s.t. z = γ(x) and z′ = γ(x′) :

z = z′ ⇔ γ(x) = γ(x′) ⇔ x′ ∈ Gx ⇔ Gx = Gx′ ⇔ γG(x) = γG(x′);

(b) F defined by (4) is G-symmetrical;
(c) E ∩F = {p × . . . × p︸�������︷︷�������︸

n

: p is a strictly positive pm on [d]};

(d) Mn,d =M n,d ∩P(Z) = γ(E ∩F ).

Denote by Pπ2,...,πn the maximizer of D(·‖F ) from Theorem 2.7 corresponding to
π2, . . . , πn ∈ Sd and let Id be the identity on [d].

PId,...,Id is maximizer of D(‖F ) over P(X) and even PId,...,Id is G-exchangeable, i.e.
PId,...,Id ∈ E . Therefore, by Corollary 2.6 and Remarks 3.1, the assertions (i) and (ii)
follow.

Assume that P = Pπ2,...,πn ∈ E is such a maximizer that P � PId,...,Id, i.e. there exists
i ∈ {2, . . . , n} s.t. πi � Id, w.l.o.g. let π2 � Id. Thus, there exists j ∈ [d] s.t. π2( j) � j.
By the fact that P ∈ E , there exist x3, . . . , xn ∈ [d] s.t. ( j, π2( j), x3, . . . , xn) ∈ s(P) and
also (π2( j), j, x3, . . . , xn) ∈ s(P).

If n = 2, then the assertion (iv) simply follows (with π = π2).
If n > 2, then xk = πk( j) = πk

(
π2( j)

)
, k = 3, . . . , n and j � π2( j), hence π3, . . . , πn

are not injective and therefore are not permutations and the assertion (iii) follows by
contradiction. �

4. E x a m p l e s

The theoretical results are illustrated by examples summarized in Table 1.
Maximizers of divergence from multinomial family M n,d are computed and the

results of the corresponding problem of maximization of multi-information are listed.

5. D i s c u s s i o n

Application of Corollary 2.6 of Theorem 2.5 and the result of N. Ay and A. Knauf,
Theorem 2.7 [3, Corollary 4.10], substantially simplified the proof of [8, Proposi-
tion 2], and in a more general setting.

Considering Corollary 2.6, a natural problem arises, i.e. to represent forms of the
space X, permutation groups G (i.e. the families E = E G(X) of all G-exchangeable
pm’s on X) and G-symmetrical exponential families F for which there exists a
G-exchangeable maximizer of D(·‖F ) over all pm’s on X. In this situation, it is
possible to reduce the dimensionality of the problem by sufficient statistics γG.
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T 1. Examples

n arg maxP(X) M(·) ∩ E arg maxP(Z) D(·‖M n,d)

d arg maxP(X) M(·) \ E max
P(Z)

D(·‖M n,d) = max
P(X)

M(·)

µ

n = 2 1
2 (δ11 + δ22), 1

2 (δ12 + δ21) 1
2 (δ20 + δ02), δ11

d = 2 ln 2
1
4 (δ20 +

1
4δ02) + 1

2δ11

n = 3 1
2 (δ111 + δ222) 1

2 (δ30 + δ03)

d = 2 1
2 (δ112 + δ221) 2 ln 2
1
2 (δ121 + δ212) 1

8 (δ30 + δ03) + 3
8 (δ12 + δ21)

1
2 (δ211 + δ122)

n = 2 1
3 (δ11 + δ22 + δ33) 1

3 (δ200 + δ020 + δ002)
d = 3 1

3 (δ11 + δ23 + δ32) 1
3δ200 +

2
3δ011

1
3 (δ13 + δ22 + δ31) 1

3δ020 +
2
3δ101

1
3 (δ12 + δ21 + δ33) 1

3δ002 +
2
3δ110

1
3 (δ12 + δ23 + δ31) ln 3
1
3 (δ13 + δ21 + δ32) 1

9 (δ200 + δ020 + δ002)+
+ 2

9 (δ011 + δ101 + δ110)

One interesting special case arises when the state space X is a cartesian product
of finite spaces, F is a family of pm’s factorizable w.r.t. a hypergraph (hierarchical
model) and G is defined s.t. F is G-symmetrical.
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