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Abstract
The aim of this paper is to summarize basic facts about �-stable at a

point vector functions and existing results for certain vector constrained
programming problem with �-stable data.
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1 Introduction

In 2008 the concept of �-stable at a point scalar functions was introduced in [1]
as a generalization of C1,1 functions—functions with locally Lipschitz derivative.
The main aim was to receive more general optimality conditions than for C1,1

functions which were extensively studied previously (see e.g. [8]). In subsequent
years the attention was devoted to deriving other properties of �-stable at a point
functions and to extending �-stability to finite–dimensional spaces in connection
with vector optimization ([2, 3, 4, 5, 6, 7]).
In this paper, I try to summarize the most important of this existing results.

The basic facts concerning vector �-stability are recalled in the following section.
Section 3 informs about second-order necessary and sufficient conditions for the
following programming problem:

minimize f(x) subject to C
such that g(x) ∈ −K,

(P )
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where f : RN → R
M and g : RN → R

P , M ∈ N, N ∈ N, P ∈ N, are given
functions and C ⊂ R

M , K ⊂ R
P , are closed, convex, and pointed cones with

non-empty interior (for definitions see e.g. [9]).

2 �-stability

First of all I recall several fundamental notations which are used in this paper.
The Euclidean norm and the scalar product in RN are denoted by ‖ ·‖ and 〈·, ·〉,
the zero element and the unit sphere of RN , i.e. the set {x ∈ R

N ; ‖x‖ = 1}, by
0RN and SRN , respectively. For a function f : RN → R

M and a point x ∈ R
N ,

the symbol f ′(x) means the Fréchet derivative of f at x.
The scalar �-stable at a point function was introduced in [1] using a lower

directional derivative:

f �(x;h) = lim inf
t↓0

f(x+ th)− f(x)

t

for f : RN → R, x ∈ R
N , h ∈ R

N .

Definition 2.1 We say that a function f : RN → R is �-stable at x0 ∈ R
N if

there are a neighbourhood U of x0 and a constant K > 0 such that

|f �(x;h)− f �(x0;h)| ≤ K‖x− x0‖, ∀x ∈ U, ∀h ∈ SRN .

Following example presents a scalar function which is �-stable at a point,
but not differentiable on any neighbourhood of this point.

Example 2.1 Consider the functions f : R2 → R,

f(x1, x2) =

∫ |x1|

0

ϕ(u) du,

where function ϕ : R+
0 → R is defined as follows:

ϕ(u) =

⎧⎪⎨
⎪⎩

1 if u > 1,

2u− 1
n+1 if u ∈

(
1

n+1 ,
1
n

]
, n ∈ N,

0 if u = 0.

The first-order directional derivatives of function f at points an = ( 1n , 0),

n ∈ N, n > 1, in directions d̄ = (1, 0), d̂ = (−1, 0) are

f ′(an; d̄) =
1

n
, f ′(an; d̂) = − n+ 2

n(n+ 1)
.

Hence, f is not differentiable on any neighbourhood of point x0. For every
v = (v1, v2) ∈ SR2 and for every y = (y1, y2) ∈ R

2, ‖y‖ < 1, y 
= (0, 0), it holds:



Vector optimization results for �-stable data 45

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1

x2 = ϕ(x1)

x2 = x1

x2 = 2x1

x2

x1

Figure 1: Graph of function ϕ on [0, 1]

• if y1 ∈ (
1

n+1 ,
1
n

)
, n ∈ N

∣∣∣ lim inf
t↓0

f(y + tv)− f(y)

t

∣∣∣ =
∣∣∣ lim
t↓0

1

t

(∫ y1+tv1

0

ϕ(u) du−
∫ y1

0

ϕ(u) du
)∣∣∣

=
∣∣∣ lim
t↓0

1

t

[
u2 − u

n+ 1

]y1+tv1

y1

∣∣∣ = |v1|
(
2y1 − 1

n+ 1

)
;

• if y1 ∈ (− 1
n ,− 1

n+1

)
, n ∈ N

∣∣∣ lim inf
t↓0

f(y + tv)− f(y)

t

∣∣∣ = ∣∣∣ lim
t↓0

1

t

(∫ |y1+tv1|

0

ϕ(u) du−
∫ |y1|

0

ϕ(u) du
)∣∣∣

=
∣∣∣ lim
t↓0

1

t

[
u2 − u

n+ 1

]−y1−tv1

−y1

∣∣∣ = |v1|
(
2|y1| − 1

n+ 1

)
;

• if y1 = 1
n , n ∈ N, n > 1, v1 ≥ 0

∣∣∣ lim inf
t↓0

f(y + tv)− f(y)

t

∣∣∣ = ∣∣∣ lim
t↓0

1

t

(∫ y1+tv1

0

ϕ(u) du−
∫ y1

0

ϕ(u) du
)∣∣∣

=
∣∣∣ lim
t↓0

1

t

[
u2 − u

n

]y1+tv1

y1

∣∣∣ = v1y1;
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• if y1 = 1
n , n ∈ N, n > 1, v1 < 0

∣∣∣ lim inf
t↓0

f(y + tv)− f(y)

t

∣∣∣ =
∣∣∣ lim
t↓0

1

t

(∫ y1+tv1

0

ϕ(u) du−
∫ y1

0

ϕ(u) du
)∣∣∣

=
∣∣∣ lim
t↓0

1

t

[
u2 − u

n+ 1

]y1+tv1

y1

∣∣∣ = |v1|
(
2y1 − 1

n+ 1

)
;

• if y1 = − 1
n , n ∈ N, n > 1, v1 > 0

∣∣∣ lim inf
t↓0

f(y + tv)− f(y)

t

∣∣∣ = ∣∣∣ lim
t↓0

1

t

(∫ |y1+tv1|

0

ϕ(u) du−
∫ |y1|

0

ϕ(u) du
)∣∣∣

=
∣∣∣ lim
t↓0

1

t

[
u2 − u

n+ 1

]−y1−tv1

−y1

∣∣∣ = |v1|
(
2|y1| − 1

n+ 1

)
;

• if y1 = − 1
n , n ∈ N, n > 1, v1 ≤ 0

∣∣∣ lim inf
t↓0

f(y + tv)− f(y)

t

∣∣∣ =
∣∣∣ lim
t↓0

1

t

(∫ |y1+tv1|

0

ϕ(u) du−
∫ |y1|

0

ϕ(u) du
)∣∣∣

=
∣∣∣ lim
t↓0

1

t

[
u2 − u

n

]−y1−tv1

−y1

∣∣∣ = v1y1;

• if y1 = 0∣∣∣ lim inf
t↓0

f(y + tv)− f(y)

t

∣∣∣ = 0 because

0 ≤ | lim
t→0

f(y + tv)− f(y)

t
| = | lim

t→0

f(tv)

t
| ≤ | lim

t→0

t2v21
t

| = 0

and it also implies f ′(x0) = (0, 0).

Overall

∣∣∣∣lim inf
t↓0

f(y + tv)− f(y)

t

∣∣∣∣ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|v1|
(
2|y1| − 1

n+ 1

)
if |y1| ∈

(
1

n+1 ,
1
n

)
,

v1y1 if |y1| = 1
n , v1y1 ≥ 0,

|v1|
(
2|y1| − 1

n+ 1

)
if |y1| = 1

n , v1y1 < 0,

0 if y1 = 0.

The function f is �-stable at x0 because:

|f �(x0; v)− f �(y; v)| = | lim inf
t↓0

f(y + tv)− f(y)

t
| ≤ 2‖y‖,

∀y ∈ R
2, ‖y‖ < 1, ∀v ∈ SR2 .

There are two approaches how to generalize the concept of �-stability for
vector functions. The first one introduced in [2] is stated in Definition 2.3. The
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second one was introduced in [6] and since their equivalence was shown in [5],
I mention it in Theorem 2.1 as a characterization of �-stability.
In the definition of �-stable at a point vector function, this type of lower

directional derivative is needed:

f �
ξ (x;h) = lim inf

t↓0
〈ξ, f(x+ th)− f(x)〉

t

for f : RN → R
M , x ∈ R

N , h ∈ R
N and ξ ∈ R

M .

Definition 2.2 For arbitrary cone C ⊆ R
N , we define a positive polar cone C∗

and a set ΓC :

C∗ := {ξ ∈ R
N ; 〈ξ, y〉 ≥ 0, y ∈ C}, ΓC := C∗ ∩ SRN .

Definition 2.3 Let f : RN → R
M be a function and C ⊂ R

M be a closed,
convex and pointed cone with non-empty interior. We say that f is �-stable at
x0 ∈ R

N with respect to C if there is a neighbourhood U of x0 and a constant
K > 0 such that

|f �
ξ (y;h)− f �

ξ (x0;h)| ≤ K‖y − x0‖, ∀y ∈ U, ∀h ∈ SRN , ∀ξ ∈ ΓC .

In [4], it was proved that if any function is �-stable at a point with respect
to some closed, convex and pointed cone, it must be �-stable at this point with
respect to arbitrary closed, convex and pointed cone. Therefore, we talk in the
following text only about �-stability at a point.

Theorem 2.1 The function f : RN → R
M is �-stable at x0 ∈ R

N if and only
if for any ξ ∈ R

M the scalar function

fξ(·) = 〈ξ, f(·)〉

is �-stable at x0.

The next theorems provide characterization of �-stability.

Theorem 2.2 [6, Theorem 3.3] The function f : RN → R
M is �-stable at x0 ∈

R
N if and only if there exist a neighbourhood U of x0 and a constant K > 0
such that it holds that

∣∣f �
ξ (x;h)− f �

ξ (x0;h)
∣∣ ≤ K ‖ξ‖ ‖x− x0‖ , ∀x ∈ U, ∀h ∈ SRN , ∀ξ ∈ R

M .

Theorem 2.3 [6, Theorem 3.4] The function f : RN → R
M is �-stable at

x0 ∈ R
N if and only if the Fréchet derivative f ′(x0) exists, there exists a neigh-

bourhood U of x0 such that f is Lipschitz on U , and there is a K > 0 such that
it holds that

‖f ′(x)− f ′(x0)‖ ≤ K ‖x− x0‖ , a.e. x ∈ U.
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At the end of this section, I mention other important properties of �-stable
at a point functions.

Definition 2.4 We say that a function f : R
N → R

M is strictly differentiable
at x ∈ R

N if there exists a continuous linear operator A : R
N → R

M such that

lim
y→x,t↓0

f(y + th)− f(y)

t
= Ah, ∀h ∈ SRN ,

and this limit is uniform for h ∈ SRN .

Theorem 2.4 [2, Proposition 2.2] Let a function f : RN → R
M be �-stable at

x0 ∈ R
N . Then f is strictly differentiable at x0.

Theorem 2.4 implies that every function which is �-stable at some point is
continuous near this point and Fréchet differentiable at this point.

Theorem 2.5 [4, Proposition 1] Let f = (f1, f2, . . . , fM ) : RN → R
M be a

function and x0 ∈ R
N . Then f is �-stable at x0 if and only if the function fi is

�-stable at x0 for every i ∈ {1, 2, . . . ,M}.
Theorem 2.6 [4, Theorem 1] Let a function f : RM → R

N be �-stable at x0 ∈
R

M and let a function g : RN → R
P be �-stable at y0 = f(x0) ∈ R

N . Then the
composition g ◦ f is �-stable at x0.

3 Vector optimization results

In this section, I consider constrained optimization problem (P). Firstly I re-
call fundamental definitions of vector optimization and second-order directional
derivatives which are used in second-order optimality conditions.

Definition 3.1 Let us consider the problem (P) and define

a) a set of feasible points Φ:

Φ = {x ∈ R
N ; g(x) ∈ −K};

b) a cone K(x), x ∈ −K:

K(x) = {γ(z + x); γ ≥ 0, z ∈ K}.

Now we introduce two types of minimizers for problem (P).

Definition 3.2 A feasible point x0 is said

a) a local weakly efficient point for problem (P) if there exists a neighbour-
hood U of x0 such that

(f(U ∩ Φ)− f(x0)) ∩ (− int C) = ∅.



Vector optimization results for �-stable data 49

b) an isolated local minimizer of second-order for problem (P), if there exist
a neighbourhood U of x0 and a constant A > 0 such that

sup
ξ∈ΓC

(〈ξ, f(x)− f(x0)〉) ≥ A‖x− x0‖2, ∀x ∈ U ∩ Φ.

Definition 3.3 Let a function f : RN → R
M be Fréchet differentiable at point

x ∈ R
N . The second-order Dini directional derivative d2f(x;h) of f at x ∈ R

N

in the direction h ∈ R
N is defined as follows:

d2f(x;h) =
{
y ∈ R

M ; ∃{tn}+∞
n=1 ⊂ R

+, lim
n→+∞ tn = 0,

y = lim
n→+∞

f(x+ tnh)− f(x)− tnf
′(x)h

t2n/2

}
.

The second-order Hadamard directional derivative D2f(x;h) of f at x ∈ R
N in

the direction h ∈ R
N is defined as follows:

D2f(x;h) =
{
y ∈ R

M ; ∃{tn}+∞
n=1 ⊂ R

+, ∃{hn}+∞
n=1 ⊂ R

N , lim
n→+∞ tn = 0,

lim
n→+∞hn = h, y = lim

n→+∞
f(x+ tnhn)− f(x)− tnf

′(x)h
t2n/2

}
.

Problem (P) was deeply studied for at least continuously differentiable func-
tions. Khanh and Tuan achieved following results using concept of calm at a
point function.

Definition 3.4 A function f : RN → R
M is called calm at x0 ∈ R

N if there is
a neighbourhood U of x0 and a constant K > 0 such that

‖f(x)− f(x0)‖ ≤ K‖x− x0‖, ∀x ∈ U.

Theorem 3.1 [10, Theorem 4.1] Let functions f : RN → R
M and g : RN → R

P

be continuously differentiable at x0 ∈ R
N . If x0 is a local weakly efficient point

of problem (P), then

(i) there exists (c∗, k∗) ∈ C∗ ×K∗(g(x0)) \ {(0RM , 0RP )} such that
c∗ ◦ f ′(x0) + k∗ ◦ g′(x0) = 0RN ; (3.1)

(ii) for u ∈ R
N if (f, g)′(x0)u ∈ −(C ×K(g(x0))\ int (C ×K(g(x0)))), then

for every (y0, z0) ∈ D2(f, g)(x0;u) there exists (c∗, k∗) ∈ C∗×K∗(g(x0))\
{(0RM , 0RP )} such that (3.1) is true and

〈c∗, y0〉+ 〈k∗, z0〉 ≥ 0.

Theorem 3.2 [10, Theorem 4.2] Let functions f : RN → R
M and g : RN → R

P

be continuously Fréchet differentiable around x0 ∈ R
N with f ′ and g′ being

calm at x0 which is feasible point of problem (P). Then, each of the following
conditions is sufficient for x0 to be an isolated local minimizer of second-order
for problem (P).
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(i) For every u ∈ R
N satisfying ‖u‖ = 1 there exists (c∗, k∗) ∈ C∗×K∗(g(x0))

such that
〈c∗, f ′(x0)u〉+ 〈k∗, g′(x0)u〉 > 0.

(ii) For every u ∈ R
N satisfying ‖u‖ = 1, one has

a) (f ′(x0)u, g
′(x0)u) ∈ −(C ×K(g(x0))\ int (C ×K(g(x0)))),

b) for every (y0, z0) ∈ d2(f, g)(x0;u) there exists (c∗, k∗) ∈ C∗×K∗(g(x0))
such that (3.1) is true and

〈c∗, y0〉+ 〈k∗, z0〉 > 0. (3.2)

Theorems 3.1 and 3.2 was strengthened for strictly differentiable and �-stable
functions, respectively, by Bednařík and Pastor.

Theorem 3.3 [3, Theorem 3.1] Let functions f : RN → R
M and g : RN → R

P

be strictly differentiable at x0 ∈ R
N . If x0 is a local weakly efficient point of

problem (P), then

(i) there exists (c∗, k∗) ∈ C∗ ×K∗(g(x0)) \ {(0RM , 0RP )} such that

c∗ ◦ f ′(x0) + k∗ ◦ g′(x0) = 0RN ; (3.3)

(ii) for u ∈ R
N if (f, g)′(x0)u ∈ −(C ×K(g(x0))\ int (C ×K(g(x0)))), then

for every (y0, z0) ∈ D2(f, g)(x0;u) there exists (c∗, k∗) ∈ C∗×K∗(g(x0))\
{(0RM , 0RP )} such that (3.3) is true and

〈c∗, y0〉+ 〈k∗, z0〉 ≥ 0.

Theorem 3.4 [3, Theorem 4.1], [6, proof of Thm 5.1] Let functions f : RN →
R

M and g : RN → R
P be �-stable at feasible point x0 ∈ R

N . We suppose that
for every u ∈ SRN one of the following two conditions is satisfied.

(i) There exists (c∗, k∗) ∈ C∗ ×K∗(g(x0)) such that

〈c∗, f ′(x0)u〉+ 〈k∗, g′(x0)u〉 > 0.

(ii)

a) (f ′(x0)u, g
′(x0)u) ∈ −(C ×K(g(x0))\ int (C ×K(g(x0)))),

b) for every (y0, z0) ∈ d2(f, g)(x0;u) there exists (c∗, k∗) ∈ C∗×K∗(g(x0))
such that

c∗ ◦ f ′(x0) + k∗ ◦ g′(x0) = 0RN , (3.4)

〈c∗, y0〉+ 〈k∗, z0〉 > 0. (3.5)

Then x0 is an isolated local minimizer of second-order for problem (P).
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In [6, Theorem 5.1], the condition (3.4) from Theorem 3.4 is substituted by

〈c∗, f ′(x0)u〉+ 〈k∗, g′(x0)u〉 = 0. (3.6)

In [5], the incorrectness of using condition (3.6) was showed on following exam-
ple.

Example 3.1 Let us consider the problem (P) with the functions f : R2 → R
2,

and g : R2 → R,

f(x1, x2) = (x1 + x2
2, x

2
1), g(x1, x2) = x1x2,

C = R
2
+ = {(x1, x2) ∈ R

2;x1 ≥ 0, x2 ≥ 0}, K = [0,+∞).
It can be showed that these functions fulfill at point x0 = (0, 0) the as-

sumptions of Theorem 3.4 where (3.4) is replaced by (3.6) but x0 is not an
isolated local minimizer of second-order for problem (P). The condition (i) is
satisfied for u = (u1, u2) ∈ SR2 , u1 > 0, choosing c∗ = (1, 0) ∈ C∗ and arbitrary
k∗ ∈ K∗(g(x0)):

〈c∗, f ′(x0)u〉+ 〈k∗, g′(x0)u〉 = 〈(1, 0), (u1, 0)〉+ 0 = u1 > 0.

The changed condition (ii) is satisfied for u = (u1, u2) ∈ SR2 , u1 = 0, choosing
c∗ = (1, 0), k∗ = 0 and for u1 < 0, choosing c∗ = (0, 1), k∗ = 0:

(f ′(x0)u, g
′(x0)u) = (u1, 0, 0) ∈ −(C ×K(g(x0))\ int (C ×K(g(x0)))),

〈c∗, f ′(x0)u〉+ 〈k∗, g′(x0)u〉 =
⎧⎨
⎩

〈(1, 0), (0, 0)〉+ 0 = 0, if u1 = 0,

〈(0, 1), (u1, 0)〉+ 0 = 0, if u1 < 0,

〈c∗, y0〉+ 〈k∗, z0〉 =
⎧⎨
⎩

〈(1, 0), (2u2
2, 0)〉+ 0 = 2u2

2 > 0, if u1 = 0,

〈(0, 1), (2u2
2, 2u

2
1)〉+ 0 = 2u2

1 > 0, if u1 < 0.

However, x0 is not an isolated local minimizer of second-order, since the

sequence of feasible points
{(

− 1

k
,

√
1

k

)}+∞

k=1
converges to x0 for k → +∞, but

for every A > 0, it can be found k0 ∈ N such that it holds for every k ∈ N,
k ≥ k0:

sup
ξ∈Γ

〈
ξ, f

(− 1

k
,

√
1

k

)〉
=

〈
(0, 1),

(
0,

1

k2
)〉

=
1

k2
< A

∥∥(− 1

k
,

√
1

k

)∥∥2 =
A

k2
(1 + k).

Thus x0 cannot be an isolated local minimizer of second-order for problem (P).

4 Conclusion

This paper informed about �-stable at a point vector functions, their character-
izations and properties and about their applications in second-order optimality
conditions for constrained vector optimization problem. I tried to sum up the
most important results to provide insight into these issues. The research of �-
stability and its application continues. Currently it is focused on �-stability in
infinite-dimensional normed linear spaces.



52 Marie Dvorská
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