
Kybernetika

Martin Balazovjech; Ladislav Halada
Efficient application of e-invariants in finite element method for an elastodynamic
equation

Kybernetika, Vol. 49 (2013), No. 5, 765--779

Persistent URL: http://dml.cz/dmlcz/143524

Terms of use:
© Institute of Information Theory and Automation AS CR, 2013

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/143524
http://project.dml.cz

KYB ERNET IK A — VO LUME 4 9 (2 0 1 3) , NUMBER 5 , PAGES 7 6 5 – 7 7 9

EFFICIENT APPLICATION OF E–INVARIANTS
IN FINITE ELEMENT METHOD
FOR AN ELASTODYNAMIC EQUATION

Martin Balazovjech and Ladislav Halada

We introduce a new efficient way of computation of partial differential equations using a
hybrid method composed from FEM in space and FDM in time domain. The overall computa-
tional scheme is explicit in time. The key idea of the suggested way is based on a transformation
of standard basis functions into new basis functions. The results of this matrix transformation
are e-invariants (effective invariants) with such suitable properties which save the number of
arithmetical operations needed for a problem solution. The application of this procedure and its
effectiveness for 2D problem was the first time published in [2]. Now we describe the generaliza-
tion of this procedure for 3D problem. In order to present the main principle of our process and
its advantage, we first explain the main idea of our approach on a simple 1D example and then
the application of the e-invariants on an elastodynamics equation using hexahedral elements in
3D is described. Finally, the efficiency of the suggested method in both cases from the point of
the required number of arithmetical operations is analyzed. The result of this analysis confirms
computational efficiency the suggested method and the usefulness of e-invariants which save
only the essential information needed for the computation. Moreover, the method can be used
for various types of elements and equations.

Keywords: e–invariants, finite element method, elastodynamics equation, efficient compu-
tation

Classification: 65M60

1. INTRODUCTION

Computation of an elastodynamic equation occurs in material science, seismology and
many other applications. Due to complicated geometry of the boundary domain and
heterogeneity of the area, computation of the elastodynamic equation is usually real-
istic enough only if the computation domain is very large. Especially in seismological
problems parallel computing on supercomputers has to be used. Therefore, we must
economize storage during the computation. There are suggestions in the literature how
this problem can be overcome. For example, the global mass matrix can be approx-
imated by a diagonal matrix (lumped mass matrix) [5, 7, 9, 10]. The lumped mass
matrix saves memory and offers faster computation. Another possibility is using the
global restoring force vector beside of the global stiffness matrix in the problem formu-
lation. It means, we do not assemble the global stiffness matrix by local matrices but we

766 M. BALAZOVJECH AND L. HALADA

assemble the global restoring forces vector using the local restoring forces. Such method
saves computer memory considerably, but on the other hand it makes the computation
more time consuming, because the restoring force vector is computed in every time level
without saving the stiffness matrix in memory [1, 2, 6, 8]. As we present in this pa-
per, this drawback can be eliminated by our approach: using the new basis functions
and the e-invariants which are defined in the subsequent sections. As it will be proved,
the efficiency of our approach is due to the fact that the e-invariants contain only the
minimum necessary information for the local restoring force vector computation. This
cannot be said for the standard approach.

Concerning the computational speed-up, our approach was used in the seismology
laboratory of Comenius University in Bratislava and in the parallel data laboratory
at Carnegie Mellon University in Pittsburgh. A detailed analysis of computational
efficiency improvement using our method is explained in [11], where the Chino Hills
earthquake 2008 was simulated, and the speed-up about 3 is reported.

The paper is organized as follows. Section 2 establishes the problem formulation and
the basic idea of using new basis functions on simple 1D example. Section 3 introduces
the application of the e-invariants to the motion equation for 3D case using the problem
formulation with the local restoring force vector. The role of the e-invariants for 3D
case is described in Section 4. The number of arithmetical operations required for
computations by this method is presented for cases.

2. THE PROBLEM FORMULATION AND THE BASIC IDEA OF USING THE
NEW BASIS FUNCTIONS

The numerical formulation of the elastodynamics equation of motion using FEM in space
has generally the following matrix form

Mu,tt +Ku = f (1)

where M and K are the global mass and stiffness matrices, respectively, f is the global
force term. Discrete solution of this equation is usually based on the central difference
time approximation of the second order for the second time derivative. Thus, after this
approximation and the rearrangement of the variable vectors u according to time order,
we obtain the explicit recurrent formula

um+1 = ∆t2M−1(fm − Kum)− um−1 + 2um. (2)

In practical applications the order of M and K can be quite large (106 − 108) [8]. Es-
pecially, in such cases attention has to be paid to formulation of such a computational
algorithm that economize the storage and the number of required computational oper-
ations. However, there are also situations, when the global mass and stiffness matrices
are too large and hence they can not be stored in the computer memory and a numer-
ical solution of the original problem can not be computed by finite element method.
Therefore, efforts to overcome this problem can be found in literature. For example, the
global mass matrix can be approximated by a diagonal matrix (lumped mass matrix)
and beside using the global stiffness matrix some authors suggest to use global restoring
force vector rm = Kum. It means that the stiffness matrix is not computed in order to

Efficient application of e–invariants in FEM 767

reduce the storage memory, but rather the restoring force vector rm is computed in every
time level without saving the stiffness matrix in the memory. In other words we do not
assemble the global stiffness matrix using the local matrices but we assemble the global
restoring forces using the local restoring forces. This procedure is described for example
in [1, 6]. This way one can achieve important reduction of storage requirements. More-
over, direct computation of the restoring forces can be also used in the case of nonlinear
material response [4].

As result, this computational process reduces the storage, but is very time consuming.
In order to eliminate this problem we have used transformation which plays a key role
in different research areas.

In the following section we suggest how to formulate the computation of the restoring
force vector to be the most effective from the computational point of view.

First of all, we will analyze our approach on the simple 1D problem represented by
the following equation

ρux,tt = τxx,x +fx. (3)

Let the variables x and ux be interpolated by the linear functions

b = [b1, b2]T =
1
2
[(1− ξ), (1 + ξ)]T (4)

in the form

x = [b1, b2]
[

x1

x2

]
= bT x ux = [b1, b2]

[
ux1

ux2

]
= bT ux. (5)

Then equation (3) can be expressed after discretization in the displacement weak form
on the element 〈x1, x2〉 as follows∫ 1

−1

[
bbT ρux,tt +(λ + 2µ)b,xbT,x ux − bfx

]
x,ξ dξ = 0 (6)

and thus, the stiffness matrix and the restoring force vector for this problem have the
form

K =
∫ 1

−1

[
(λ + 2µ)(b,x b,Tx)x,ξ

]
dξ =

λ + 2µ

x2 − x1

[
+1 −1
−1 +1

]
rx = Kux =

λ + 2µ

x2 − x1

[
ux1 − ux2

−ux1 + ux2

] (7)

where λ and µ are Lame elastic coefficients. The mass matrix can be approximated
by the lumped matrix. This mathematical formulation corresponds with the problem
depicted in Figure 1. This is a standard way how one can compute the matrix K and
corresponding vector rx by the values xT = [x1, x2] and uT

x = [ux1, ux2]. But what is
noteworthy, these coordinates of the string position and the nodal displacements keep
more information than is needed for the restoring force vector computation. The values
[x1, x2] keep the information where the spring is located and [ux1, ux2] where the nodal
values will be shifted under the local forces. But the local restoring force vector is

768 M. BALAZOVJECH AND L. HALADA

x1 x2

u
x1 u

x2

deformed spring

nondeformed spring

x1 x2

x
(0)

u
x

(0)
x

(0)

Fig. 1. Nodal values x1, x2 determine the spring position on the line

at rest and ux1, ux2 are displacements at the nodes under a local

strength.

independent on this information. What is needed for its computation is the length and
the elongation of the spring, i. e. the values (x2 − x1) and (−ux1 + ux2) (see Figure 1).
Moreover, on the basis of the action-reaction law, rx1 = −rx2 holds and therefore only
one vector component of rx is satisfactory to be computed.

Therefore, beside of the vector x, ux and rx we define the following new types of
vectors

1. the vector of a segment transformation on the interval (x1, x2)
x(inv) = [x(0), x(1)]T = 1

2 [(x1 + x2), (x2 − x1)]T

2. the vector of a displacement
u(inv)

x = [u(0)
x , u

(1)
x]T = 1

2 [(ux1 + ux2), (ux2 − ux1)]T

3. the vector of a local restoring forces
r(inv)

x = [r(0)
x , r

(1)
x]T = 1

2 [(rx1 + rx2), (rx2 − rx1)]T

and the matrix for 1D transformation

T1 =
[

+1 +1
−1 +1

]
(8)

with the property

1
2T1TT

1 =
[

1 0
0 1

]
= I1

b(inv) = T1b x(inv) = 1
2T1x u(inv)

x = 1
2T1ux r(inv)

x = 1
2T1rx

(9)

Efficient application of e–invariants in FEM 769

where components x(1) is invariant with respect to the location of element, u
(1)
x to the

translation of element and r
(1)
x to the global force acting on the element, respectively.

As a result of this computational process we obtain

rx = TT
1 r(inv)

x =
[

rx1

rx2

]
(10)

for the local restoring force vector. The interpretation of the coordinates of the vectors
x(inv) and u(inv)

x is obvious. The first coordinates x(0) and u
(0)
x represent the position the

of the spring and the place where the spring has been shifted, respectively. These values
are not needed for the restoring force computation. However, second coordinates are
needed because the value x(1) represents the length of the spring and u

(1)
x the change

of its length (see Figure 1). These invariants have also another very useful property.
The standard FEM computational algorithm requires to know the derivative of x and
ux with respect to the local variable ξ. It can be verified easily that in the case of the
standard base

x,ξ = − 1
2
x1 +

1
2
x2 ux,ξ = − 1

2
ux1 +

1
2
ux2 (11)

holds, and in the new base b(inv) = [1, ξ]

x,ξ = 0x(0) + 1x(1) = x(1) ux,ξ = 0u(0)
x + 1u(1)

x = u(1)
x (12)

holds. Thus we can see advantage of using the e-invariant version for the restoring force
computation. Although this advantage is insignificant for 1D problem, we show in the
next sections that this approach is expedient for 3D case.

3. APPLICATION OF THE E-INVARIANTS TO THE EQUATION OF MOTION
— 3D CASE

The wave propagation in a three-dimensional elastic body satisfies the equation of motion

ρux,tt = τxx,x + τxy,y + τxz,z + fx

ρuy,tt = τyx,x + τyy,y + τyz,z + fy

ρuz,tt = τzx,x + τzy,y + τzz,z + fz

(13)

and Hooke’s law [5, 9]
τxx

τyy

τzz

τxy

τyz

τxz

 =


λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




u x,x
u y,y
u z,z

u x,y + u y,x
u y,z + u z,y
u x,z + u z,x

 (14)

where ρ is mass density, ui and fi are components of a displacement and body force
per unit volume, respectively, τij are components of the stress tensor in i, j = x, y, z
direction. The computational domain is Ω̄ = Ω ∪ Γ, where Ω represents the interior

770 M. BALAZOVJECH AND L. HALADA

and Γ is the border of the domain. In the sequel, we will consider again the weak form
approximation of equations (13) over any quadrilateral element Ωe

∫ 1

−1

∫ 1

−1

∫ 1

−1

(bρux,tt +b,x τxx + b,y τxy + b,z τxz − bfx) DetJ dξ dη dζ∫ 1

−1

∫ 1

−1

∫ 1

−1

(bρuy,tt +b,x τyx + b,y τyy + b,z τyz − bfy) DetJ dξ dη dζ∫ 1

−1

∫ 1

−1

∫ 1

−1

(bρuz,tt +b,x τzx + b,y τzy + b,z τzz − bfz) DetJ dξ dη dζ

(15)

where the components of vector b = [b1, b2, b3, b4, b5, b6, b7, b8]T are Lagrange family
interpolation functions bi = 1

8 (1 + ξiξ) (1 + ηiη) (1 + ζiζ), i = 1, 2, 3, · · · , 8 defined on
the master cube element given by the coordinates

ξ = [−1,+1,−1,+1,−1,+1,−1,+1]T

η = [−1,−1,+1,+1,−1,−1,+1,+1]T

ζ = [−1,−1,−1,−1,+1,+1,+1,+1]T
(16)

and DetJ is determinant of the Jacobian transformation. If the actual element Ωe is
given by the coordinates

x = [x1, x2, x3, x4, x5, x6, x7, x8]T

y = [y1, y2, y3, y4, y5, y6, y7, y8]T

z = [z1, z2, z3, z4, z5, z6, z7, z8]T
(17)

and the displacements by

ux = [ux1, ux2, ux3, ux4, ux5, ux6, ux7, ux8]T

uy = [uy1, uy2, uy3, uy4, uy5, uy6, uy7, uy8]T

uz = [uz1, uz2, uz3, uz4, uz5, uz6, uz7, uz8]T
(18)

then the transformation between the master element and the actual element, as well as
the approximation of the dependent variables ux, uy and uz on the master element Ωe

can be expressed in the well known isoparametric form

x = bT x
y = bT y
z = bT z

ux = bT ux

uy = bT uy

uz = bT uz.
(19)

Applying the relation (19) to the integral equations (15) we obtain the matrix form
equation for the element ΩeM 0 0

0 M 0
0 0 M

ux,tt
uy,tt
uz,tt

 +

rx

ry

rz

 =

fx
fy
fz

 (20)

Efficient application of e–invariants in FEM 771

where the local restoring force vector for this element is composed of the following
components

rx =
∫ 1

−1

∫ 1

−1

∫ 1

−1

(bb,x τxx + b,y τxy + b,z τxz) DetJ dξ dη dζ

ry =
∫ 1

−1

∫ 1

−1

∫ 1

−1

(bb,x τyx + b,y τyy + b,z τyz) DetJ dξ dη dζ

rz =
∫ 1

−1

∫ 1

−1

∫ 1

−1

(bb,x τzx + b,y τzy + b,z τzz) DetJ dξ dη dζ

(21)

while the numerical integration can be calculated by Gauss quadrature. Naturally,
equation (20) holds only for a hexahedral element of the domain. We remember that
for the computation of the vectors rx, ry and rz we need to know the vectors

b,x = b,ξ ξ,x +b,η η,x +b,ζ ζ,x
b,y = b,ξ ξ,y +b,η η,y +b,ζ ζ,y
b,z = b,ξ ξ,z +b,η η,z +b,ζ ζ,z

(22)

whereξ,x η,x ζ,x
ξ,y η,y ζ,y
ξ,z η,z ζ,z

=
1

DetJ

y,η z,ζ −y,ζ z,η y,ζ z,ξ −y,ξ z,ζ y,ξ z,η −y,η z,ξ
x,ζ z,η −x,η z,ζ x,ξ z,ζ −x,ζ z,ξ x,η y,ξ −x,ξ z,η
x,η y,ζ −x,ζ y,η x,ζ y,ξ −x,ξ y,ζ x,ξ y,η −x,η y,ξ

 (23)

while

J =

x,ξ x,η x,ζ
y,ξ y,η y,ζ
z,ξ z,η z,ζ

 (24)

and
bi,ξ = 1

8ξi (1 + ηiη) (1 + ζiζ)
bi,η = 1

8ηi (1 + ξiξ) (1 + ζiζ)
bi,ζ = 1

8ζi (1 + ξiξ) (1 + ηiη)
(25)

are components of b,ξ ,b,η b,ζ .
To solve the problem on the whole domain, we have to make so called assembling of

all elements in the domain with the aim to construct the system of equations for the
whole domain.

Now, as in 1D case we express the restoring force vector by the e-invariants in 3D
space. Let b(inv) be a new vector of basis functions on the unit square and T3 be a
corresponding transform matrix between b and b(inv). Let us define the vector b(inv)

and matrix T3 as follows

b(inv) =
[
1, ξ, η, ηξ, ζ, ξζ, ηζ, ηξζ

]T (26)

and

T3 =
[

+T2 +T2

−T2 +T2

]
T2 =

[
+T1 +T1

−T1 +T1

]
T1 =

[
+1 +1
−1 +1

]
(27)

772 M. BALAZOVJECH AND L. HALADA

with the property
1
8T3TT

3 = I3 ⇒ T−1
3 = 1

8T
T
3 and b(inv) = T3b ⇒ b = 1

8T
T
3 b(inv) (28)

where I3 is the unit square matrix with dimension 8. These properties are very important
because, as we can see, they again facilitate to express the value of the function in nodal
points using the new basis functions. Really, the following identity

x = bT x = bT I3x = bT
(

1
8T

T
3 T3

)
x =

(
bT TT

3

) (
1
8T3x

)
= b(inv)T x(inv) (29)

holds. By the same way we obtain

y = b(inv)T y(inv) z = b(inv)T y(inv)

ux = b(inv)T u(inv)
x uy = b(inv)T u(inv)

y uz = b(inv)T u(inv)
z (30)

what can be expressed in the following matrix form


x
y
z
ux

uy

uz

 =



x(0) x(1) x(2) x(12) x(3) x(13) x(23) x(123)

y(0) y(1) y(2) y(12) y(3) y(13) y(23) y(123)

z(0) z(1) z(2) z(12) z(3) z(13) z(23) z(123)

u
(0)
x u

(1)
x u

(2)
x u

(12)
x u

(3)
x u

(13)
x u

(23)
x u

(123)
x

u
(0)
y u

(1)
y u

(2)
y u

(12)
y u

(3)
y u

(13)
y u

(23)
y y(123)

u
(0)
z u

(1)
z u

(2)
z u

(12)
z u

(3)
z u

(13)
z u

(23)
z u

(123)
z





1
ξ
η
ηξ
ζ
ξζ
ηζ
ηξζ


(31)

where the components x(k), y(k), z(k), u
(k)
x , u

(k)
y , u

(k)
z , k = 0, 1, 2, 12, 3, 13, 23, 123 of the

matrix in expression 31 are e-invariants with suitable properties from the computational
point of view and the vectors (x(k), y(k)) are the plane invariants and their interpretation
is described in the next section. It is easy to see from (30) that we can derive all needed
relations between the values defined in the standard basis space and the values defined
in the new basis space. For example, the derivative of the displacement fulfills

ux,x = b,
(inv)T
x u(inv)

x ux,y = b,
(inv)T
y u(inv)

x ux,z = b,
(inv)T
z u(inv)

x

uy,x = b,
(inv)T
x u(inv)

y uy,y = b,
(inv)T
y u(inv)

y uy,z = b,
(inv)T
z u(inv)

y

uz,x = b,
(inv)T
x u(inv)

z uz,y = b,
(inv)T
y u(inv)

z uz,z = b,
(inv)T
z u(inv)

z

(32)

and the relation between the derivative of b and b(inv)T follows from (28)

b,x = T−1
3 b,

(inv)
x = 1

8T
T
3 b,(inv)

x

b,y = T−1
3 b,

(inv)
y = 1

8T
T
3 b,(inv)

y (33)

b,z = T−1
3 b,

(inv)
z = 1

8T
T
3 b,(inv)

z .

If these values are substituted to (21), we obtain

rx = 1
4T

T
2

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
τxxb,

(inv)
x +τxyb,

(inv)
y +τxzb,

(inv)
z

)
DetJ dζ dη dξ

ry = 1
4T

T
2

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
τyxb,

(inv)
x +τyyb,

(inv)
y +τyzb,

(inv)
z

)
DetJ dζ dη dξ

rz = 1
4T

T
2

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
τzxb,

(inv)
x +τzyb,

(inv)
y +τzzb,

(inv)
z

)
DetJ dζ dη dξ

(34)

Efficient application of e–invariants in FEM 773

where

r(inv)
x =

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
τxxb,

(inv)
x +τxyb,

(inv)
y +τxzb,

(inv)
z

)
DetJ dζ dη dξ

r(inv)
y =

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
τyxb,

(inv)
x +τyyb,

(inv)
y +τyzb,

(inv)
z

)
DetJ dζ dη dξ

r(inv)
z =

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
τzxb,

(inv)
x +τzyb,

(inv)
y +τzzb,

(inv)
z

)
DetJ dζ dη dξ

(35)

are the e-invariants of the restoring force vector. For the derivative of the vector elements
b(inv) with respect to x, y and z we can substitute

b,(inv)
x =



0
ξ,x
η,x

(ηξ) ,x
ζ,x

(ξζ) ,x
(ηζ) ,x
(ηξζ) ,x


b,(inv)

y =



0
ξ,y
η,y

(ηξ) ,y
ζ,y

(ξζ) ,y
(ηζ) ,y
(ηξζ) ,y


b,(inv)

z =



0
ξ,z
η,z

(ηξ) ,z
ζ,z

(ξζ) ,z
(ηζ) ,x
(ηξζ) ,z


(36)

while the Jacobian is now given as follows from (31)

J =

x,ξ x,η x,ζ
y,ξ y,η y,ζ
z,ξ z,η z,ζ



=

x(0) x(1) x(2) x(12) x(3) x(13) x(23) x(123)

y(0) y(1) y(2) y(12) y(3) y(13) y(23) y(123)

z(0) z(1) z(2) z(12) z(3) z(13) z(23) z(123)





0 0 0
1 0 0
0 1 0
η ξ 0
0 0 1
ζ 0 ξ
0 ζ η
ηζ ξζ ηξ


.

(37)

Thus, there are two possibilities how to compute the local restoring force vector.
They are represented by the relations (21) and (34).

Note that application of the relation (34) is very simple for the case of a unit cube
element. As an example, let us consider a mesh of unit cubes into a part of the computa-
tional domain. Let this mesh be generated by the translation of the unit cube. Then the
spatial transformation between the master element and arbitrary cube element becomes

x = 1
8 (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8) + ξ = x(0) + ξ

y = 1
8 (y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8) + η = y(0) + η

z = 1
8 (z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8) + ζ = z(0) + ζ.

(38)

It can be easily seen that for the Jacobian and its determinant in this case

J =

x,ξ x,η x,ζ
y,ξ y,η y,ζ
z,ξ z,η z,ζ

 =

1 0 0
0 1 0
0 0 1

 DetJ = 1 (39)

774 M. BALAZOVJECH AND L. HALADA

holds and the derivative of the vector b(inv) with respect to x, y and z has a very simple
result

b(inv),x =
[
0, 1, 0, η, 0, ζ, 0, ηζ

]T

b(inv),y =
[
0, 0, 1, ξ, 0, 0, ζ, ξζ

]T

b(inv),z =
[
0, 0, 0, 0, 1, ξ, η, ηξ

]T
.

(40)

Thus, using the formulations (32) and (33) we can compute the derivatives of displace-
ments and the stress components for the square element as follows

ux,x = u
(1)
x + u

(12)
x η + u

(13)
x ζ + u

(123)
x ηζ

ux,y = u
(2)
x + u

(12)
x ξ + u

(23)
x ζ + u

(123)
x ξζ

ux,z = u
(3)
x + u

(13)
x ξ + u

(23)
x η + u

(123)
x ξη

uy,x = u
(1)
y + u

(12)
y η + u

(13)
y ζ + u

(123)
y ηζ

uy,y = u
(2)
y + u

(12)
y ξ + u

(23)
y ζ + u

(123)
y ξζ

uy,z = u
(3)
y + u

(13)
y ξ + u

(23)
y η + u

(123)
y ξη

uz,x = u
(1)
z + u

(12)
z η + u

(13)
z ζ + u

(123)
z ηζ

uz,y = u
(2)
z + u

(12)
z ξ + u

(23)
z ζ + u

(123)
z ξζ

uz,z = u
(3)
z + u

(13)
z ξ + u

(23)
z η + u

(123)
z ξη.

(41)

Now the local restoring force vector for the square element is obtained by exact evaluation
of the integrals (34). The result is very simple

rx = TT
3



λ(u(1)
x + u

(2)
y + u

(3)
z) + 2µu

(1)
x

µ(u(2)
x + u

(1)
y)

µu
(12)
x + λ(u(12)

x + u
(23)
z)/3

µ(u(1)
z + u

(3)
x)

µu
(13)
x + λ(u(13)

x + u
(23)
y)/3

µ(u(12)
z + u

(13)
y + u

(23)
x + u

(23)
x)/3

(λ + 4µ)u(123)
y /9


(42)

ry = TT
3



µ(u(1)
y + u

(2)
x)

λ(u(1)
x + u

(2)
y + u

(3)
z) + 2µu

(2)
y

µu
(12)
y + λ(u(12)

y + u
(13)
z)/3

µ(u(3)
y + u

(2)
z) ,

µ(u(12)
z + u

(23)
x + u

(13)
y + u

(13)
y)/3

µu
(23)
y + λ(u(13)

x + u
(23)
y)/3

(λ + 4µ)u(123)
y /9



Efficient application of e–invariants in FEM 775

rz = TT
3



µ(u(3)
x + u

(1)
z)

µ(u(3)
y + u

(2)
z)

µ(u(13)
y + u

(23)
x + u

(12)
z + u

(12)
z)/3

λ(u(1)
x + u

(2)
y + u

(3)
z) + 2µu

(3)
z

µu
(13)
z + λ(u(12)

y + u
(13)
z)/3

µu
(23)
z + λ(u(12)

x + u
(23)
z)/3

(λ + 4µ)u(123)
z /9


.

An algorithm efficiency is often measured by the number of arithmetical operations used
in an algorithm. The number of required operations for the computation of the local
restoring force vector for a hexahedral element H8 is given in the Table 1. During the

Case of algorithm dividing multiplying add/substr.

Standard 8 2016 2092

Proposed (H8 element) 8 1728 1655

Proposed (cube element) 0 27 161

Tab. 1. Comparison of the number of arithmetical operations in 3D

algorithms.

computation of the restoring force vectors rx, ry the transformation of these vectors by
the matrices T2 or T3 are needed. We remember, that the matrices Tn, n = 1, 2, 3
contain only ±1 values and therefore no multiplications are required in the matrix –
vector multiplication. Moreover, the number of additions or subtractions required can
be reduced because Tn can be written as a product of n very sparse matrices, that is,
Tn = (Hn)n, n = 2, 3 where

H2 =


1 1 0 0
0 0 1 1
−1 1 0 0
0 0 −1 1

 H3 =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1


. (43)

The role of the e-invariants for is now briefly described in the next section.

4. THE E-INVARIANTS OF THE HEXAHEDRAL GEOMETRY

As mentioned already, the e-invariants save only the essential information needed for
the computation of the local restoring force vector. Our approach is based on two
groups of invariants – the e-invariants of the hexahedral geometry and the e-invariants
of the displacements. Both forms of the restoring force vector computation (21) and

776 M. BALAZOVJECH AND L. HALADA

1
(-1,-1,-1) (1,-1,-1)

(-1,1,-1) (1,1,-1)

(-1,-1,1) (1,-1,1)

(-1,1,1) (1,1,1)

2

3

4

5
6

7
8

a
(2)

a
(1)

a
(3)

a
(0)

x

y
z

Fig. 2. Trilinear transformation.

(34) require to compute the derivatives of the spatial variables x, y, z and displacements
ux, uy, uz with respect to the ξ, η and ζ. It is easy to see from (31) that

x,ξ = 0x(0) + 1x(1) + 0x(2) + ηx(12) + 0x(3) + ζx(13) + 0x(23) + ηζx(123)

x,η = 0x(0) + 0x(1) + 1x(2) + ξx(12) + 0x(3) + 0x(13) + ζx(23) + ξζx(123)

x,ζ = 0x(0) + 0x(1) + 0x(2) + 0x(12) + 1x(3) + ξx(13) + ηx(23) + ηξx(123)

y,ξ = 0y(0) + 1y(1) + 0y(2) + ηy(12) + 0y(3) + ζy(13) + 0y(23) + ηζy(123)

y,η = 0y(0) + 0y(1) + 1y(2) + ξy(12) + 0y(3) + 0y(13) + ζy(23) + ξζy(123)

y,ζ = 0y(0) + 0y(1) + 0y(2) + 0y(12) + 1y(3) + ξy(13) + ηy(23) + ηξy(123)

z,ξ = 0z(0) + 1z(1) + 0z(2) + ηz(12) + 0z(3) + ζz(13) + 0z(23) + ηζz(123)

z,η = 0z(0) + 0z(1) + 1z(2) + ξz(12) + 0z(3) + 0z(13) + ζz(23) + ξζz(123)

z,ζ = 0z(0) + 0z(1) + 0z(2) + 0z(12) + 1z(3) + ξz(13) + ηz(23) + ηξz(123)

(44)

holds. The first e-invariant components x(0), y(0) and z(0) generate the point α(0) =
(x(0), y(0), z(0)) in the hexahedral domain. This point corresponds with the (0, 0, 0) point
into the master element in trilinear transformation shown in Figure 2. Coordinates of
point α(0) have the value

x(0) = 1
8 (x1 +x2 +x3 +x4 +x5 +x6 +x7 +x8)

y(0) = 1
8 (y1 +y2 +y3 +y4 +y5 +y6 +y7 +y8)

z(0) = 1
8 (z1 +z2 +z3 +z4 +z5 +z6 +z7 +z8).

(45)

It is clear that α(0) determines the location of the quadrilateral element in computational
domain independently on the rotation and change of the element shape. Location α(0)

of the element is not needed for the computation of the restoring force vector. Therefore
it also concerns the values x(0), y(0), z(0). The zero coefficients at (44) confirm this fact.

Efficient application of e–invariants in FEM 777

Another e-invariants are the vectors

α(1) =
(
x(1), y(1), z(1)

)
α(2) =

(
x(2), y(2), z(2)

)
α(3) =

(
x(3), y(3), z(3)

)
.

(46)

These vectors correspond with the vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) into the master
element. Their coordinates are as follows

x(1) = 1
8 (−x1 + x2 − x3 + x4 − x5 + x6 − x7 + x8)

x(2) = 1
8 (−x1 − x2 + x3 + x4 − x5 − x6 + x7 + x8)

x(3) = 1
8 (−x1 − x2 − x3 − x4 + x5 + x6 + x7 + x8) .

(47)

It is easy to verify that these coordinates fulfill

x(1) = 1
4 (x2 + x4 + x6 + x8)− x(0)

x(2) = 1
4 (x3 + x4 + x7 + x8)− x(0)

x(3) = 1
4 (x5 + x6 + x7 + x8)− x(0)

(48)

and similarly for y(1), y(2), y(3), z(1), z(2), z(3) . The positions of the vectors α(1), α(2)

and α(3) are shown in the Figure 2. This vectors are independent on the location and ro-
tation of the hexahedral element. The zero coefficients at the components x(1), y(1), z(1),
x(2), y(2), z(2) and x(3), y(3), z(3) in (44) indicate the positions where they can be omitted
during the computation.

The next invariants are vectors α(12) = (x(12), y(12), z(12)), α(13) = (x(13), y(13), z(13)),
α(23) = (x(23), y(23), z(23)) and α(123) = (x(123), y(123), z(12)). which is always non-zero
for a general case of hexahedral element. This vectors corresponds with the zero vector
in the master element. The coordinates of this vector are

x(12) = 1
8 (+x1 − x2 − x3 + x4 + x5 − x6 − x7 + x8)

x(13) = 1
8 (+x1 − x2 + x3 − x4 − x5 + x6 − x7 + x8)

x(23) = 1
8 (+x1 + x2 − x3 − x4 − x5 − x6 + x7 + x8)

x(123) = 1
8 (−x1 + x2 + x3 − x4 + x5 − x6 − x7 + x8)

(49)

or
x(12) = 1

4 (x1 + x4 + x5 + x8)− x(0)

x(13) = 1
4 (x1 + x3 + x6 + x8)− x(0)

x(23) = 1
4 (x1 + x2 + x7 + x8)− x(0)

x(123) = 1
4 (x2 + x3 + x5 + x8)− x(0)

(50)

and similarly for yth and zth invariants. This value is independent from the element
location and rotation and can be used as measures of deformation of the element. The
derivatives of the displacements ux, uy and uz with respect to ξ, η and ζ can be derived
according to equation (32). The values

u(0)
x =

ux1 + ux2 + ux3 + ux4 + ux5 + ux6 + ux7 + ux8

8
(51)

and similarly u
(0)
y , u

(0)
z represent mean value of displacements. In other words they

express the global shifting of the element, but the restoring force vector is not dependent
on these values.

778 M. BALAZOVJECH AND L. HALADA

Interesting is the physical interpretation of values u
(1)
x , u

(2)
x , u

(3)
x and similarly dis-

placements in the yth and zth direction on cube element. The values

u(1)
x =

ux2+ux4+ux6+ux8
4 − ux1+ux3+ux5+ux7

4

2
(52)

u(2)
x =

ux3+ux4+ux7+ux8
4 − ux1+ux2+ux5+ux6

4

2

u(3)
x =

ux5+ux6+ux7+ux8
4 − ux1+ux2+ux3+ux4

4

2

represent the finite difference approximation of displacements in x,y and z direction for
the element with length of site 2. Similarly, u

(1)
y , u

(2)
y , u

(3)
y and u

(1)
z , u

(2)
z , u

(3)
z represent

the finite difference approximation of displacements in y and z direction.
The values

r(0)
x =

rx1 + rx2 + rx3 + rx4 + rx5 + rx6 + rx7 + rx8

8
, (53)

r
(0)
y and r

(0)
z represent the global force acting on the element, but the local forces are

not dependent on these values and therefore they are not needed for computation.

5. CONCLUSION

We developed a new method of the restoring force vector computation in 2D and 3D case
of the FEM computation for a elastodynamics equation. The new method reduces the
number of arithmetical operation by 1

3 approximately, while keeping the same memory
requirements. The main idea of the speed-up is the use of new base functions that allow
the use of the e-invariants. These e-invariants have such property that they save only
the essential information needed for the computation of the local restoring force vector
and redundant information is omitted from the computation.

ACKNOWLEDGEMENT

This work was supported by grant APVV-0184-10.

(Received March 2, 2012)

R E FER E NCE S

[1] R. J. Archuleta: Experimental and Numerical Three-Dimensional Simulations of Strike-
Slip Earthquakes. PhD. Thesis. University of California, San Diego 1976.

[2] M. Balazovjech and L. Halada: Effective computation of restoring force vector in FEM.
Kybernetika 43 (2007), 6, 767–776.

[3] M. Balazovjech: Efektivny vypocet seizmickeho pohybu metodou konecnych elementov.
Dissertation, FMPH Bratislava 2008.

[4] T. Belytscho, W. K. Liu, and B. Moran: Nonlinear Finite Elements for Continua and
Structures. John Wiley and Sons, 2000.

Efficient application of e–invariants in FEM 779

[5] C. A. Felippa: Introduction to Finite Element Methods. Lecture Notes. University of
Colorado, Boulder 2005.

[6] G. A. Frazier and C. M. Petersen: 3-D stress wave code for the Illiac IV. Systems. Systems,
Science and Software Report SSS-R-74-2103, 1974.

[7] T. J. R. Hughes: The Finite Element Method. Linear Static and Dynamic Finite Element
Method Analysis. Prentice Hall, 2000.

[8] P. Moczo, J. Kristek, M. Galis, P. Pazak, and M. Balazovjech: The finite-difference and
finite-element modeling of seismic wave propagation and earthquake motion. Acta Phys.
Slovaca 57 (2007), 2, 177–406.

[9] J. N. Reddy: An Introduction to the Finite Element Method. McGraw-Hill, New York
1993.

[10] G. Strang and G. J. Fix: An Analysis of the Finite Element Method. Wellesley Cambridge
Press 1988.

[11] R. Taborda, J. Lopez, H. Karaoglu, J. Urbanic, and J. Bielak: Speeding up Finite Element
Wave Propagation for Large-scale Earthquake Simulations. Technical Report CMU-PDL-
10-109, Carnegie Mellon University, Parallel Data Lab. 2010.

Martin Balazovjech, Department of Mathematics, Slovak University of Technology, Radlinské-

ho 11, 813 68 Bratislava. Slovak Republic.

e-mail: balazovjech@math.sk

Ladislav Halada, Institute of Informatics, Slovak Academy of Sciences, Dúbravská cesta 9,

842 28 Bratislava. Slovak Republic.

e-mail: ladislav.halada@savba.sk

		webmaster@dml.cz
	2015-03-29T15:46:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

