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NUMERICAL ANALYSIS OF A SEMI-IMPLICIT DDFV
SCHEME FOR THE REGULARIZED CURVATURE
DRIVEN LEVEL SET EQUATION IN 2D

Angela Handlovičová and Dana Kotorová

Stability and convergence of the linear semi-implicit discrete duality finite volume (DDFV)
numerical scheme in 2D for the solution of the regularized curvature driven level set equation is
proved. Numerical experiments concerning comparison with exact solution and image filtering
problem using proposed scheme are included.

Keywords: mean curvature flow, level set equation, numerical solution, semi-implicit
scheme, discrete duality finite volume method, stability, convergence

Classification: 35K65,65M08, 65M12

1. INTRODUCTION

The curvature driven level set equation [16]

ut − |∇u|∇.
(
∇u
|∇u|

)
= 0, (1.1)

as well as its nontrivial generalizations, is used in the applications as the motion of in-
terfaces (free boundaries) in thermomechanics (solidification, crystal growth) and com-
putational fluid dynamics (free surface flows, multi-phase flows of immiscible fluids, thin
films), the smoothing and segmentation of images and the surface reconstructions in
the image processing, computer vision and computer graphics (see e.g. [16, 15, 10] and
many others see references therein).

As in the previous papers see e.g. [4],[6] the regularization of the original level set
equation is used. We will study the following equation

ut − f(|∇u|)∇.
(

∇u
f(|∇u|)

)
= 0, (1.2)

where the function f and its properties will be described in assumptions below. The
unknown function u(t, x) in (1.2), defined in I × Ω, Ω ⊂ IR2 is a bounded Lipschitz
domain, I = [0, T ], T > 0 is a time interval, and we will consider the equation with zero
Dirichlet boundary conditions and with an initial condition:

u(t, x) = 0 on I × ∂Ω, (1.3)
u(0, x) = u0(x). (1.4)
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We will study our numerical scheme under the following hypothesis, called hypothesis
(H0):

• Ω is a rectangular domain in IR2;

• u0 ∈ H1
0 (Ω).

For the regularization function we will use two possibilities. First is well known Evans-
Spruck regularization (see [4]) and for our purpose we call it hypothesis
(H1):

f(z) =
√
z2 + ε2,

with fixed regularization parameter ε > 0.
For convergence study we need further regularization assumption as in [6]; we will

call it hypothesis
(H1):

f(z) = min(
√
z2 + ε2, b),

with fixed regularization parameter ε > 0 and another real fixed parameter b, ε < b.
The derivation of our numerical method for solving equation (1.2) is based on the

finite volume methodology (see e.g. [5]). There are also many interesting results in this
topic for numerical schemes obtained by finite difference method and finite element
method as well, some of them are mentioned in [6] so here we focus only for those that
are based on finite volume methods.

The mathematical analysis of finite volume methods for mean curvature flow level
set equation is partly proposed in [9, 13, 7], applied to the co-volume scheme initially
proposed by Walkington [17] for the Evans-Spruck regularisation of the problem (hypoth-
esis (H1)). Walkington’s initial scheme is nonlinear and its linear semi-implicit variant
is suggested in [9]. Such semi-implicit scheme is proved to be efficient, as keeping all
theoretical properties of Walkington’s scheme. It is used in solving various practical 2D
and 3D (large-scale) image analysis problems [3]. In [9, 13] the L∞ stability of the so-
lution and the L1 stability of its gradient are given. Moreover, in [7], the consistency of
the scheme is proved using the Barles and Souganidis [2] approach for solving nonlinear
PDEs. However, the convergence of the co-volume semi-implicit scheme to the exact
solution remains an open problem.

Another approach using finite volume scheme but with the additional points on edges
of the finite volume is used in [6] but with further regularization parameter (hypothesis
as (H1)). In this case the convergence analysis is presented for proposed scheme.

We construct the so-called discrete duality finite volume scheme based on idea [1]
as was presented in [11] and [8]. From construction point of view this scheme is most
closer to those in [9]. The main difference is that for DDF scheme we use two meshes,
primal and dual and we have new additional unknowns for the dual mesh. Together
with further regularization as in (H1) we are able to prove convergence results for DDF
scheme for the regularization level set equation.
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Remark. (see [6]) Function x
f(x) is strictly monotone and it holds for every c, d ∈ R+ :(

c

f(c)
− d

f(d)

)
(c− d)) ≥ α(c− d)2, α > 0. (1.5)

Now, following [6], we define the weak solution of our problem.

Definition 1.1. (Weak solution of (1.2)-(1.3)-(1.4)) Under hypotheses (H0), (H1)
or (H1) we say that u is a weak solution of (1.2)-(1.3)-(1.4) if, for all T > 0:

1. u ∈ L2((0, T );H1
0 (Ω)) and ut ∈ L2((0, T )× Ω) (hence u ∈ C0((0, T );L2(Ω)));

2. u(·, 0) = u0;

3. the following holds
T∫

0

∫
Ω

(
ut(t, x) v(t, x)
f(|∇u(t, x)|)

+
∇u(t, x) · ∇v(t, x)
f(|∇u(t, x)|)

)
dxdt = 0, (1.6)

∀v ∈ L2((0, T );H1
0 (Ω)). (1.7)

In the next section we present in a detail our numerical scheme and in the section 3
we prove its stability. In the section 4 the convergence results are shown. Finally section
5 is devoted to the numerical experiments using proposed scheme.

2. SEMI-IMPLICIT DDFV SCHEME

We choose a uniform discrete time step τ = T
NT

and replace the time derivative in (1.2)
by the backward difference. The nonlinear terms of the equation are treated from the
previous time step while the linear ones are considered on the current time level, this
means semi-implicitness of the time discretization.

Definition 2.1. (Semi-implicit in time discretization) Let τ be a given time step,
and u0 be a given initial level set function. Then, for n = 1, . . . , NT , NT · τ = T , we
look for a function un, solution of the equation

1
f(|∇un−1|)

un − un−1

τ
= ∇.

(
∇un

f(|∇un−1|)

)
. (2.1)

Let us introduce now the fully discrete semi-implicit scheme. In the image processing
applications, a digital image is given on a structure of pixels with rectangular shape in
general (dashed lines rectangles in Figure 1). This set of pixels can represent original
rectangular finite volume mesh. We denote it by Th. Since in every discrete time step of
the scheme (2.1) we have to evaluate gradient of the level set function at the previous
step |∇un−1|, we put a diamond shaped regions to edge, as can be seen in Figure 2, onto
the computational domain and then take an approximation by finite differences in this
region. Such approach allows simple, fast and clear construction of fully-discrete system
of equations. Now we describe proposed discretization in details.
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Fig. 1. Original (dashed lines rectangles) and dual (solid lines

rectangles) mesh

2.1. Definition of the mesh

We restrict to the uniform mesh in 2D space as is it usual in image processing problems.
The numerical scheme can be created on the general mesh too with the properties as
in [1]. In image processing problems we often deal with the rectangular domains as the
union of the set of pixels; so it is natural to use uniform mesh in this case.

Our volume mesh will consist of cells Vij ∈ Th, associated with nodes xij , say i =
1, . . . , N1, j = 1, . . . , N2 with the property Ω =

⋃
Vij∈Th

Vij . The numerical solution

computed in the representative point xij we denote by uij . All finite volumes Vij ∈ Th

are squares with the edge of the length h.
Duality mesh, shifted to the north-east direction, consists of cells V ij ∈ T h associated
with nodes xij , say i = 0, . . . , N1, j = 0, . . . , N2 in such a way that xij is the right
top corner for the volume Vij of the original mesh and the boundary finite volumes are
degenerated in such a way that Ω =

⋃
V ij∈T h

V ij (see Figure 1). The numerical solution

computed in the representative point xij we denote by uij . Again all inner finite volumes
V ij ∈ T h are squares with the edge of the length h.

For each Vij ∈ T by Nij we denote the set of all neighbouring (west, east, south,
north) finite volumes Vi+p,j+q, p, q ∈ {−1, 0, 1}, |p| + |q| = 1. Let m(Vij) denote the
volume of Vij . In our case m(Vij) = h2. The segment connecting the center of Vij

and the center of its neighbour Vi+p,j+q ∈ Nij is denoted by σpq
ij and its length is in

our discretization h for all of the finite volumes. The sides of the finite volume Vij are
denoted by epq

ij with the length h. For the dual mesh the notation will be the same, but
”overlined”. For the evaluation of the gradients we use a diamond mesh which is the
union of Dh and Dh, where

Dh =
⋃

(i,j)=(0,0),...,(N1,N2)

Dij ,

where Dij has the vertices {xij , xi,j−1, xi+1,j , xij , } with degenerated (triangles) dia-
monds on the boundaries (for i = 0, or i = N1) and

Dh =
⋃

(i,j)=(0,0),...,(N1,N2)

Dij ,
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whereDij has the vertices {xij , xij , xi,j+1, xi−1,j} with degenerated (triangles) diamonds
on the boundaries (for j = 0, or j = N2). Under this notation it is clear that Ω = Dh∪Dh.

Fig. 2. Values of u in the original mesh and values of u in the dual

mesh

As it is usual in finite volume methods [5], we integrate (2.1) over every co-volume
Vij , i = 1, . . . , N1, j = 1, . . . , N2, and then using the divergence theorem we get an
integral formulation of (2.1)∫

Vij

1
f(|∇un−1|)

un − un−1

τ
dx =

∑
|p|+|q|=1

∫
epq

ij

1
f(|∇un−1|)

∂un

∂νpq
ij

ds, (2.2)

where νpq
ij is a unit outer normal to the edge epq

ij of Vij . For the approximation of the
left-hand side of (2.2) we get∫

Vij

1
f(|∇un−1|)

un − un−1

τ
dx ≈

un
ij − un−1

ij

AQn−1
ij

h2

τ
, (2.3)

where AQij is the value of function f of an average modulus of gradient in Vij .
This average will be computed using the values of the gradients on the sides epq

ij of the
finite volume, which we have to approximate on the right-hand side of (2.2) as well. On
the right-hand side of (2.2), the normal derivative is naturally expressed by the finite
difference of neighbouring pixel values divided by the distance between pixel centers.
To approximate the modulus of gradients on the pixel sides, we use the approximation
of a gradient of diamond mesh. We use the following definitions for p, q ∈ {−1, 0, 1},
|p|+ |q| = 1 and α(p) = 0, if p ≥ 0, and α(p) = −1 if p = −1.

∇p0un
ij =

(
p(un

i+p,j − un
ij)

h
,
un

i+α(p),j − un
i+α(p),j−1

h

)
, (2.4)

∇0qun
ij =

(
un

i,j−α(q) − un
i−1,j−α(q)

h
,
q(un

i,j+q − un
ij)

h

)
. (2.5)
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Fig. 3. Diamonds Dij (gray) and diamonds Dij (white) with

primal-dual mesh and unknowns u (gray points) and u (black points)

The formulas (2.4)-(2.5) can be understood as an approximation of the gradient in
Dij and Dij , respectively. Both sets of diamonds one can see in Figure 3.

Now we define in accordance with a hypothesis (H1):

Qpq;n−1
ij =

√
|∇pqun−1

ij |2 + ε2 = f(|∇pqun−1
ij |). (2.6)

For the further analysis we need hypothesis (H1) and then we denote

Qpq;n−1
ij = min(

√
|∇pqun−1

ij |2 + ε2, b) = f(|∇pqun−1
ij |). (2.7)

We will use the same notation because the first case will be used only for Stability 1.
This is a regularized norm of the gradient on the sides of the finite volume Vij (this
is the same as in diamond mesh) computed by the solution known from the previous
time step n − 1. The regularized averaged gradient inside the finite volume Vij can be
expressed in several ways, for example as an arithmetic or harmonic mean. If we take
an arithmetic mean we can denote it in the following way:

AQn−1
ij =

1
4

∑
|p|+|q|=1

Qpq;n−1
ij . (2.8)

Note that for the dual mesh we have:

Q1,0;n−1
ij = Q

0,−1;n−1

ij , Q−1,0;n−1
ij = Q

0,−1;n−1

i−1j ,

Q0,1;n−1
ij = Q

−1,0;n−1

ij , Q0,−1;n−1
ij = Q

−1,0;n−1

ij−1 . (2.9)

Combining all the above considerations we end up with the following approximation
(the same for the dual mesh)∑

|p|+|q|=1

∫
epq

ij

1
f(|∇un−1|)

∂un

∂νpq
ij

ds ≈
∑

|p|+|q|=1

un
i+p,j+q − un

ij

Qpq;n−1
ij

. (2.10)



DDFV scheme for the regularized level set equation 835

Note that the length of each side of the finite volume is h as well as the distance between
the points where the numerical solution is computed. Now we can define the discrete
initial values in the following way:

u0
ij =

1
m(Vij)

∫
Vij

u0(x) dx ∀Vij ∈ Th, (2.11)

u0
ij =

1
m(V ij)

∫
V ij

u0(x) dx ∀V ij ∈ Th.

If we put together the right-hand sides of (2.3) and (2.10) and consider zero Dirichlet
boundary conditions, we can write the following linear system of equations which has to
be solved at every discrete time step n, n = 1, . . . , NT .

Definition 2.2. (Fully-discrete semi-implicit DDFV scheme) Let u0
ij , u0

ij ,
i = 1, . . . , N1, j = 1, . . . , N2 be given discrete initial values for the original and the
dual meshes, respectively as in (2.11). Then, for n = 1, . . . , NT we look for un

ij , u
n
ij ,

i = 1, . . . , N1, j = 1, . . . , N2, satisfying

un
ij

AQn−1
ij

h2

τ
+

∑
|p|+|q|=1

(un
ij − un

i+p,j+q)

Qpq;n−1
ij

=
un−1

ij

AQn−1
ij

h2

τ
, (2.12)

un
ij

AQ
n−1

ij

h2

τ
+

∑
|p|+|q|=1

(un
ij − un

i+p,j+q)

Q
pq;n−1

ij

=
un−1

ij

AQ
n−1

ij

h2

τ
. (2.13)

We define discrete functions in the following way:

uh(x) =
1
2

(
uh,V (x) + uh,V (x)

)
, (2.14)

where uh,V (x) = uij , for x ∈ Vij and uh,V (x) = uij , for x ∈ V ij are piecewise constant
functions.

Now, after definition of a gradient and its regularization on the side, we can define
constant gradients on Dij and Dij in the form

∇uij =
(
ui+1,j − uij

h
,
uij − ui,j−1

h

)
on Dij , (2.15)

∇uij =
(
uij − ui−1,j

h
,
ui,j+1 − uij

h

)
on Dij

and

∇uh(x) =
{
∇uij for x ∈ Dij ,
∇un

ij for x ∈ Dij .
(2.16)



836 A. HANDLOVIČOVÁ AND D.KOTOROVÁ

Definition 2.3. For the space discretization described in this section we denote by (h)
the space discretization of Ω. As in [1], we define Lh, the discrete function space with
function in the form (2.14) endowed with the inner product

[[uh, vh]] =
1
2

 ∑
Vij∈Th

uij vij h
2 +

∑
V ij∈T h

uij vij h
2


as a discrete L2 inner product. Now byHh we define the discrete function space, with the
functions defined in (2.14) with the gradient defined in (2.16). For the L2 gradient norm
we use the usual norm, but for piecewise constant functions (on Dij , Dij , respectively).

Definition 2.4. For time and space discretization described in this section we denote
by (τ, h) the time-space discretization of (0, T ) × Ω. Then the function uτ,h is in time
and space piecewise constant function defined as follows:

uτ,h(t, x) =
1
2

(
uτ,h,V (t, x) + uτ,h,V (t, x)

)
, (2.17)

where

uτ,h,V (t, x) = un
ij for x ∈ Vij , t ∈ ((n− 1)τ, nτ ]

uτ,h,V (t, x) = un
ij for x ∈ V ij , t ∈ ((n− 1)τ, nτ ].

3. PROPERTIES OF THE SCHEME

3.1. Stability 1

In this subsection we present the stability properties for proposed scheme only under
the hypothesis (H1).

Lemma 3.1. Let the hypotheses (H0) and (H1) hold. Then there exist unique solutions

un
h = (un

11, . . . , u
n
N1N2

), un
h = (un

00, . . . , u
n
N1N2

)

of the scheme (2.12), (2.13) for any value of the regularization parameter ε > 0 and for
any time step n = 1, . . . , NT . Moreover, for the fully discrete numerical solution uτ,h

the following estimates hold

‖uτ,h‖L∞(I×Ω) ≤ ‖u0
h‖L∞(Ω). (3.1)

Lemma 3.2. Let the hypotheses (H0) and (H1) hold. Then for the fully discrete scheme
(2.12), (2.13) the following stability result holds for any time step m = 1, . . . , NT :

m∑
n=1

∑
Vij∈Th

(
un

ij − un−1
ij

)2
AQn−1

ij

h2

τ
+

m∑
n=1

∑
V ij∈T h

(
un

ij − un−1
ij

)2
AQ

n−1

ij

h2

τ
+ (3.2)

∑
Vij∈Th

∑
(p,q)∈{(0,1),(1,0)}

√
∇pqun

ij + ε2 h2 ≤ C,

where C is a generic constant and depends only on data of the problem, not on h or τ .
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Remark. Proofs for both lemmas can be found in [8].

3.2. Stability 2

In this subsection we want to show another stability properties of our approximation
of the solution. For this purpose we need further regularization assumption. We have
introduced it in hypothesis (H1). As we have described in the section of space-time
discretization we recall that on Dij and Dij we have defined constant gradients as in
(2.16).

The regularization of the absolute value of a gradient on Dij and Dij in the sense
(2.7)

Qn
ij = min(

√
|∇un

ij |2 + ε2, b) = f(|∇un
ij |) on Dij (3.3)

Q
n

ij = min(
√
|∇un

ij |2 + ε2, b) = f(|∇un
ij |) on Dij .

As in [6], let F be the function defined by

∀s ∈ R+, F (s) =

s∫
0

z

f(z)
dz ∈

[
s2

2b
,
s2

2ε

]
. (3.4)

Lemma 3.3. Let the hypotheses (H0) and (H1) hold. Then for the solution of discrete
scheme (2.12), (2.13) the following stability results hold:

m∑
n=1

∑
Vij∈T

(
un

ij − un−1
ij

)2
AQn−1

ij

h2

τ
+

m∑
n=1

∑
V ij∈T

(
un

ij − un−1
ij

)2
AQ

n−1

ij

h2

τ
+

1
2b

m∑
n=1

 ∑
Dij∈Dh

(|∇un
ij | − |∇un−1

ij |)2 h2 +
∑

Dij∈Dh

(|∇un
ij | − |∇un−1

ij |)2 h2

+

∑
Dij∈Dh

F (|∇um
ij |) h2 +

∑
Dij∈Dh

F (|∇um
ij |) h2 ≤ C (3.5)

where C is a generic constant and depends only on data of the problem, not on h or τ .

P r o o f . The main idea is similar to that in [6] but in our case we work with two
different sets of equations. First we multiply the fully discrete scheme (2.12) and (2.13)
with the term un

ij − un−1
ij and un

ij − un−1
ij , respectively and sum over all of the volumes

Vij and V ij . Then we put the equations together and we immediately have

∑
Vij∈Th

(
un

ij − un−1
ij

)2
AQn−1

ij

h2

τ
+

∑
V ij∈T h

(
un

ij − un−1
ij

)2
AQ

n−1

ij

h2

τ
+
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∑
Vij∈Th

∑
|p|+|q|=1

(un
ij − un

i+p,j+q)(u
n
ij − un−1

ij )

Qpq;n−1
ij

+

∑
V ij∈T h

∑
|p|+|q|=1

(un
ij − un

i+p,j+q)(u
n
ij − un−1

ij )

Q
pq;n−1

ij

= 0.

We can rearrange last two terms on the left-hand side using the discrete duality formula
(2.9) which gives the constant gradients on Dij and Dij respectively. We get:

∑
Vij∈Th

(
un

ij − un−1
ij

)2
AQn−1

ij

h2

τ
+

∑
V ij∈T h

(
un

ij − un−1
ij

)2
AQ

n−1

ij

h2

τ
+

∑
Dij∈Dh

(un
ij − un

i+1,j)
2 + (un

ij − un
i,j−1)

2

Qn−1
ij

−

∑
Dij∈Dh

(un
ij − un

i+1,j)(u
n−1
ij − un−1

i+1,j) + (un
ij − un

i,j−1)(u
n−1
ij − un−1

i,j−1)

Qn−1
ij

+

∑
Dij∈Dh

(un
ij − un

i,j+1)
2 + (un

ij − un
i−1,j)

2

Qn−1
ij

−

∑
Dij∈Dh

(un
ij − un

i,j+1)(u
n−1
ij − un−1

i,j+1) + (un
ij − un

i−1,j)(u
n−1
ij − un−1

i−1,j)

Qn−1
ij

= 0,

which can be rewritten into the form

∑
Vij∈Th

(
un

ij − un−1
ij

)2
AQn−1

ij

h2

τ
+

∑
V ij∈T h

(
un

ij − un−1
ij

)2
AQ

n−1

ij

h2

τ
+

∑
Dij∈Dh

|∇un
ij |2 −∇un

ij .∇u
n−1
ij

Qn−1
ij

h2 +
∑

Dij∈Dh

|∇un
ij |2 −∇un

ij .∇un−1
ij

Q
n−1

ij

h2 = 0.

From the definition of the functions F and f in (3.4) we have

F (|∇pqun
ij |)− F (|∇pqun−1

ij |) =

|∇pqun
ij |∫

|∇pqun−1
ij |

z dz
f(z)

.

As in [6], we use the properties of the functions F and f :

∀c, d ∈ R+,

d∫
c

z dz
f(z)

+
(d− c)2

2f(c)
≤ d

f(c)
(d− c), (3.6)
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which results in

F (|∇un
ij |)− F (|∇un−1

ij |) +
1
2b

(|∇un
ij | − |∇un−1

ij |)2 ≤
|∇un

ij |
f(|∇un−1

ij |)
(|∇un

ij | − |∇un−1
ij |) =

|∇un
ij |

Qn−1
ij

(|∇un
ij | − |∇un−1

ij |) ≤
|∇un

ij |2 −∇un
ij · ∇u

n−1
ij

Qn−1
ij

.

The same estimation we can obtain for the ”overlined” terms, too. Using these facts
and the hypothesis (H1), we have

∑
Vij∈Th

(
un

ij − un−1
ij

)2
AQn−1

ij

h2

τ
+

∑
V ij∈T h

(
un

ij − un−1
ij

)2
AQ

n−1

ij

h2

τ
+

1
2b

∑
Dij∈Dh

(
|∇un

ij | − |∇un−1
ij |

)2
h2 +

1
2b

∑
Dij∈Dh

(
|∇un

ij | − |∇un−1
ij |

)2
h2+

∑
Dij∈Dh

(
F (|∇un

ij |)− F (|∇un−1
ij |)

)
h2 +

∑
Dij∈Dh

(
F (|∇un

ij |)− F (|∇un−1
ij |)

)
h2 ≤ 0.

Summing the last inequality over n = 1, . . . ,m we obtain

m∑
n=1

∑
Vij∈Th

(
un

ij − un−1
ij

)2
AQn−1

ij

h2

τ
+

m∑
n=1

∑
V ij∈T h

(
un

ij − un−1
ij

)2
AQ

n−1

ij

h2

τ
+

1
2b

m∑
n=1

 ∑
Dij∈Dh

(
|∇un

ij | − |∇un−1
ij |

)2
h2 +

∑
Dij∈Dh

(
|∇un

ij | − |∇un−1
ij |

)2
h2

+

∑
Dij∈Dh

F (|∇um
ij |)h2 +

∑
Dij∈Dh

F (|∇um
ij |)h2 ≤

∑
Dij∈Dh

F (|∇u0
ij |)h2 +

∑
Dij∈Dh

F (|∇u0
ij |)h2

which, using the properties of the initial condition, gives the final result. �

4. CONVERGENCE

First we define, as in [1] and [6], the approximation of the function, its discrete gradient
and other useful approximations. The discrete solution we have already defined in (2.17).

δuτ,h(t, x) =
1
2

(
δuτ,h,V (t, x) + δuτ,h,V (t, x)

)
(4.1)

δuτ,h,V (t, x) =
un

ij − un−1
ij

τ
for x ∈ Vij , t ∈ ((n− 1)τ, nτ ]

δuτ,h,V (t, x) =
un

ij − un−1
ij

τ
for x ∈ V ij , t ∈ ((n− 1)τ, nτ ]
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AQτ,h(t, x) =
1
2

(
AQτ,h,V (t, x) +AQτ,h,V (t, x)

)
(4.2)

AQτ,h,V (t, x) = AQn
ij for x ∈ Vij , t ∈ ((n− 1)τ, nτ ]

AQτ,h,V (t, x) = AQ
n

ij for x ∈ V ij , t ∈ ((n− 1)τ, nτ ]

AQτ,h(t, x) =
1
2

(
AQτ,h,V (t, x) +AQτ,h,V (t, x)

)
(4.3)

AQτ,h,V (t, x) = AQn−1
ij for x ∈ Vij , t ∈ ((n− 1)τ, nτ ]

AQτ,h,V (t, x) = AQ
n−1

ij for x ∈ V ij , t ∈ ((n− 1)τ, nτ ]

∇uτ,h(t, x) =
{
∇un

ij for x ∈ Dij , t ∈ ((n− 1)τ, nτ ]
∇un

ij for x ∈ Dij , t ∈ ((n− 1)τ, nτ ]
(4.4)

∇uτ,h(t, x) =
{
∇un−1

ij for x ∈ Dij , t ∈ ((n− 1)τ, nτ ]
∇un−1

ij for x ∈ Dij , t ∈ ((n− 1)τ, nτ ]
(4.5)

wτ,h(t, x) =
1
2

(
wτ,h,V (t, x) + wτ,h,V (t, x)

)
(4.6)

wτ,h,V (t, x) = wn
ij =

un
ij − un−1

ij

τAQn−1
ij

for x ∈ Vij , t ∈ ((n− 1)τ, nτ ]

wτ,h,V (t, x) = wn
ij =

un
ij − un−1

ij

τAQ
n−1

ij

for x ∈ V ij , t ∈ ((n− 1)τ, nτ ]

Hτ,h(t, x) =
∇uτ,h(t, x)

f(|∇uτ,h(t, x)|)
(4.7)

Now we can rewrite our scheme (2.12), (2.13) into the form

∑
|p|+|q|=1

(un
ij − un

i+p,j+q)

Qpq;n−1
ij

= −wn
ijh

2 (4.8)

∑
|p|+|q|=1

(un
ij − un

i+p,j+q)

Q
pq;n−1

ij

= −wn
ijh

2.

Under these definitions and from the stability results we can conclude:
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Theorem 4.1. Let the hypotheses (H0) and (H1) hold. Then for the solution uτ,h of
the discrete scheme (2.12), (2.13) defined in (2.17) and for the gradient ∇uτ,h defined
in (4.4) the following stability results hold for arbitrary m = 1, . . . , NT :

mτ∫
0

∫
Ω

δu2
τ,h

AQτ,h

dxdt+
1
τ

mτ∫
0

∫
Ω

(
|∇uτ,h| − |∇uτ,h|

)2
dx+

∫
Ω

F (|∇uτ,h(mτ, x)|) dx ≤ C. (4.9)

Moreover, due to the hypothesis (H1), the term AQτ,h is bounded and we have

mτ∫
0

∫
Ω

δu2
τ,h dxdt ≤ C, (4.10)

where C is a generic constant and depends only on data of the problem, not on h or τ .

Let us denote by (H) the following hypothesis:

• Hypotheses (H0), (H1) are fulfilled;

• The sequence (τm, hm)m∈N denotes a sequence of space-time discretization of
(0, T ) × Ω in the sense of Definition 2.4 such that hm and τm > 0 tend to 0
as m −→∞;

• For all m ∈ N, the family {un
ij , i = 1, . . . , N1, j = 1, . . . , N2, u

n
ij , i = 0, . . . , N1,

j = 0, . . . , N2, n ∈ N} is such that (2.12), (2.13) hold and the function uτm,hm is
defined by (2.17).

To obtain convergence of an approximate solution we need the following lemma.

Lemma 4.2. (Strong convergence of the approximate gradient of ϕ) Let hy-
pothesis (H) be fulfilled. For all ϕ ∈ C∞c ((0, T )×Ω), we denote by rn

ij = ϕ(nτ, xij) and
rn

ij = ϕ(nτ, xij). We introduce the approximations

∇n
ijϕ =

(
rn
i+1,j − rn

ij

h
,
rn

ij − rn
i,j−1

h

)
(4.11)

and

∇n

ijϕ =
(
rn

ij − rn
i−1,j

h
,
rn
i,j+1 − rn

ij

h

)
, (4.12)

∇τ,hϕ(t, x) =

{
∇n

ijϕ for x ∈ Dij , t ∈ ((n− 1)τ, nτ ]

∇n

ijϕ for x ∈ Dij , t ∈ ((n− 1)τ, nτ ].
(4.13)

Then ∇τ,hϕ strongly converges in L∞((0, T )× Ω) to ∇ϕ as h −→ 0 and τ −→ 0.



842 A. HANDLOVIČOVÁ AND D.KOTOROVÁ

P r o o f . For such a regular space discretization the outward normal to the vertical
edges is n1 = (1, 0) and to the horizontal edges n2 = (0, 1). The function ϕ is smooth
enough, so using Taylor expansion for x ∈ Dij we immediately have

∇ϕ(t, x) · n1 =
ϕ(t, xi+1,j)− ϕ(t, xij)

h
+ Cij(t)h,

∇ϕ(t, x) · n2 =
ϕ(t, xij)− ϕ(t, xi,j−1)

h
+ Cij(t)h,

where Cij(t), Cij(t) are bounded independently of the discretization and similarly for
x ∈ Dij . The convergence result is then the consequence of these estimations. �

Theorem 4.3. (Convergence properties) Let hypothesis (H) be fulfilled. Then there
exists a subsequence of (τm, hm)m∈N, again denoted by (τm, hm)m∈N and there exists a
function u ∈ L∞((0, T );H1

0 (Ω)) ∩ C0((0, T );L2(Ω)), such that

ut ∈ L2((0, T )× Ω),
u(0, .) = u0,

uτm,hm
−→ u ∈ L∞((0, T );L2(Ω)),

uτm,hm ⇀ u ∈ L∞((0, T );H1
0 (Ω))

and there exist functions H ∈ L2((0, T )×Ω)2, w ∈ L2((0, T )×Ω) such that Hτm,hm ⇀ H
weakly in L2((0, T ) × Ω)2 (see (4.7)), and such that wτm,hm ⇀ w and δuτm,hm ⇀ ut

weakly in L2((0, T )× Ω) as m→∞. Moreover,

|∇uτm,hm | − |∇uτm,hm | → 0 in L2((0, T )× Ω) (see (4.4), (4.5))

and the following relation holds:

lim
m→∞

T∫
0

∫
Ω

|∇uτm,hm(t, x)|2

f(|∇uτm,hm(t, x)|)
dxdt =

T∫
0

∫
Ω

H(t, x) · ∇u(t, x) dxdt. (4.14)

P r o o f . From the definition of F (3.4), the estimation (4.9) and hypothesis (H), we
have

F (s) ≥ s2/2b,
∫
Ω

|∇uτm,hm(nτ, x)|2 dx ≤ C ∀n = 1, 2, . . . , NT .

Hence we can apply the results of [1] (Lemma 3.6) and [6] (Theorem 6.1), which is a
generalization of Ascoli’s theorem and shows the convergence

uτm,hm
(t, ·) → u ∈ L∞((0, T );L2(Ω)).

Thanks to (2.11), we have u(·, 0) = u0. We also get, thanks to [1] (Lemma 3.6), that
u ∈ L∞((0, T );H1

0 (Ω)) and that

∇uτm,hm
⇀ ∇u

weakly in L2((0, T )× Ω)2.
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From (4.10) and hypothesis (H) we get that wτm,hm is bounded in L2((0, T ) × Ω)
for all m ∈ N. Therefore there exists a function w ∈ L2((0, T ) × Ω) such that, up to a
subsequence of the preceding one, wτm,hm

⇀ w weakly in L2((0, T )×Ω). Similarly, from
(4.10) we have δτm,hm ⇀ ut weakly in L2((0, T )×Ω), which shows that ut ∈ L2((0, T )×Ω)
(see [6]).

Similarly, from (4.9) and hypothesis (H), Hτm,hm
⇀ H weakly in L2((0, T )×Ω)2, up

to a subsequence of the preceding one.

Let us now focus on the difference between |∇uτm,hm | and |∇uτm,hm |. Using (4.9),
we get the existence of C > 0 independent of m such that

‖|∇uτm,hm | − |∇uτm,hm
|‖2L2((0,T )×Ω) ≤ Cτm,

which provides
lim

m→∞
‖|∇uτm,hm | − |∇uτ,hm

|‖L2((0,T )×Ω) = 0. (4.15)

Now the idea is similar to that in [6]. For simplicity we now for a moment omit the
indices m for h and τ .

Let ϕ ∈ C∞c ((0, T ) × Ω) be given. We again denote by rn
ij = ϕ(nτ, xij) and rn

ij =
ϕ(nτ, xij). Multiplying first equation of (4.8) by τrn

ij , and the second equation of (4.8) by
τrn

ij , summing over all of the finite volumes and all n, we get after small rearrangement

−
NT∑
n=1

τ

 ∑
Dij∈Dh

(un
ij − un

i+1,j)(r
n
ij − rn

i+1,j)

Qn−1
ij

+
∑

Dij∈Dh

(un
ij − un

i,j+1)(r
n
ij − rn

i,j+1)

Q
n−1

ij


=

NT∑
n=1

τ
∑

Vij∈Th

wn
ijr

n
ijh

2,

−
NT∑
n=1

τ

 ∑
Dij∈Dh

(un
ij − un

i,j−1)(r
n
ij − rn

i,j−1)

Qn−1
ij

+
∑

Dij∈Dh

(un
ij − un

i−1,j)(r
n
ij − rn

i−1,j)

Q
n−1

ij


=

NT∑
n=1

τ
∑

V ij∈T h

wn
ijh

2rn
ij . (4.16)

Now, putting two equations together, we obtain
T1 = −T2 with

T1 =
NT∑
n=1

τ

 ∑
Dij∈Dh

(un
ij − un

i+1,j)(r
n
ij − rn

i+1,j) + (un
ij − un

i,j−1)(r
n
ij − rn

i,j−1)

Qn−1
ij


+

NT∑
n=1

τ

 ∑
Dij∈Dh

(un
ij − un

i,j+1)(r
n
ij − rn

i,j+1) + (un
ij − un

i−1,j)(r
n
ij − rn

i−1,j)

Q
n−1

ij


and

T2 =
NT∑
n=1

τ
∑

Vij∈Th

wn
ijr

n
ijh

2 +
NT∑
n=1

τ
∑

V ij∈T h

wn
ijh

2rn
ij .
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Using the approximation ∇τ,hϕ of ∇ϕ as in (4.13), we can write that

T1 = 2

T∫
0

∫
Ω

Hτ,h · ∇τ,hϕ dxdt.

Now we again return back to the subsequence (τm, hm) and denote the expression by
T1m and T2m using the definitions (4.6) and (4.7):

T1m = 2

T∫
0

∫
Ω

Hτm,hm · ∇τm,hmϕ dxdt,

T2m = 2

T∫
0

∫
Ω

wτm,hmϕτm,hm dxdt.

Hence, by weak/strong convergence from above and Lemma 4.2,

lim
m→∞

T1m = 2

T∫
0

∫
Ω

H · ∇ϕ dxdt.

We have on the other hand

lim
m→∞

T2m = 2

T∫
0

∫
Ω

wϕ dxdt.

Hence
T∫

0

∫
Ω

H · ∇ϕ dxdt = −
T∫

0

∫
Ω

wϕ dxdt.

Since the above equality holds for all ϕ ∈ C∞c ((0, T )×Ω), it also holds by the density
for all v ∈ L2((0, T );H1

0 (Ω)). Hence we get

T∫
0

∫
Ω

H · ∇v dxdt = −
T∫

0

∫
Ω

wv dxdt. (4.17)

and also
T∫

0

∫
Ω

H · ∇u dxdt = −
T∫

0

∫
Ω

w u dxdt. (4.18)

Now we multiply (4.8) by τun
ij , and τun

ij , respectively, sum over all of the finite
volumes and all n. Again, after similar rearrangement, we get T3 = −T4, where



DDFV scheme for the regularized level set equation 845

T3 =
NT∑
n=1

τ
∑

Dij∈Dh

(un
ij − un

i+1,j)
2 + (un

ij − un
i,j−1)

2

Qn−1
ij

+

NT∑
n=1

τ
∑

Dij∈Dh

(un
ij − un

i,j+1)
2 + (un

i,j − un
i−1,j)

2

Q
n−1

ij

= 2

T∫
0

∫
Ω

|∇uτ,h|2

f(|∇uτ,h|)
dxdt

and

T4 =
NT∑
n=1

τ
∑

Vij∈Th

wn
iju

n
ijh

2 +
NT∑
n=1

τ
∑

V ij∈T h

wn
ijh

2un
ij .

We use similar notation as in the previous case T3m = −T4m:

T3m = 2

T∫
0

∫
Ω

|∇uτm,hm |2

f(|∇uτm,hm
|)

dxdt, (4.19)

T4m = 2

T∫
0

∫
Ω

wτm,hm uτm,hm dxdt.

We have, by weak/strong convergence from

lim
m→∞

T4m = 2

T∫
0

∫
Ω

w u dxdt,

which leads, using (4.18), to

lim
m→∞

T3m = −2

T∫
0

∫
Ω

w u dxdt = 2

T∫
0

∫
Ω

H · ∇u dxdt. (4.20)

We now define

T5m = 2

T∫
0

∫
Ω

|∇uτm,hm(t, x)|2

f(|∇uτm,hm(t, x)|)
dxdt. (4.21)

Let us now prove that T3m and T5m have the same limit. Writing

T3m − T5m =

T∫
0

∫
Ω

|∇uτm,hm(t, x)|2

f(|∇uτm,hm(t, x)|)
dxdt−

T∫
0

∫
Ω

|∇uτm,hm(t, x)|2

f(|∇uτ,hm(t, x)|)
dxdt =

NT∑
n=1

τ

∫
Ω

∇uhm(nτ, x)2

f(|∇uhm((n− 1)τ, x)|)
− ∇uhm(nτ, x)2

f(|∇uhm(nτ, x)|)
dxdt =
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τ

∫
Ω

∇uhm
(0, x)2

f(|∇uhm
(0, x)|)

dxdt− τ

∫
Ω

∇uhm
(T, x)2

f(|∇uhm
(T, x)|)

dxdt +

NT∑
n=1

τ

∫
Ω

∇uτm,hm(nτ, x)2 −∇uτm,hm((n− 1)τ, x)2

f(|∇uτm,hm((n− 1)τ, x)|)
dxdt.

Now, using the property (4.15), the hypothesis (H) and the relation (3.5), we get

lim
m→∞

(T3m − T5m) = 0.

Hence we also get that

lim
m→∞

T5m = −2

T∫
0

∫
Ω

w u dxdt = 2

T∫
0

∫
Ω

H · ∇u dxdt, (4.22)

which completes the proof of (4.14). �

Lemma 4.4. Let uh and vh be the arbitrary functions of the discrete function spaceHh.
We denote by

T6 =
∑

Dij∈Dh

(
(∇uij)2

f(|∇uij |)
− ∇uij · ∇vij

f(|∇uij |)
+

(∇vij)2

f(|∇vij |)
− ∇uij · ∇vij

f(|∇vij |)

)
h2

2
+

∑
Dij∈Dh

(
(∇uij)2

f(|∇uij |)
− ∇uij · ∇vi,j

f(|∇uij |)
+

(∇vij)2

f(|∇vij |)
− ∇uij · ∇vi,j

f(|∇vij

)
h2

2
. (4.23)

Then it holds
T6 ≥ 0. (4.24)

P r o o f . Using Cauchy-Schwartz inequality, we immediately have

T6 ≥
∑

Dij∈Dh

(
|∇uij |

f(|∇uij |)
− |∇vij |
f(|∇vij |)

)
(|∇uij | − |∇vij |)

h2

2
+

∑
Dij∈Dh

(
|∇uij |

f(|∇uij |)
− |∇vij |
f(|∇vij |)

)
(|∇uij | − |∇vij |)

h2

2
≥ 0

due to the hypothesis (H1) and the remark below (monotonicity of the function f). �

Lemma 4.5. Let Hypothesis (H) be fulfilled. We assume that the sequence (τm, hm)m∈N

denotes an extracted sub-sequence, the existence of which is provided by Theorem 4.3.
Let ϕ ∈ C∞c ((0, T ) × Ω) be given and the notation from the Lemma 4.2 is used. We
denote

Tn
6 =

∑
Dij∈Dh

(
(∇un

ij)
2

f(|∇un
ij |)

−
∇un

ij · ∇n
ijϕ

f(|∇un
ij |)

+
(∇n

ijϕ)2

f(|∇n
ijϕ|)

−
∇un

ij · ∇n
ijϕ

f(|∇n
ijϕ|)

)
h2

2
+
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∑
Dij∈Dh

(
(∇un

ij)
2

f(|∇un
ij |)

−
∇un

ij · ∇
n

i,jϕ

f(|∇un
ij |)

+
(∇n

ijϕ)2

f(|∇n

ijϕ|)
−
∇un

ij · ∇
n

i,jϕ

f(|∇n

ijϕ|)

)
h2

2
,

and

Tm =
NT∑
n=0

τTn
6 . (4.25)

Then this gives

Tm =

T∫
0

∫
Ω

(
∇uτm,hm

f(|∇uτm,hm |)
− ∇τm,hmϕ

f(|∇τm,hmϕ|)

)
· (∇uτm,hm

−∇τm,hm
ϕ) dxdt (4.26)

and the following holds

lim
m→∞

Tm =

T∫
0

∫
Ω

(H − ∇ϕ
f(|∇ϕ|)

)(∇u−∇ϕ) dxdt (4.27)

and
T∫

0

∫
Ω

H · ∇v dxdt =

T∫
0

∫
Ω

∇u
f(|∇u|)

· ∇v dxdt, ∀v ∈ L2((0, T );H1
0 (Ω)). (4.28)

P r o o f . We can rewrite Tm: Tm = 1
2T5m − T7m − T8m + T9m, where T5m is defined in

(4.21):

1
2
T5m =

T∫
0

∫
Ω

|∇uτm,hm |2

f(|∇uτm,hm
|)

dxdt,

and

T7m =

T∫
0

∫
Ω

∇uτm,hm · ∇τm,hmϕ

f(|∇uτm,hm |)
dxdt,

T8m =

T∫
0

∫
Ω

∇uτm,hm · ∇τm,hmϕ

f(|∇τm,hm
ϕ|)

dxdt,

T9m =

T∫
0

∫
Ω

(∇τm,hmϕ)2

f(|∇τm,hm
ϕ|)

dxdt.

We already know from (4.22):

lim
m→∞

1
2
T5m =

T∫
0

∫
Ω

w u dxdt =

T∫
0

∫
Ω

H · ∇u dxdt.
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From the results of Lemma 4.2 we have ∇τ,hϕ strongly converges in L∞((0, T )× Ω)
to ∇ϕ as h −→ 0 and τ −→ 0, which implies together with the results of Theorem 4.3:
Hτm,hm

⇀ H

lim
m→∞

T7m = lim
m→∞

T∫
0

∫
Ω

Hτm,hm(t, x)∇τm,hmϕ(t, x) dxdt =

T∫
0

∫
Ω

H(t, x)∇ϕ(t, x) dxdt.

lim
m→∞

T8m = lim
m→∞

T∫
0

∫
Ω

∇τm,hmϕ(t, x)∇uτm,hm(t, x)
f(∇τm,hmϕ(t, x))

dxdt =

T∫
0

∫
Ω

∇ϕ(t, x)∇u(t, x)
f(∇ϕ(t, x))

dxdt.

lim
m→∞

T9m = lim
m→∞

T∫
0

∫
Ω

(∇τm,hmϕ(t, x))2

f(∇τm,hmϕ(t, x))
dxdt =

T∫
0

∫
Ω

(∇ϕ(t, x))2

f(∇ϕ(t, x))
dxdt.

From these results we obtain

lim
m→∞

Tm =

T∫
0

∫
Ω

H · ∇u−H∇ϕ− ∇ϕ∇u
f(∇ϕ)

+
(∇ϕ)2

f(∇ϕ)
dxdt,

which gives (4.27). From Lemma 4.4 we know that Tm is non negative, so we have

T∫
0

∫
Ω

(H − ∇ϕ
f(|∇ϕ|)

)(∇u−∇ϕ) dxdt ≥ 0. (4.29)

By density argument we obtain

T∫
0

∫
Ω

(H − ∇v
f(|∇v|)

)(∇u−∇v) dxdt ≥ 0 ∀v ∈ L2((0, T );H1
0 (Ω)).

Following the idea of [6], we apply Minty trick with v = u−λψ, λ > 0, ψ ∈ C∞c ((0, T )×
Ω). After dividing by λ we obtain

T∫
0

∫
Ω

(H − ∇u− λψ

f(|∇u− λψ|)
)(∇ψ) dxdt ≥ 0.
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We can let λ −→ 0 in the above inequality, using Lebesgue’s dominated convergence
theorem. We then get

T∫
0

∫
Ω

(H − ∇(u)
f(|∇(u)|)

)∇ψ dxdt ≥ 0.

Since this holds also for −ψ, we get

T∫
0

∫
Ω

(H − ∇(u)
f(|∇(u)|)

)∇ψ dxdt = 0.

The above equality can again be extended to all ψ ∈ L2((0, T );H1
0 (Ω)), which achieves

the proof of (4.28). �

Lemma 4.6. Under the same assumptions as in Lemma 4.5, |∇uτm,hm | converges in
L2((0, T )× Ω) to |∇u| as m −→∞ (the notation is the same as in Lemma 4.4).

P r o o f . Let ϕ ∈ C∞c ((0, T ) × Ω) be given. We denote by rn
ij = ϕ(nτ, xij) and rn

ij =
ϕ(nτ, xij). Let us denote

Tm =

T∫
0

∫
Ω

(
|∇uτm,hm |

f(|∇uτm,hm |)
− |∇τm,hmϕ|
f(|∇τm,hmϕ|)

)
(|∇uτm,hm

| − |∇τm,hm
ϕ|) dxdt.

From (4.26), after using Cauchy-Schwartz inequality we have

0 ≤ Tm ≤ Tm.

We write Tm = T10m − T11m − T12m, with

T10m =

T∫
0

∫
Ω

(
|∇uτm,hm |

f(|∇uτm,hm |)
− |∇u|
f(|∇u|)

)
(|∇uτm,hm

| − |∇u|) dxdt

T11m = −
T∫

0

∫
Ω

(
(∇ϕ)2

f(|∇ϕ|)
− (∇u)2

f(|∇u|)

)
dxdt+

T∫
0

∫
Ω

|∇uτm,hm
|

f(|∇uτm,hm |)
(|∇ϕ| − |∇u|) dxdt+

T∫
0

∫
Ω

|∇uhmτm |
(

|∇ϕ|
f(|∇ϕ|)

− |∇u|
f(|∇u|)

)
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T12m =

T∫
0

∫
Ω

(
(∇ϕ)2

f(|∇ϕ|)
− (∇τm,hmϕ)2

f(|∇τm,hm
ϕ|)

)
dxdt−

T∫
0

∫
Ω

|∇uτm,hm |
f(|∇uτm,hm

|)
(|∇ϕ| − |∇τm,hm

ϕ|) dxdt−

T∫
0

∫
Ω

|∇uτm,hm |
(

|∇ϕ|
f(|∇ϕ|)

− |∇τm,hmϕ|
f(|∇τm,hm

ϕ|

)
.

Now, using Cauchy-Schwarz inequality and estimates from the previous results, we
have

0 ≤ T10m ≤ Tm + C ‖|∇ϕ| − |∇u|‖L2((0,T )×Ω) + C ‖|∇ϕ| − |∇τm,hmϕ|‖L2((0,T )×Ω).

Passing to the limit and using strong convergence of the approximation of a gradient,
we obtain, as in [6]

0 ≤ lim sup
m−→∞

T10m ≤ 2

T∫
0

∫
Ω

(
|∇u|

f(|∇u|)
− |∇ϕ|
f(|∇ϕ|)

)
(|∇u| − |∇ϕ|) dxdt +

C ‖|ϕ| − |∇u|‖L2((0,T )×Ω).

This holds for any ϕ ∈ C∞c ((0, T ) × Ω) we take ϕ −→ u in L2((0, T );H1
0 (Ω)) and then

the right-hand side tends to zero and we have

lim
m−→∞

T∫
0

∫
Ω

(
|∇uτm,hm

|
f(|∇uτm,hm |)

− |∇τm,hmϕ|
f(|∇τm,hmϕ|)

)
(|∇uτm,hm

| − |∇τm,hm
ϕ|) dxdt = 0.

From the property (1.5) of f , we immediately have the conclusion of the lemma. �

Theorem 4.7. Let Hypothesis (H) be fulfilled. We assume that the sequence (τm, hm)m∈N

denotes an extracted sub-sequence, the existence of which is provided by Theorem 4.3.
Then the function u ∈ L∞((0, T );H1

0 (Ω)), such that uτm,hm → u in L∞((0, T );L2(Ω))
is a weak solution of (1.2)-(1.3)-(1.4) in the sense of Definition 1.1. Moreover,

∇uτm,hm → ∇u in L2((0, T )× Ω)2 (see (4.4)) and

|∇uτm,hm | → |∇u|, |∇uτm,hm | → |∇u| in L2((0, T )× Ω).

P r o o f . We remind first that w is the weak limit of the wτm,hm defined in (4.6) from
Theorem 4.3. Using Lemma 4.5 and (4.18) we obtain

T∫
0

∫
Ω

wv dxdt =

T∫
0

∫
Ω

∇u
f(|∇u|)

· ∇v dxdt, ∀v ∈ L2((0, T );H1
0 (Ω)). (4.30)
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From Lemma 4.6 we get w = − ut

f(|∇u|) and this results in that u is a weak solution of
(1.2)-(1.3)-(1.4) in the sense of Definition 1.1. Moreover, from Lemma 4.6 and Theorem
4.3 we have the weak convergence ∇uτm,hm ⇀ ∇u in L2((0, T ) × Ω)2 and the strong
convergence of |∇uτm,hm | → |∇u|, |∇uτm,hm | → |∇u| in L2((0, T )× Ω).

Now we prove the strong convergence of a gradient. Let again ϕ ∈ C∞c ((0, T ) × Ω)
be a given arbitrary function. From Cauchy-Schwartz inequality we have

T∫
0

∫
Ω

(∇uτm,hm −∇u)2 dxdt ≤ 3(T13m + T14m + T15m),

where

T13m =

T∫
0

∫
Ω

(∇uτm,hm −∇τm,hmϕ)2 dxdt,

T14m =

T∫
0

∫
Ω

(∇τm,hmϕ−∇ϕ)2 dxdt,

T15m =

T∫
0

∫
Ω

(∇ϕ−∇u)2 dxdt.

From Lemma 4.2 we immediately have

lim
m−→∞

T14m = 0.

For T13m we have (we denote by < ., . > the scalar product of a piecewise constant
functions in L2(Ω))

T13m =

T∫
0

< ∇uτm,hm −∇τm,hmϕ,∇uτm,hm −∇τm,hmϕ > dt =

T∫
0

∫
Ω

|∇uτm,hm |2 dxdt− 2

T∫
0

< ∇uτm,hm ,∇τm,hmϕ > dt+

T∫
0

∫
Ω

|∇τm,hmϕ|2 dxdt.

From the previous results we get

lim
m−→∞

T13m =

T∫
0

∫
Ω

|∇u|2 dxdt− 2

T∫
0

< ∇u,∇ϕ > dt+

T∫
0

∫
Ω

|∇ϕ|2 dxdt =

T∫
0

∫
Ω

|∇u−∇ϕ|2 dxdt.
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Now, for arbitrary ε > 0, we can choose ϕ in such a way that

T∫
0

∫
Ω

(∇ϕ−∇u)2 dxdt < ε.

Collecting these results together completes the proof. �

Remark. The strong convergence of a gradient can be also proved by the classical
results of a weak convergence in a Hilbert space:

weak convergence + convergence of norms ⇒ strong convergence.

5. NUMERICAL EXAMPLES

We choose for the illustration only two numerical experiments that use the proposed
scheme in 2D. Further examples concerning image processing problems and comparing
the results with the exact solution and computing the experimental order of convergence
one can find in [8]. The 3D scheme and numerical experiments for this case one can find
in [11] and [12].

Example 5.1. In this experiment we use the exact solution to study the EOC for DDF
scheme. We use the solution presented in [14] to the level set equation of the following
form

u(x, y, t) = min{x
2 + y2 − 1

2
+ t, 0}.

We have computed the problem on the square Ω = [−1, 25, 1.25] × [−1, 25, 1.25] with
zero Dirichlet boundary conditions, in time interval [0, T ] = [0, 0.3125].

The solution contains flat regions and a singular circular curve with gradient jump,
so we cannot expect second order accuracy. However as we see from the table, the
numerical schemes converge also in this singular case and naturally, EOC is equal (or
close to) 1 for the solution error. We have used SOR algorithm for solving linear system
with tolerance 1.0e-10. The regularisation parameter was chosen as ε = h2 and τ = h2.
The results for L2 errors both for the solution E2 and gradient EG2 are given in Table 1.

n τ E2 EG2 EOC
10 6.25e-02 5.51855e-02 - 2.58165e-01 -
20 1.5625e-02 3.17089e-02 0.79870 2.16399e-01 0.25817
40 3.90625e-03 1.68439e-02 0.91266 1.75709e-01 0.30005
80 9.76563e-04 8.86524e-03 0.95538 1.41097e-01 0.31651
160 2.44141e-04 4.41592e-03 0.97606 1.12646e-01 0.32488
320 6.10352e-05 2.22861e-03 0.98657 8.97433e-02 0.32792

Tab. 1. Example 1, error reports and EOCs, ε = h2 and τ = h2
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Example 5.2. We will use the scheme for the filtering of 20 percent salt and pepper
noise added to the image with function of the asteroid, we set N = 250 and τ = h2.
In Figure 4 are shown the noisy image and the results of filtering after 1, 2 and 6 time
steps. The initial value for uij-s were set as the median of the four neighbouring values
of u.

Fig. 4. Initial noisy image with 20 percent salt and pepper noise

(top), filtering results after 1 (left), 2 (middle) and 6 (right) time steps

ACKNOWLEDGEMENT

The research has been supported by by grants APVV -0184-10 and VEGA 1/0296/09.

(Received May 28, 2013)

R E FER E NCE S

[1] B. Andreianov, F. Boyer, F. Hubert: Discrete duality finite volume schemes for Leray-
Lions type elliptic problems on general 2D meshes. Num. Methods PDE 23 (2007), 1,
145–195. Zbl 1111.65101

[2] G. Barles, P. E. Souganidis: Convergence of approximation schemes for fully nonlineae
second order equations. Asymptotic Anal. 4 (1991), 3, 271–283. Zbl 0729.65077

[3] S. Corsaro, K. Mikula, A. Sarti, F. Sgallari: Semi-implicit covolume method in 3D
image segmentation. SIAM J. Sci. Comput Vol. 28 (2006), 6, 2248–2265. Zbl 1126.65088



854 A. HANDLOVIČOVÁ AND D.KOTOROVÁ
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[6] R. Eymard, A. Handlovičová, K. Mikula: Study of a finite volume scheme for the reg-
ularized mean curvature flow level set equation. IMA Journal of Numerical Analysis 31
(2011), 3, 813–846. Zbl 1241.65072
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