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A fractional Gaussian noise is a formal derivative of a fractional Brownian motion. An
explicit formula for a weak solution to the stochastic billinear equation in a separable
Hilbert space with fractional Gaussian noise in the singular case H < 1/2 is given. The
stochastic integral is understood in the Skorokhod sense.

1. I n t r o d u c t i o n

It is well known that the unique solution to a stochastic bilinear equation

dX(t) = A(t)X(t)dt + BX(t)dW(t),
X(0) = x0,

(1.1)

where A is a real-valued bounded Borel function, B, x0 ∈ R, and W is a standard
Brownian motion (Wiener process), is given by an explicit formula

X(t) = exp{BW(t)} exp
{ ∫ t

0
A(u) du − 1

2
B2t
}
x0. (1.2)

Denoting by U the fundamental solution to

d
dt

x =
(
A(t) − 1

2
B2t
)
x
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This work was partially supported by the GAČR grant no. 201/07/0237, the GA UK grant no. 42709
and the grant SVV 261315/2010.

2000 Mathematics Subject Classification. 60H10

Key words and phrases. Fractional Brownian motion, stochastic differential equations in Hilbert space,
explicit formula for solution

E-mail address: snuparkova@karlin.mff.cuni.cz



50

and by S B the group generated by B, S B(t) = exp{Bt}, we may rewrite (1.2) as

X(t) = S B(W(t))U(t, 0)x0. (1.3)

In this form, the result remains valid for the multidimensional generalizations of (1.1),
when A(t) and B are commuting matrices, and for bilinear stochastic evolution equa-
tions in a Hilbert space (see Chapter 6 in [4] for a thorough discussion).
In the paper [5], a formula of the type (1.3) was established for solutions to a sto-
chastic bilinear equation in a Hilbert space, driven by a fractional Brownian motion.
Recall that a fractional Brownian motion on an interval [0, T ] with a Hurst parameter
H ∈ (0, 1) is a real-valued centered Gaussian process {BH(t), t ∈ [0, T ]}, the covari-
ance of which is given by

E [BH(s)BH(t)] =
1
2

(s2H + t2H − |s − t|2H), s, t ∈ [0, T ].

Let V be a separable Hilbert space, A(t) : Dom
(
A(t)
) → V, t ∈ [0, T ], closed linear

operators generating on evolution system on V and B : Dom(B) → V a generator
of a strongly continuous group S B on V , commuting with A(t). Let us consider an
equation

dX(t) = A(t)X(t) dt + BX(t) dBH(t)
X(0) = x0

(1.4)

in V . If H > 1/2, it is shown in [5] that (under some additional hypothesis upon A(t)
and B) the weak solution of (1.4) has again the form (1.3), where now U denotes the
evolution system generated by {A(t) − Ht2H−1B2, t ∈ [0, T ]}.
We aim at extending the result from [5] to the singular case H < 1/2. In this case,
one faces at least two problems. First, stochastic integrals with respect to a fractional
Brownian motion with H < 1/2 behave much less regularly than those for H > 1/2.
In our paper, we use the Skorokhod-type stochastic integral introduced in [2], and
the corresponding change of variables formula ([2], Corollary 4.8). Secondly, the
function t �→ Ht2H−1 blows up as t → 0+ if H < 1/2, so it is not obvious, whether
{A(t) − Ht2H−1B2, t ∈ [0, T ]} still generates an evolution system, even if the operators
A(t) and B are “nice”. The corresponding evolution system U is constructed in Sec-
tion 2 of the paper. We do not know if U is smooth enough, so one cannot apply the
Itô formula directly to the right-hand side of (1.3) and one has to resort to a suitable
approximation procedure; this is done in Section 3. In Section 4, two illustrative ex-
amples are given.
Finally, let us note that two particular cases of our result have been already stud-
ied. In [11], a one-dimensional space V is dealt with. In [12], the space V may be
infinite-dimensional, but A(t) and B must be bounded.
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2. D e t e r m i n i s t i c e q u a t i o n s

We would like to use the methods from [5] where the system of linear operators
{A(t) − Ht2H−1B2, t ∈ [0, T ]} (under additional assumptions) is well-defined and gen-
erates a strongly continuous evolution system and the standard one-dimensional Itô
formula for a fractional Brownian motion can be applied. But in the case H < 1

2 the
system of operators {A(t) − Ht2H−1B2, t ∈ [0, T ]} has a singularity at t = 0 because

t2H−1 −→ +∞ as t → 0+

so we use the approximating sequence {un, n ∈ N} of the function u(t) = t2H−1, t > 0,
defined as

un(t) =


t2H−1 , t > 1

n ,(
1
n

)2H−1
, 0 ≤ t ≤ 1

n .

and pass to the limit in an appropriate sense.
The approximating sequence {un, n ∈ N} has the following important properties

(U1) for all n ∈ N the function un is Lipschitz continuous on the interval [0, T ]
(U2) un converges to u in the space L1([0, T ])
(U3) for all n ∈ N and t > 0 0 ≤ un(t) ≤ u(t).

We have to assume that the system of linear operators {A(t), t ∈ [0, T ]} on V satisfies
(A1) for all t ∈ [0, T ] the operators A(t) are closed and densely defined with the

domain D := Dom(A(t)) independent of t
(A2) the resolvent set contains all λ ∈ C such that�(λ) ≥ ω for some fixed ω ∈ R

and for some constant M > 0 independent of t the resolvent R(λ, A(t)) satisfies

‖R(λ, A(t))‖L (V) ≤
M

|λ − ω| + 1

for all λ ∈ C,�(λ) ≥ ω, t ∈ [0, T ].
(A3) there exist constants L > 0 and 0 < γ ≤ 1 such that

‖A(t) − A(s)‖L (D;V) ≤ L|t − s|γ,
where the space D is equipped with the graph norm generated by the operator
A(0) − ωI, i.e.

‖x‖V + ‖(A(0) − ωI)x‖V .
These conditions (A1), (A2), (A3) imply that the system of operators {A(t), t ∈ [0, T ]}
generates a strongly continuous evolution system {UA(t, s), 0 ≤ s ≤ t ≤ T } satisfying
(see e.g. [13], Theorem 5.2.1.)

Im(UA(t, s)) ⊂ D, (2.1)
‖UA(t, s)‖L (V) ≤ C, (2.2)
∥∥∥∥ ∂
∂t

UA(t, s)
∥∥∥∥
L (V)

= ‖A(t)UA(t, s)‖L (V) ≤
C

t − s
, (2.3)

‖A(t)UA(t, s)(A(s) − ωI)−1‖L (V) ≤ C (2.4)
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for some constant C > 0 and any 0 ≤ s < t ≤ T .
For any n ∈ N we define the system of linear operators {An(t), t ∈ [0, T ]} on V with
the domain D by

An(t) = A(t) − Hun(t)B2, t ∈ [0, T ],
and we will show that this system generates a strongly continuous evolution system
on V . For simplicity we can assume that ω < 0. Let us remind that since the operator
−A(0) is sectorial, the fractional powers (−A(0))α for α ∈ (0, 1] are well-defined (see
e.g. [9]). Since the graph norms ‖x‖V +‖(A(t)−ω0I)x‖V , t ∈ [0, T ], ω0 ≥ ω, generated
by operators A(t) − ω0I, t ∈ [0, T ], ω0 ≥ ω, are equivalent, we can choose one fixed
norm

‖x‖D = ‖x‖V + ‖A(0)x‖V
on D.

Proposition 2.1 Assume that the conditions (A1), (A2), (A3) are satisfied for the
system {A(t), t ∈ [0, T ]}. Let B : Dom(B) → V be a linear densely defined operator
such that B2 is closed and Dom(B2) ⊃ Dom

(
(−A(0))α

)
for some α ∈ (0, 1).

Then the conditions (A1), (A2), (A3) are satisfied for the system {An(t), t ∈ [0, T ]}
with Dom(An(t)) = D and any fixed n ∈ N. Thus the system of operators {An(t), t ∈
∈ [0, T ]} generates strongly continuous evolution systems {Un(t, s), 0 ≤ s ≤ t ≤ T }
on V.

Proof. First note that the assumption (A3) is equivalent to∥∥∥(A(t) − A(s)
)
A−1(0)

∥∥∥
L (V) ≤ L|t − s|γ (2.5)

which implies that there exists a constant C0 > 0 independent of t such that

‖A(0)x‖V ≤ C0‖A(t)x‖V (2.6)

for all t ∈ [0, T ] and x ∈ D.
Indeed, (2.5) is equivalent to∥∥∥A(0)

(
A−1(t) − A−1(s)

)∥∥∥
L (V) ≤ L̃|t − s|γ

for some constants L̃ > 0 and 0 < γ ≤ 1 (see [3], p. 32). Thus for s = 0 we get

‖A(0)A−1(t) − I‖L (V) ≤ L̃T γ, 0 ≤ t ≤ T,

so
‖A(0)A−1(t)‖L (V) ≤ 1 + L̃T γ, 0 ≤ t ≤ T,

which is equivalent to (2.6).
Now we can use (2.6) and (A2) to get

‖A(0)R(λ, A(t))x‖V ≤ C0‖A(t)R(λ, A(t))x‖V ≤ C0
(
M(1 + ω) + 1

)‖x‖V (2.7)

for any x ∈ V and λ ∈ C, �(λ) ≥ ω. By the Corollary 2.6.11 from [9] there exists a
constant CA(0) > 0 depending on A(0) such that for any ρ > 0 and x ∈ V

‖B2R(λ, A(t))x‖V ≤ CA(0)
[
ρα‖R(λ, A(t))x‖V + ρα−1‖A(0)R(λ, A(t))‖V

]
.
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Using (A2) and (2.7)

‖B2R(λ, A(t))x‖V ≤ CA(0)
[
ρα

M
1 + |λ − ω| ‖x‖V + ρ

α−1C0
(
M(1 + ω) + 1

)‖x‖V ].

Thus

‖Hun(t)B2R(λ, A(t))‖L (V) ≤ H‖un‖C ([0,T ])CA(0)
[
ρα

M
1 + |λ − ω|+ρ

α−1C0
(
M(1+ω)+1

)]
.

For ρ > 0 enough large we get

H‖un‖C ([0,T ])CA(0)ρ
α−1C0

(
M(1 + ω) + 1

)
<

1
2

hence

‖Hun(t)B2R(λ, A(t))‖L (V) ≤ H‖un‖C ([0,T ])CA(0)ρ
α M

1 + |λ − ω| +
1
2
.

If we now choose some ω1 ≥ ω such that for all λ ∈ C, �(λ) ≥ ω1 and

2H‖un‖C ([0,T ])CA(0)ρ
αM − 1 + ω < �(λ)

then

‖Hun(t)B2R(λ, A(t))‖L (V) ≤ K < 1

for all t ∈ [0, T ], where K > 0 is a constant strictly smaller than 1.
Therefore

‖R(λ, An(t))‖L (V) = ‖(λI − A(t) + Hun(t)B2)−1‖L (V)

=
∥∥∥[I(λI − A(t)) + Hun(t)B2R(λ, A(t))(λI − A(t))

]−1∥∥∥
L (V)

=
∥∥∥∥
{[

I + Hun(t)B2R(λ, A(t))
]
(λI − A(t))

}−1∥∥∥∥
L (V)

=
∥∥∥∥R(λ, A(t))

[
I − ( − Hun(t)B2R(λ, A(t))

)]−1∥∥∥∥
L (V)

≤ M
1 + |λ − ω| ×

1
1 − K

× 1 + |λ − ω1|
1 + |λ − ω1|

≤ M
1 − K

× 1
1 + |λ − ω1|

×
(

1
1 + |λ − ω| +

|λ − ω|
1 + |λ − ω| +

|ω − ω1|
1 + |λ − ω|

)

≤ M(2 + |ω1 − ω|)
1 − K

× 1
1 + |λ − ω1|

which is (A2) for the system of operators {An(t), t ∈ [0, T ]}.
From (A3) and (U1) we have

‖A(t) − A(s)‖L (D;V) ≤ L|t − s|γ,
|un(t) − un(s)| ≤ Lu|t − s|γ
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for some constants L, Lu > 0. Note that the norm ‖x‖V+‖(An(t)−ω1I)x‖V is dominated
by the norm ‖x‖D. Thus

‖An(t) − An(s)‖L (D;V) ≤ ‖A(t) − A(s)‖L (D;V) + H|un(t) − un(s)|‖B2‖L (D;V)

≤ L|t − s|γ + HLu|t − s|γ‖B2‖L (D;V) ≤ LAn |t − s|γ

for some finite constant LAn > 0 because the operators B2A−1(0) ∈ L (V) by the
closed graph theorem, so (A3) is satisfied for the system of operators {An(t), t ∈
∈ [0, T ]}. �

Since {Un(t, s), 0 ≤ s ≤ t ≤ T } is a strongly continuous evolution system for any
n ∈ N it satisfies the equations

∂

∂t
Un(t, s)x =

(
A(t) − Hun(t)B2)Un(t, s)x

and

Un(t, s)x = UA(t, s)x −
∫ t

s
Hun(r)UA(t, r)B2Un(r, s)x dr

for any x ∈ V and 0 ≤ s ≤ t ≤ T .

Proposition 2.2 Let {UA(t, s), 0 ≤ s ≤ t ≤ T } be a strongly continuous evolution
system and B : Dom(B) → V be a linear densely defined operator such that B2 is
closed and Dom(B2) ⊃ D. Moreover, assume that

‖UA(t, s)B2‖L (V) ≤
CA

(t − s)β
(2.8)

for some constants CA > 0, 0 < β < 2H and 0 ≤ s < t ≤ T.
Then for any x ∈ V there exists unique continuous solution {U(t, 0)x, 0 ≤ t ≤ T } to
the equation

y(t) = UA(t, 0)x −
∫ t

0
Hr2H−1UA(t, r)B2y(r) dr (2.9)

on the interval [0, T ].

Proof. Fix x ∈ V . We show that the mapping

(
Φ(y)
)
(t) = UA(t, 0)x −

∫ t

0
Hr2H−1UA(t, r)B2y(r) dr

is continuous from C ([0, T ]; V) into C ([0, T ]; V) (we denote by C ([0, T ]; V) the
space of all continuous functions from the interval [0, T ] to the space V) and that
Φ is a contraction mapping.
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Take y ∈ C ([0, T ]; V) and t1, t2 ∈ [0, T ], t1 < t2. Then∥∥∥(Φ(y)
)
(t2) − (Φ(y)

)
(t1)
∥∥∥

V ≤ ‖UA(t2, 0)x − UA(t1, 0)x‖V

+
∥∥∥∥
∫ t2

0
Hr2H−1UA(t2, r)B2y(r) dr −

∫ t1

0
Hr2H−1UA(t1, r)B2y(r) dr

∥∥∥∥
V

≤ ‖UA(t2, 0)x − UA(t1, 0)x‖V +
∥∥∥∥
∫ t1

0
Hr2H−1(UA(t2, r) − UA(t1, r)

)
B2y(r) dr

∥∥∥∥
V

+
∥∥∥∥
∫ t2

t1
Hr2H−1UA(t2, r)B2y(r) dr

∥∥∥∥
V
= T1 + T2 + T3.

Since t �→ UA(t, 0)x is continuous for any x ∈ V we have

T1 = ‖UA(t2, 0)x − UA(t1, 0)x‖V −→ 0

as t2 → t1+ or t1 → t2−.
Since for any 0 < r < t1 and some r < t3 < t1∥∥∥Hr2H−1(UA(t2, r) − UA(t1, r)

)
B2y(r)

∥∥∥
V

=
∥∥∥Hr2H−1(UA(t2, t3)UA(t3, r) − UA(t1, t3)UA(t3, r)

)
B2y(r)

∥∥∥
V

≤ Hr2H−1‖UA(t2, t3) − UA(t1, t3)‖L (V)‖UA(t3, r)B2y(r)‖V −→ 0

as t2 → t1+ or t1 → t2− and by (2.8)
∥∥∥∥
∫ t1

0
Hr2H−1(UA(t2, r) − UA(t1, r)

)
B2y(r) dr

∥∥∥∥
V

≤ H‖y‖C ([0,T ];V)

∫ t1

0
r2H−1[‖UA(t2, r)B2‖L (V) + ‖UA(t1, r)B2‖L (V)

]
dr

≤ H‖y‖C ([0,T ];V)CA

∫ t1

0

[
r2H−1

(t2 − r)β
+

r2H−1

(t1 − r)β

]
dr ≤ 2H‖y‖C ([0,T ];V)CA

∫ t1

0

r2H−1

(t1 − r)β
dr

= 2H‖y‖C ([0,T ];V)CAt2H−β
1

∫ 1

0
r2H−1(1 − r)−β dr

≤ 2H‖y‖C ([0,T ];V)CAT 2H−βB(2H, 1 − β) < +∞,
thus

T2 =
∥∥∥∥
∫ t1

0
Hr2H−1(UA(t2, r) − UA(t1, r)

)
B2y(r) dr

∥∥∥∥
V
−→ 0

as t2 → t1+ or t1 → t2− by the Lebesgue dominated convergence theorem. Recall
that B(a, b) =

∫ 1
0 ua−1(1 − u)b−1 du, a > 0, b > 0, denotes the Beta function.

By (2.8) we get

T3 =
∥∥∥∥
∫ t2

t1
Hr2H−1UA(t2, r)B2y(r) dr

∥∥∥∥
V
≤ H‖y‖C ([0,T ];V)CA

∫ t2

t1

r2H−1

(t2 − r)β
dr

= H‖y‖C ([0,T ];V)CAt2H−β
2

∫ 1

t1
t2

r2H−1(1 − r)−β dr −→ 0

Take y ∈ C ([0, T ]; V) and t1, t2 ∈ [0, T ], t1 < t2. Then∥∥∥(Φ(y)
)
(t2) − (Φ(y)

)
(t1)
∥∥∥

V ≤ ‖UA(t2, 0)x − UA(t1, 0)x‖V

+
∥∥∥∥
∫ t2

0
Hr2H−1UA(t2, r)B2y(r) dr −

∫ t1

0
Hr2H−1UA(t1, r)B2y(r) dr

∥∥∥∥
V

≤ ‖UA(t2, 0)x − UA(t1, 0)x‖V +
∥∥∥∥
∫ t1

0
Hr2H−1(UA(t2, r) − UA(t1, r)

)
B2y(r) dr

∥∥∥∥
V

+
∥∥∥∥
∫ t2

t1
Hr2H−1UA(t2, r)B2y(r) dr

∥∥∥∥
V
= T1 + T2 + T3.

Since t �→ UA(t, 0)x is continuous for any x ∈ V we have

T1 = ‖UA(t2, 0)x − UA(t1, 0)x‖V −→ 0

as t2 → t1+ or t1 → t2−.
Since for any 0 < r < t1 and some r < t3 < t1∥∥∥Hr2H−1(UA(t2, r) − UA(t1, r)

)
B2y(r)

∥∥∥
V

=
∥∥∥Hr2H−1(UA(t2, t3)UA(t3, r) − UA(t1, t3)UA(t3, r)

)
B2y(r)

∥∥∥
V

≤ Hr2H−1‖UA(t2, t3) − UA(t1, t3)‖L (V)‖UA(t3, r)B2y(r)‖V −→ 0

as t2 → t1+ or t1 → t2− and by (2.8)
∥∥∥∥
∫ t1

0
Hr2H−1(UA(t2, r) − UA(t1, r)

)
B2y(r) dr

∥∥∥∥
V

≤ H‖y‖C ([0,T ];V)

∫ t1

0
r2H−1[‖UA(t2, r)B2‖L (V) + ‖UA(t1, r)B2‖L (V)

]
dr

≤ H‖y‖C ([0,T ];V)CA

∫ t1

0

[
r2H−1

(t2 − r)β
+

r2H−1

(t1 − r)β

]
dr ≤ 2H‖y‖C ([0,T ];V)CA

∫ t1

0

r2H−1

(t1 − r)β
dr

= 2H‖y‖C ([0,T ];V)CAt2H−β
1

∫ 1

0
r2H−1(1 − r)−β dr

≤ 2H‖y‖C ([0,T ];V)CAT 2H−βB(2H, 1 − β) < +∞,
thus

T2 =
∥∥∥∥
∫ t1

0
Hr2H−1(UA(t2, r) − UA(t1, r)

)
B2y(r) dr

∥∥∥∥
V
−→ 0

as t2 → t1+ or t1 → t2− by the Lebesgue dominated convergence theorem. Recall
that B(a, b) =

∫ 1
0 ua−1(1 − u)b−1 du, a > 0, b > 0, denotes the Beta function.

By (2.8) we get

T3 =
∥∥∥∥
∫ t2

t1
Hr2H−1UA(t2, r)B2y(r) dr

∥∥∥∥
V
≤ H‖y‖C ([0,T ];V)CA

∫ t2

t1

r2H−1

(t2 − r)β
dr

= H‖y‖C ([0,T ];V)CAt2H−β
2

∫ 1

t1
t2

r2H−1(1 − r)−β dr −→ 0
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as t2 → t1+ or t1 → t2−. Therefore
∥∥∥(Φ(y)

)
(t2) − (Φ(y)

)
(t1)
∥∥∥

V −→ 0

as t2 → t1+ or t1 → t2− and the function t �→ (Φ(y)
)
(t) is continuous on [0, T ] for any

y ∈ C ([0, T ]; V).
For any y1, y2 ∈ C ([0, T ]; V), t ∈ [0, T ] and T > 0 small enough there exists a
constant 0 < LT < 1 depending only on A, B, T,H such that

∥∥∥(Φ(y2)
)
(t) − (Φ(y1)

)
(t)
∥∥∥

V =
∥∥∥∥
∫ t

0
Hr2H−1UA(t, r)B2(y2(r) − y1(r)

)
dr
∥∥∥∥

V

≤ H‖y1 − y2‖C ([0,T ];V)CA

∫ t

0

r2H−1

(t − r)β
dr ≤ H‖y1 − y2‖C ([0,T ];V)CAT 2H−βB(2H, 1 − β)

≤ LT ‖y1 − y2‖C ([0,T ];V)

holds so Φ is a contraction. Hence, by the Banach fixed-point theorem there exists a
unique solution to the equation (2.9) for T enough small. Applying standard methods
we get a unique continuous solution (U(t, 0)x, t ∈ [0, T ]) to (2.9) for any T > 0. �

The next proposition describes the relation between Un and U.

Proposition 2.3 Let {Un(t, s), 0 ≤ s ≤ t ≤ T } be strongly continuous evolution
systems on V associated with the operators {An(t), t ∈ [0, T ]}. Suppose that the as-
sumptions of Proposition 2.2 are satisfied. Then for any x ∈ V there exists a constant
KU > 0 depending only on H, A, B and T such that

sup
{‖Un(t, 0)x‖V ; n ∈ N, 0 ≤ t ≤ T

} ≤ KU‖x‖V . (2.10)

Moreover, the convergence

‖Un( . , 0)x − U( . , 0)x‖C ([0,T ];V) −−−−−−−−→n→+∞0 (2.11)

holds for any x ∈ V.

Proof. Fix x ∈ V . For any n ∈ N and t ∈ [0, T ] using (2.2), (2.8) we obtain

‖Un(t, 0)x‖V ≤ ‖UA(t, 0)x‖ +
∥∥∥∥
∫ t

0
Hun(r)UA(t, r)B2Un(r, 0)x dr

∥∥∥∥
V

≤ C‖x‖V + HCA

∫ t

0

r2H−1

(t − r)β
‖Un(r, 0)x‖V dr.

The generalized Gronwall inequality (see [8], Lemma 7.1.2) yields

‖Un(t, 0)x‖V ≤ KU‖x‖V

for some finite constant KU > 0 independent of n, t and the first part of the statement
holds.
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It remains to prove the second part. For any x ∈ V and t ∈ [0, T ] using (2.10) and
(2.8) we get

‖Un(t, 0)x − U(t, 0)x‖V

=
∥∥∥∥
∫ t

0
Hun(r)UA(t, r)B2Un(r, 0)x dr −

∫ t

0
Hr2H−1UA(t, r)B2U(r, 0)x dr

∥∥∥∥
V

≤
∥∥∥∥
∫ t

0
H
(
un(r) − r2H−1)UA(t, r)B2Un(r, 0)x dr

∥∥∥∥
V

+
∥∥∥∥
∫ t

0
Hr2H−1UA(t, r)B2(Un(r, 0)x − U(r, 0)x

)
dr
∥∥∥∥

V

≤ HCAKU‖x‖V
∫ t

0

r2H−1 − un(r)
(t − r)β

dr + HCA

∫ t

0

r2H−1

(t − r)β
‖Un(r, 0)x − U(r, 0)x‖V dr.

If we use the definition of {un, n ∈ N} we obtain the inequality
∫ t

0

r2H−1 − un(r)
(t − r)β

dr ≤
(
1
n

)2H−β
B(2H, 1 − β)

and hence

‖Un(t, 0)x − U(t, 0)x‖V

≤ HCAKU‖x‖V
(
1
n

)2H−β
B(2H, 1 − β) + HCA

∫ t

0

r2H−1

(t − r)β
‖Un(r, 0)x − U(r, 0)x‖V dr.

Using again the generalized Gronwall inequality ([8], Lemma 7.1.2) we get

‖Un(t, 0)x − U(t, 0)x‖V ≤ HCAKU‖x‖VB(2H, 1 − β)
(
1
n

)2H−β
KT ,

where KT > 0 is a finite constant independent of n, t, therefore

‖Un( . , 0)x − U( . , 0)x‖C ([0,T ];V) −−−−−−−−→n→+∞0.

�

3. S t o c h a s t i c b i l i n e a r e q u a t i o n

Throughout this section we assume that the hypothesis (A1), (A2), (A3), (2.8) and
Dom(B2) ⊃ Dom

(
(−A(0))α

)
for some α ∈ (0, 1) are satisfied. Also let A∗(t) be the

adjoint operator to the operator A(t) for each t ∈ [0, T ]. Assume that the domain
Dom(A∗(t)) = D∗ of the operator A∗(t) is independent of t. Moreover, assume that

(B1) D∗ ⊂ Dom((B∗)2)
(B2) linear operator B on V is closed and densely defined and generates a strongly

continuous group {S B(t), t ∈ R}
and
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(AB) the operators A(t) and {S B(u), u ∈ R} commute on the domain D for all t ∈
∈ [0, T ]

It is well known that (B2) yields an existence of constants MB ≥ 1, ωB ≥ 0 such that
the inequality

‖S B(u)‖L (V) ≤ MB exp{ωB|u|} (3.1)
holds for each u ∈ R.

An explicit formula for the weak solution to the stochastic differential equation

dX(t) = A(t)X(t)dt + BX(t)dBH(t),
X(0) = x0,

(3.2)

on the interval [0, T ] is given in this section, where x0 ∈ V is a deterministic initial
value and {BH(t), t ∈ [0, T ]} is a one-dimensional real-valued fractional Brownian
motion with Hurst parameter H < 1

2 on the interval [0, T ] defined on a complete
probability space (Ω,F , P).

Definition 3.1 A
(
B([0, T ])⊗F

)
-measurable stochastic process {X(t), t ∈ [0, T ]}

is said to be
(I) a strong solution to the equation (3.2) if X(t) ∈ D P -a.s. for all t ∈ [0, T ]

and

X(t) = x0 +

∫ t

0
A(r)X(r) dr +

∫ t

0
BX(r) dBH(r) P − a.s.

for all t ∈ [0, T ].
(II) a weak solution to the equation (3.2) if for any y ∈ D∗

〈X(t), y〉V = 〈x0, y〉V +
∫ t

0
〈X(r), A∗(r)y〉V dr +

∫ t

0
〈X(r), B∗y〉V dBH(r) P − a.s.

for all t ∈ [0, T ].

Let Un be the strongly continuous evolution system associated with the system of
operators {An(t), t ∈ [0, T ]} constructed in Proposition 2.1. Define approximating
processes {Xn(t), t ∈ [0, T ]}, n ∈ N, as

Xn(t) = S B(BH(t))Un(t, 0)x0, t ∈ [0, T ].

Proposition 3.2 If x0 ∈ D then the process {Xn(t), t ∈ [0, T ]} is a strong solution
to the equation

dXn(t) =
(
A(t) + H

(
t2H−1 − un(t)

)
B2
)
Xn(t)dt + BXn(t)dBH(t),

Xn(0) = x0.
(3.3)

If x0 ∈ V and for some constant C∗0 > 0 independent of t

‖A∗(t)x‖V ≤ C∗0‖A∗(0)x‖V (3.4)

holds for each x ∈ D∗ then the process {Xn(t), t ∈ [0, T ]} is a weak solution to the
equation (3.3).
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Proof. Fix y ∈ Dom((B∗)2). An idea of the proof is to apply the one-dimensional
Itô formula for a fractional Brownian motion (see [2], Corollary 4.8) to the function

f (t, x) :=
〈
S B(x)Un(t, 0)x0, y

〉
V =
〈
Un(t, 0)x0, S ∗B(x)y

〉
V , t ≥ 0, x ∈ R.

Clearly, f ∈ C 1,2([0, T ] × R),

∂

∂t
f (t, x) =

〈
(A(t) − Hun(t)B2)Un(t, 0)x0, S ∗B(x)y

〉
V ,

∂

∂x
f (t, x) =

〈
Un(t, 0)x0, S ∗B(x)B∗y

〉
V ,

∂2

∂x2 f (t, x) =
〈
Un(t, 0)x0, S ∗B(x)(B∗)2y

〉
V .

We have to check that

max
{∣∣∣∣ ∂
∂t

f (t, x)
∣∣∣∣,
∣∣∣∣ ∂

2

∂x2 f (t, x)
∣∣∣∣
}
≤ C f eλx2

(3.5)

for some constants C f > 0 and 0 < λ < 1/4T 2H .
Note that for all b ∈ R the inequality

exp{bx} ≤ exp{Cb + λx2}, x ∈ R,

holds for some constant Cb ≥ 0.
By (2.4) for {An(t), t ∈ [0, T ]} and (3.1) we get

∣∣∣∣ ∂
∂t

f (t, x)
∣∣∣∣ =
∣∣∣∣〈(A(t) − Hun(t)B2)Un(t, 0)x0, S ∗B(x)y

〉
V

∣∣∣∣
≤
∣∣∣∣〈(A(t) − Hun(t)B2)Un(t, 0)(A(0) − Hun(0)B2)−1(A(0) − Hun(0)B2)x0, S ∗B(x)y

〉
V

∣∣∣∣
≤ C‖(A(0) − Hun(0)B2)x0‖V MB exp{ωB|x|}‖y‖V ≤ C f eλx2

and by (2.10) and (3.1)

∣∣∣∣ ∂
2

∂x2 f (t, x)
∣∣∣∣ = 〈Un(t, 0)x0, S ∗B(x)(B∗)2y

〉
V ≤ ‖Un(t, 0)x0‖V‖S ∗B(x)(B∗)2y‖V

≤ KU‖x0‖V MB exp{ωB|x|}‖(B∗)2y‖V ≤ C f eλx2
.
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Now, Corollary 4.8 from [2] yields

〈Xn(t), y〉V = f (t, BH(t)) = f (0, BH(0)) +
∫ t

0

∂

∂r
f (r, BH(r)) dr

+

∫ t

0

∂

∂x
f (r, BH(r)) dBH(r) +

∫ t

0
Hr2H−1 ∂

2

∂x2 f (r, BH(r)) dr

= 〈x0, y〉V +
∫ t

0

〈
(A(r) − Hun(r)B2)Un(r, 0)x0, S ∗B(BH(r))y〉V dr

+

∫ t

0

〈
BS B(BH(r))Un(r, 0)x0, y

〉
V dBH(r)

+

∫ t

0

〈
Hr2H−1B2S B(BH(r))Un(r, 0)x0, y

〉
V dr P − a.s.

for all t ∈ [0, T ]. Using the commutativity assumption (AB) we get

〈Xn(t), y〉V = 〈x0, y〉V +
∫ t

0
〈A(r)Xn(r), y〉V dr +

∫ t

0
〈BXn(r), y〉V dBH(r)

+

∫ t

0

〈
H
(
r2H−1 − un(r)

)
B2Xn(r), y

〉
V dr P − a.s.

for all t ∈ [0, T ] and y ∈ Dom((B∗)2). Taking a countable subset of the domain
Dom((B∗)2) dense in V we obtain that the process {Xn(t), t ∈ [0, T ]} is D-valued and
it is a strong solution to the equation (3.3).
Let x0 ∈ V . To prove the second part take a sequence {xk, k ∈ N} in D converging to
x0 in V and consider approximating processes {Yk(t), t ∈ [0, T ]}, k ∈ N, of the process
{Xn(t), t ∈ [0, T ]} defined as

Yk(t) = S B(BH(t))Un(t, 0)xk.

By the previous part of the proof it is known that the process {Yk(t), t ∈ [0, T ]} is a
strong solution to the equation (3.3) with the initial value Yk(0) = xk and for each
y ∈ D∗

〈Yk(t), y〉V = 〈xk, y〉V +
∫ t

0
〈Yk(r), A∗(r)y〉V dr +

∫ t

0
〈Yk(r), B∗y〉V dBH(r) (3.6)

+

∫ t

0

〈
H
(
r2H−1 − un(r)

)
Yk(r), (B∗)2y

〉
V dr P − a.s.

for all t ∈ [0, T ].
Our aim is to pass to the limit in the equation (3.6) in the space L2(Ω) for any fixed
t ∈ [0, T ] and any fixed y ∈ D∗ and to use the closedness of the Skorokhod integral.
By the Fernique theorem (see [7]) it is well-known that

E
[

exp
{
ζ sup{|BH(t)|; t ∈ [0, T ]}}

]
< +∞ (3.7)
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for any constant ζ > 0.
Using (3.1), (3.7) and (2.10)

E
∣∣∣〈Yk(t), y〉V − 〈Xn(t), y〉V

∣∣∣2 = E
∣∣∣〈Yk(t) − Xn(t), y〉V

∣∣∣2

= E
∣∣∣∣〈S B(BH(t))Un(t, 0)(xk − x0), y

〉
V

∣∣∣∣
2

≤ M2
BE
[

exp
{
2ωB sup{|BH(r)|; r ∈ [0, T ]}}

]
K2

U‖y‖2V‖xk − x0‖2V −−−−−−−−→k→+∞0, (3.8)

E
∣∣∣〈xk, y〉V − 〈x0, y〉V

∣∣∣2 = 〈xk − x0, y〉2V ≤ ‖y‖2V‖xk − x0‖2V −−−−−−−−→k→+∞0,

by (3.4)

E
∣∣∣∣
∫ t

0

〈(
Yk(r) − Xn(r)

)
, A∗(r)y

〉
V dr
∣∣∣∣
2
= E
∣∣∣∣
∫ t

0

〈(
S B(BH(t))Un(t, 0)(xk − x0)

)
, A∗(r)y

〉
V dr
∣∣∣∣
2

≤ M2
BE
[

exp
{
2ωB sup{|BH(r)|; r ∈ [0, T ]}}

]
K2

UT 2‖xk − x0‖2V (C∗0)2‖A∗(0)y‖2V −−−−−−−−→k→+∞0,

and by (U3)

E
∣∣∣∣
∫ t

0

〈
H(r2H−1 − un(r))(Yk(r) − Xn(r)), (B∗)2y

〉
V dr
∣∣∣∣
2

= E
∣∣∣∣
∫ t

0

〈
H(r2H−1 − un(r))S B(BH(t))Un(t, 0)(xk − x0), (B∗)2y

〉
V dr
∣∣∣∣
2

≤ M2
BE
[

exp
{
2ωB sup{|BH(r)|; r ∈ [0, T ]}}

]
K2

UT 4H‖xk − x0‖2V‖(B∗)2y‖2V −−−−−−−−→k→+∞0.

Therefore we can pass to the limit in the equation (3.6) in the space L2(Ω) and there
exists a random variable Y(n,y)(t) such that

∫ t

0
〈Yk(r), B∗y〉V dBH(r) −−−−−−−−→

n→+∞Y(n,y)(t) in L2(Ω).

Analogous to (3.8) we get
∫ t

0
E
∣∣∣〈Yk(r), B∗y〉V − 〈Xn(r), B∗y〉V

∣∣∣2 dr −−−−−−−−→
k→+∞0

and

{〈Yk(r), B∗y〉V , r ∈ [0, t]}, {〈Xn(r), B∗y〉V , r ∈ [0, t]} ∈ L2(Ω; L2([0, t])
)

for any k ∈ N and by the Itô formula we know that the process {〈Yk(r), B∗y〉V , r ∈
∈ [0, t]} is Skorokhod integrable with respect to the fractional Brownian motion.
Hence by the closedness of the Skorokhod integral we have that the process
{〈Xn(r), B∗y〉V , r ∈ [0, t]} is Skorokhod integrable with respect to the fractional Brow-
nian motion and

Y(n,y)(t) =
∫ t

0
〈Xn(r), B∗y〉V dBH(r) P − a.s.

(see [2], Remark 3.4.2) for any t ∈ [0, T ]. Thus the process {Xn(t), t ∈ [0, T ]} is a
weak solution to the equation (3.3). �

for any constant ζ > 0.
Using (3.1), (3.7) and (2.10)

E
∣∣∣〈Yk(t), y〉V − 〈Xn(t), y〉V

∣∣∣2 = E
∣∣∣〈Yk(t) − Xn(t), y〉V

∣∣∣2

= E
∣∣∣∣〈S B(BH(t))Un(t, 0)(xk − x0), y

〉
V

∣∣∣∣
2

≤ M2
BE
[

exp
{
2ωB sup{|BH(r)|; r ∈ [0, T ]}}

]
K2

U‖y‖2V‖xk − x0‖2V −−−−−−−−→k→+∞0, (3.8)

E
∣∣∣〈xk, y〉V − 〈x0, y〉V

∣∣∣2 = 〈xk − x0, y〉2V ≤ ‖y‖2V‖xk − x0‖2V −−−−−−−−→k→+∞0,

by (3.4)

E
∣∣∣∣
∫ t

0

〈(
Yk(r) − Xn(r)

)
, A∗(r)y

〉
V dr
∣∣∣∣
2
= E
∣∣∣∣
∫ t

0

〈(
S B(BH(t))Un(t, 0)(xk − x0)

)
, A∗(r)y

〉
V dr
∣∣∣∣
2

≤ M2
BE
[

exp
{
2ωB sup{|BH(r)|; r ∈ [0, T ]}}

]
K2

UT 2‖xk − x0‖2V (C∗0)2‖A∗(0)y‖2V −−−−−−−−→k→+∞0,

and by (U3)

E
∣∣∣∣
∫ t

0

〈
H(r2H−1 − un(r))(Yk(r) − Xn(r)), (B∗)2y

〉
V dr
∣∣∣∣
2

= E
∣∣∣∣
∫ t

0

〈
H(r2H−1 − un(r))S B(BH(t))Un(t, 0)(xk − x0), (B∗)2y

〉
V dr
∣∣∣∣
2

≤ M2
BE
[

exp
{
2ωB sup{|BH(r)|; r ∈ [0, T ]}}

]
K2

UT 4H‖xk − x0‖2V‖(B∗)2y‖2V −−−−−−−−→k→+∞0.

Therefore we can pass to the limit in the equation (3.6) in the space L2(Ω) and there
exists a random variable Y(n,y)(t) such that

∫ t

0
〈Yk(r), B∗y〉V dBH(r) −−−−−−−−→

n→+∞Y(n,y)(t) in L2(Ω).

Analogous to (3.8) we get
∫ t

0
E
∣∣∣〈Yk(r), B∗y〉V − 〈Xn(r), B∗y〉V

∣∣∣2 dr −−−−−−−−→
k→+∞0

and

{〈Yk(r), B∗y〉V , r ∈ [0, t]}, {〈Xn(r), B∗y〉V , r ∈ [0, t]} ∈ L2(Ω; L2([0, t])
)

for any k ∈ N and by the Itô formula we know that the process {〈Yk(r), B∗y〉V , r ∈
∈ [0, t]} is Skorokhod integrable with respect to the fractional Brownian motion.
Hence by the closedness of the Skorokhod integral we have that the process
{〈Xn(r), B∗y〉V , r ∈ [0, t]} is Skorokhod integrable with respect to the fractional Brow-
nian motion and

Y(n,y)(t) =
∫ t

0
〈Xn(r), B∗y〉V dBH(r) P − a.s.

(see [2], Remark 3.4.2) for any t ∈ [0, T ]. Thus the process {Xn(t), t ∈ [0, T ]} is a
weak solution to the equation (3.3). �
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Now we can define the process {X(t), t ∈ [0, T ]} as

X(t) = S B(BH(t))U(t, 0)x0, t ∈ [0, T ],

and show the relation between processes {Xn(t), t ∈ [0, T ]} and {X(t), t ∈ [0, T ]}.

Lemma 3.3 For any y ∈ V and any t ∈ [0, T ] the random variables 〈Xn(t), y〉V
converge to the random variable 〈X(t), y〉V in the space L2(Ω).

Proof. Using (3.1), (3.7) and (2.11) we get

E
∣∣∣〈Xn(t), y〉V − 〈X(t), y〉V

∣∣∣2 = E
∣∣∣〈Xn(t) − X(t), y〉V

∣∣∣2

= E
∣∣∣∣〈S B(BH(t))(Un(t, 0)x0 − U(t, 0))x0, y

〉
V

∣∣∣∣
2
≤ ‖Un( . , 0)x0 − U( . , 0)x0‖2C ([0,T ];V)

× ‖y‖2V M2
BE
[

exp
{
2ωB sup{|BH(t)|; t ∈ [0, T ]}}

]
−−−−−−−−→
n→+∞0.

�

Now we can prove that the process {X(t), t ∈ [0, T ]} is a weak solution to the equation
(3.2).

Theorem 3.4 Assume that {A(t), t ∈ [0, T ]} and B are linear operators on V
satisfying (A1), (A2), (A3) and (B1), (B2). Moreover, assume that Dom(B2) ⊃
⊃ Dom

(
(−A(0))α

)
for some α ∈ (0, 1), (2.8), (AB) and (3.4) hold. Then for each

x0 ∈ V the process {X(t), t ∈ [0, T ]} is a weak solution to the equation

dX(t) = A(t)X(t)dt + BX(t)dBH(t),
X(0) = x0.

(3.9)

Proof. The proof is similar to the last part of the proof of Proposition 3.2. We pass
to the limit in the equation

〈Xn(t), y〉V = 〈x0, y〉V +
∫ t

0
〈Xn(r), A∗(r)y〉V dr +

∫ t

0
〈Xn(r), B∗y〉V dBH(r)

+

∫ t

0

〈
H
(
r2H−1 − un(r)

)
Xn(r), (B∗)2y

〉
V dr (3.10)

in the space L2(Ω) for any fixed t ∈ [0, T ] and any fixed y ∈ D∗.
By (3.4), (3.7), (3.1) and (2.11) we have

E
∣∣∣∣
∫ t

0

〈(
Xn(r) − X(r)

)
, A∗(r)y

〉
V dr
∣∣∣∣
2

= E
∣∣∣∣
∫ t

0

〈
S B(BH(r))

(
Un(r, 0)x0 − U(r, 0)x0)

)
, A∗(r)y

〉
V

∣∣∣∣
2
dt ≤ (C∗0)2‖A∗(0)y‖2VT 2

× M2
BE
[

exp
{
2ωB sup{|BH(r)|; r ∈ [0, T ]}}

]
‖Un( . , 0)x0 − U( . , 0)x0‖2C ([0,T ];V) −−−−−−−−→n→+∞0.

Hence ∫ t

0
〈Xn(r), A∗(r)y〉V dr −−−−−−−−→

n→+∞

∫ t

0
〈X(r), A∗(r)y〉V dr in L2(Ω).



63

Further, by (3.1), (2.10), (3.7), and (U2) we obtain

E
∣∣∣∣
∫ t

0

〈
H(r2H−1 − un(r))Xn(r), (B∗)2y

〉
V dr
∣∣∣∣
2

= E
∣∣∣∣
∫ t

0

〈
H(r2H−1 − un(r))S B(BH(r))Un(r, 0)x0, (B∗)2y

〉
V dr
∣∣∣∣
2

≤ H2‖(B∗)2y‖2V M2
BE
[

exp
{
2ωB sup{|BH(r)|; r ∈ [0, T ]}}

]
K2

U‖x0‖2V

×
(∫ T

0

(
r2H−1 − un(r)

)
dr
)2

−−−−−−−−→
n→+∞0,

thus ∫ t

0

〈
H
(
r2H−1 − un(r)

)
Xn(r), (B∗)2y

〉
V dr −−−−−−−−→

n→+∞0 in L2(Ω).

From the proof of the previous lemma also follows that the left-hand side of (3.10)
converges to 〈X(t), y〉V , therefore there exists a random variable Yy(t) such that

∫ t

0
〈Xn(r), B∗y〉V dBH(r) −−−−−−−−→

n→+∞Yy(t) in L2(Ω). (3.11)

By Proposition 3.2 we have that the process {〈Xn(r), B∗y〉V , r ∈ [0, t]} is Skorokhod
integrable with respect to the fractional Brownian motion. Moreover, analogous to
Lemma 3.3 we obtain

{〈Xn(r), B∗y〉V , r ∈ [0, t]}, {〈X(r), B∗y〉V , r ∈ [0, t]} ∈ L2(Ω; L2([0, t])
)

and ∫ t

0
E
∣∣∣〈Xn(r), B∗y〉V − 〈X(r), B∗y〉V

∣∣∣2 dr −−−−−−−−→
k→+∞0

for any n ∈ N. Hence by the closedness of the Skorokhod integral we have that the
process {〈X(r), B∗y〉V , r ∈ [0, t]} is Skorokhod integrable with respect to the fractional
Brownian motion and

Yy(t) =
∫ t

0
〈X(r), B∗y〉V dBH(r) P − a.s.

(see [2], Remark 3.4.2) for any t ∈ [0, T ]. Thus the process {X(t), t ∈ [0, T ]} satisfies
the equality

〈X(t), y〉V = 〈x0, y〉V +
∫ t

0
〈X(r), A∗(r)y〉V dr +

∫ t

0
〈X(r), B∗y〉V dBH(r) P − a.s.

for any t ∈ [0, T ] and y ∈ D∗ and Theorem 3.4 follows. �

4. E x a m p l e s

In this section we give two examples of a stochastic partial differential equation illus-
trating the results obtained in the previous section.
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Example 4.1 Consider the following stochastic parabolic equation of the second
order

∂u
∂t

(t, x) = L(t, x)u + bu(t, x)
dBH

dt
, (4.1)

u(0, x) = x0(x), x ∈ O

u(t, x) = 0, (t, x) ∈ [0, T ] × ∂O ,

where O ⊂ Rd is a bounded domain with the boundary of class C 2, b ∈ R \ {0} and

L(t, x)u = a0(t, x)u(t, x) +
d∑

i=1

ai(t, x)
∂u
∂xi

(t, x) +
d∑

i, j=1

ai j(t, x)
∂2u
∂xi∂x j

(t, x)

is a uniformly strongly elliptic operator on O , i.e. there exists a constant ϑ > 0 such
that

d∑
i, j=1

ai j(t, x)ζiζ j > ϑ‖ζ‖2Rd

for all (t, x) ∈ [0, T ] × Ō and 0 � ζ = (ζ1, . . . , ζd) ∈ Rd.
The functions a0(t, . ), ai(t, . ), ai j(t, . ) ∈ C∞(Ō) for any i, j = 1, . . . , d and t ∈ [0, T ].
Equation (4.1) can be rewritten in the form

dX(t) = A(t)X(t)dt + BX(t)dBH(t) (4.2)
X(0) = x0

for t ∈ [0, T ], where V = L2(O),
(
A(t)u

)
(x) = L(t, x)u,

where Dom(A(t)) = D = H2(O) ∩ H1
0(O) and B = bI ∈ L (V).

Assume that

sup
x∈O
{|a0(t, x) − a0(s, x)|, |ai(t, x) − ai(s, x)|, |ai j(t, x) − ai j(s, x)|} ≤ M|t − s|γ

for any s, t ∈ [0, T ], i, j = 1, . . . , d, and some constants M > 0, 0 < γ < 1 then the
assumptions (A1), (A2), (A3) are satisfied (cf. Theorem 3.8.3, [13]). The adjoint
operator A∗(t) has the same form as the operator A(t) only with other coefficients. So
the domain Dom(A∗(t)) = D∗ = D = Dom(A(t)) is independent of t. Also conditions
(B1), (B2), (2.8), (AB) and Dom(B2) ⊃ Dom

(
(−A(0))α

)
for some α ∈ (0, 1) are triv-

ially satisfied. Moreover, we have to assume that (2.6) and (3.4). Then the assumption
of Theorem 3.4 are satisfied thus there exists a weak solution to the equation (4.2).

Example 4.2 Consider the equation

∂u
∂t

(t, x) = −∂
4u
∂x4 (t, x) − αu(t, x) +

∂u
∂x

(t, x)
dBH

dt
, (4.3)

u(0, x) = x0(x),
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in the weighted space V = L2
ρ(R) with the weight e−ρ|x|, x ∈ R, and some fixed positive

constant ρ, where (t, x) ∈ R+ ×R. The operator A = − ∂4

∂x4 − αI defined on the domain
D = Dom(A) = W4,2(R) generates a strongly continuous semigroup {S A(t), t ∈ [0, T ]}
on V which is exponentially stable for any fixed α > 0 (see e.g. [10]). The operator
B = ∂

∂x with the domain Dom(B) = W1,2(R) generates a strongly continuous group
{S B(t), t ∈ R} on V which is a shift operator

(
S B(t)u

)
(x) = u(t + x), t, x ∈ R.

Moreover, D = D∗ = Dom(A∗), Dom(B2) = Dom((B∗)2) = W2,2(R) and S B(t) com-
mute with A on D for each t ∈ [0, T ]. The operators

{
An(t) = − ∂

4

∂x4 − αI − Hun(t)
∂2

∂x2 , t ∈ [0, T ]
}

are strongly elliptic and generate a strongly continuous evolution system {Un(t, s), 0 ≤
≤ s ≤ t ≤ T }.
It remains to show (2.8), i.e.

‖S A(t)B2‖L (V) ≤
CA

tβ

for some constants CA > 0, 0 < β < 2H and 0 ≤ t ≤ T .
Recall (see e.g. [6]) that there exists the fundamental solution G ∈ C∞(R+ × R × R)
to the operator ∂

∂t − A with the property
∣∣∣∣∣∣
∂2

∂x2 G(t, x, y)

∣∣∣∣∣∣ ≤ K1t−1/2g
(
K2t, |x − y|), t ∈ (0, T ], x, y ∈ R (4.4)

for some constants K1,K2 > 0, where

g(t, z) = t−1/4 exp

−
(
z4

t

)1/3 , t > 0, z ∈ R.

Moreover, for any u ∈ L2(R)

(
S A(t)u

)
(x) =

∫
R

G(t, x, y)u(y) dy, t > 0, x ∈ R. (4.5)

Since the semigroup {S A(t), t ≥ 0} is self-adjoint on L2(R) the equality

〈S A(t)u, v〉L2(R) = 〈u, S A(t)v〉L2(R), u, v ∈ L2(R),

holds, so using (4.5) and Fubini Theorem we obtain

〈S A(t)u, v〉L2(R) =

∫
R

∫
R

G(t, x, y)u(y) dy v(x) dx =
∫
R2

G(t, x, y)u(y)v(x) dx dy

and

〈u, S A(t)v〉L2(R) =

∫
R

u(y)
∫
R

G(t, y, x)v(x) dx dy =
∫
R2

G(t, y, x)u(y)v(x) dx dy.
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Thus G(t, x, y) = G(t, y, x), t > 0, x, y ∈ R.
Let ϑρ ∈ C∞(R) be a smooth approximation of the weight e−ρ|x|, x ∈ R, such that
ϑρ(x) = e−ρ|x|, |x| ≥ 1. Then

(
g(t, . ) ∗ ϑρ

)
(x) ≤ K3ϑρ(x), t ∈ [0, T ], x ∈ R, (4.6)

for some constant K3 > 0.
Take u ∈ C∞0 (R). Then using (4.5), symmetry of G, (4.4), Jensen inequality and (4.6)
∫
R

∣∣∣(S A(t)B2u
)
(x)
∣∣∣2ϑρ(x) dx =

∫
R

∣∣∣∣
∫
R

G(t, x, y)
∂2

∂y2 u(y) dy
∣∣∣∣
2
ϑρ(x) dx

=

∫
R

∣∣∣∣
∫
R

G(t, y, x)
∂2

∂y2 u(y) dy
∣∣∣∣
2
ϑρ(x) dx =

∫
R

∣∣∣∣
∫
R

∂2

∂y2 G(t, y, x)u(y) dy
∣∣∣∣
2
ϑρ(x) dx

≤ K2
1 t−1
∫
R

( ∫
R

g(K2t, |x − y|)|u(y)| dy
)2
ϑρ(x) dx

≤ KK2
1 t−1
∫
R

∫
R

g(K2t, |x − y|)|u(y)|2 dyϑρ(x) dx ≤ KK2
1 K3 t−1

∫
R

|u(y)|2ϑρ(y) dy

= KK2
1 K3 t−1‖u‖2L2

ρ(R).

Since C∞0 (R) is dense in L2
ρ(R) we obtain that

‖S A(t)B2‖L (V) ≤
(KK2

1 K3)1/2

t1/2 , t > 0.

Hence the condition 1/2 < 2H can be satisfied only for H > 1/4. Therefore, under
this hypothesis H > 1/4 the equation (4.3) has a weak solution

{X(t) = S B(BH(t))U(t, 0)u0, t ∈ [0, T ]}

for any initial value u0 ∈ V .
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