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SOLVABILITY OF A GENERALIZED THIRD-ORDER LEFT FOCAL
PROBLEM AT RESONANCE IN BANACH SPACES

YOUWEI ZHANG, Zhangye

(Received February 22, 2012)

Abstract. This paper deals with the generalized nonlinear third-order left focal problem
at resonance

O () — q®)u(t) = f&,u(t),d' ),u” (), telto,T],

where the nonlinear term is a Carathéodory function and contains explicitly the first and
second-order derivatives of the unknown function. The boundary conditions that we study
are quite general, involve a linearity and include, as particular cases, Sturm-Liouville bound-
ary conditions. Under certain growth conditions on the nonlinearity, we establish the exis-
tence of the nontrivial solutions by using the topological degree technique as well as some
recent generalizations of this technique. Our results are generalizations and extensions of
the results of several authors. An application is included to illustrate the results obtained.

Keywords: Fredholm operator; coincidence degree; left focal problem; nontrivial solution;
resonance

MSC 2010: 34B15, 47J05

1. INTRODUCTION

The effect of resonance in a mechanical equation is very important to engineers,
nearly every mechanical equation will exhibit some resonance and can with the ap-
plication of even a very small external pulsed force be stimulated to do just that.
Engineers usually work hard to eliminate resonance in some ways through a mechan-
ical equation, as they perceive it to be counter-productive. In fact, it is impossible
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to prevent all resonance. Mathematicians have provided more sophisticated research
results of resonance in equations or systems. After seeing the regularity, i.e., the
existence or nonexistence of solutions and properties of solutions for a mechanical
equation or system, we may limit or control its influence, for example, through in-
troduction of damping and source terms, adding a given local or nonlocal boundary
conditions, and so on. Recently, there has been increasing interest in questions of
solvability of boundary value problems for differential equations at resonance, and
many excellent results have been obtained on the existence of solutions, provided the
nonlinearity depends on the first-order derivative. Many authors have employed the
Leray-Schauder continuation theorem and the coincidence degree theory of Mawhin
to establish some existence results of solutions, we refer to Gupta [4], Kosmatov
[5], Liu [7], Mawhin et al. [10], Rachiunkova [13] and the references therein. At
the same time, third-order focal boundary value problems are an area of theoretical
exploration in many applied fields, especially in mathematical analysis, mechanics
and numerous subjects related to it. It has provided a sound framework for a num-
ber of differential models of great importance in applications. Much attention has
been paid to discussing a class of the boundary value problem [1], [3], the book [1]
discusses at length the existence of positive solutions to the two-point right focal
boundary value problem

{ (=1~ *u"(t) = f(t,u(t), te[0,1],

w(0)=0, 0<j<k—1, u@(1)=0, k<j<2,

when k € {1,2}. Based on the fairly general existence theorems for solutions of
right focal boundary value problem, some authors have established the properties
of solutions in deeper levels, such as the monotonicity of the solutions, fixed-sign
solutions et al.; we can refer to [2], [8], [15].

In literature, very little work has been done on the nontrivial solutions to the
third-order left focal boundary value problems at resonance in Banach spaces, in
which the nonlinearity is involved with the lower order derivatives explicitly and
boundary conditions are quite general. In this paper, we give a first application of
the topological degree techniques to left focal boundary problems for a generalized
third-order equation at resonance in Banach spaces, by demonstrating a technique
that takes advantage of the flexibility of the fixed point theorem in obtaining at least

one nontrivial solution for
(p(t)u" (1)) — q(t)u(t) = f(t,u(®),w'(t),u" (1), t € ]to, T,
m(u(to), u” (to)) =0,
n(u(T),v'(T)) = 0,
H(u(§), v (§), u"(£)) = 0,

(P)
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where m(-,-), n(-,-) and I(-, -, -) denote the linear relations of u(ty) and u” (tg), u(T)
and u'(T), u(€), v’ (€) and u” (€), respectively, & € Jto, T[, p € C*([to, T),]0, +0[),q €
LY([to, T],R), f: [to,T] x R® — R is a Carathéodory function. The problem (P)
happens to be at resonance in the sense that the associated half-linear homogeneous
boundary value problem

")) =0, telto,T],

S
==
=

has u(t) = u(to) + ' (to)(t — to) + p(to)u” (to) tto ﬁ ds as a nontrivial solution. The
boundary conditions that we study are quite general, involve a linearity and include,
as particular cases, Sturm-Liouville boundary conditions. Set u”(tg) = c(p(tg)) ! <
00, where ¢ is a constant. Then for the boundary conditions m(u(tg), u” (tg)) = 0
and n(u(T),u (T)) = 0 there exist linear mappings m and 7 such that u(ty) =
m((p(to))~1) and u'(tg) = n((p(to))~'). Thus the problem (P) will be at resonance

when

£§—T

to p(7)
. 1 ¢ dr c
n((p(to))_ )—l—c/to m, ]@) =0.

This implies that q(t)u(t) + f(t,u(t),uw'(t),u”(t)) € L'[te, T]. If I(m((p(to))~1) +
a((p(to)) )€ — to) + cffo fﬁdT # 0, then the problem has u(t) = 0 as its
only solution. So we say that the problem (P) happens to be at resonance when
I(m((p(to))™1) + al(p(to)) 1) (€ —to) + cfti % dr = 0, for the case that the linear
mapping Lu(t) = (p(t)u”) (t) is non-invertible, the so-called resonance case. Other-

l(m«p(to))—l) () ) (€ — to) + ¢ dar,

wise, we have the so-called non-resonance case. By applying the coincidence degree
theorem of Mawhin, this paper will establish some new and more general results for
the existence of a nontrivial solution to the generalized nonlinear third-order left
focal problem at resonance. The results are new even for the abstract spaces, our
results improve and generalize some known results.

The rest of the paper is organized as follows. Section 2 provides some background
material for discussing the problem (P). Some lemmas, a priori estimates and cri-
teria for the existence of nontrivial solutions to the problem (P) are established in
Section 3, and an application of our main results is given in Section 4.
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2. PRELIMINARIES

In what follows, we provide some background material from Banach spaces and

preliminary results.

Definition 2.1. Let X and Z be normed spaces. A linear operator L: Dom L C
X — Z is called a Fredholm operator if the following two conditions hold:

(i) Ker L has a finite dimension;

(ii) ImL is closed and has a finite codimension.

L is a Fredholm operator, its Fredholm index is the integer Ind L = dim Ker L —
codimImZ. In the present paper, we are interested in a Fredholm operator of index
zero, i.e. dimKer L = codimImL. From Definition 2.1 we know that there exist
continuous projectors P: X — X and Q: Z — Z such that ImP = Ker L, Ker@Q =
ImL, X = Ker L&Ker P, Z = ImL&Im(@, and the operator Lpom rnker p: Dom LN
Ker P — ImL is invertible. We denote the inverse of L|pom rakerp by Kp: ImL —
Dom LNKer P. The generalized inverse of L denoted by Kpg: Z — Dom LNKer P
is defined by Kpg: Kp(I — Q).

Definition 2.2. Let L: Dom L C X — Z be a Fredholm operator, F a metric
space, and N: F — Z an operator. Operator N is called L-compact on E if QN :
E — Z and KpgN: E — X are compact on F. In addition, we say that IV is
L-completely continuous if it is L-compact on every bounded E C X.

We recall when that the function f: [tg, 7] x R® — R satisfies the Carathéodory
conditions.

Definition 2.3. We say that the mapping f: [to,T] x R® — R satisfies the
Carathéodory conditions with respect to L[tg, T], where L![ty, T] denotes the set of
all Lebesgue-integrable functions on [tg, T, if the following conditions are satisfied:

(i) for each (u,v,9) € R3, the mapping t — f(t,u,v,1) is Lebesgue measurable
on [to,T;

(ii) for a.e. t € [tg, T, the mapping (u,v,9) — f(t, u, v, ) is continuous on R?;

(iii) for each r > 0, there exists o, € L([to, T], R) such that for a.e. t € [tg,T]
and every p such that |u| < 7, we have |f(t, u, v, 9)| < a,(t).

Theorem 2.1 ([9]). Let Q@ C X be an open bounded set, L a Fredholm operator
of index zero, and N L-compact on §. Assume that the following conditions are
satisfied:

(1) Lu # ANu for every (u,\) € ((Dom L\ Ker L) N 99Q) x [to, T);
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(2) Nu ¢ ImL for every u € Ker L N 0%;
(3) deg(QN|ker Lron, Q2N KerL,0) # 0 with Q: Z — Z a continuous projector
such that Ker Q = ImL.
Then the equation Lu = Nu admits at least one nontrivial solution in Dom L N ().

Note that the problem of existence of nontrivial solutions in a convex set for
abstract equations at resonance has been considered by Nieto [12] and Santanilla [14].
The authors have presented sufficient conditions for the existence of solutions to the
equation

Lu = Nu

in a cone when the nonlinearity IV is bounded, where L: dom L C I — Z is a Fred-
holm operator of index zero, N: X — Z is linear or nonlinear and possesses a com-
pactness property relative to L, and X, Z are Banach spaces.

3. MAIN RESULTS

Throughout we will denote the Banach space X = C'[ty, T] with the norm |ju|| =

max{[ullor, [[u'lor, [[u”[c1}, where |- [lcr = sup |- (t)]. Let Z = L'[to,T] with
t€lto, T

the norm ||z]|p: = ftf |z(t)| dt. We use the Sobolev space

W3t, T) = {u: [to, T] — R: u(t), v/ (t),u” (t)
are a.c. on [to, T] with u"" € L'[ty, T]}.

For the problem (P), we define the mapping L from Dom L C X to Z by

Dom L = {u € Wty, T]: m(u(to), u”(to)) =0, n(u(T),u'(T)) =0

(u(§), ' (€), u"(§)) = 0},
(3.1)  Lu(t) = (p(t)u"(t)), w e DomlL,

and the nonlinear mapping N: X — Z by
(3.2) Nu(t) = f(t,u(t), v (t), v (t) + qt)u(t), telto, T

Obviously, the equation (p(¢t)u”(t)) = f(t,u(t), v (t)) + q(t)u(t) admits a solution
which is equivalent to the solution of the mapping equation Lu = Nu. So we
concentrate on the existence of solutions to the equation Lu = Nu with the boundary
condition of the problem (P).
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Lemma 3.1. L: Dom L C X — Z is a Fredholm mapping of index zero. Further-
more, there exist real numbers a; (i = 1,2,...,5). The continuous linear projector
operator Q: Z — Z can be defined by

1 Tr—r 7 S
QZ:A_I(al/tO —p(T) /to z(s)dsdr—i—ag/to m/to z(s)dsdr

+ /E’E_T/T()dd+ /51/7()dd+)
a e z(s)dsdr +a —_— z(s)dsdr +as |,
¥ to p(7) to ! to p(7) to °
where

T B T ¢ p B
A1:a1/ wdT"‘@/ 7——tOdT-l-a:s/ wdT
t to t

0 p(7) p(7) 0 p(7)

Sr—t
+a4/ T =047 + a5 #0.
to p(T)

The linear mapping Kp: ImL — Dom L N X can be written as

ty T
sz(t)z/t T/ z(s)dsdr, =z € ImL.
¢

o p(7) to

Furthermore, | Kpz| = max{(1, (2, 3}zl L1, 2 € ImL, where

T+ T 1
¢ :/ dr, ¢ z/ ——dr, (3= sup —.
S TS > i p() S e p()

Proof. Itisclear that Ker L = R. Let v € Dom L, z € ImL. The linear equation
on [to,T] is
(p()u" ()" = 2(t).
For a.e. t € [tg,T], twice Lebesgue-integrating the above differential equation from
to to t yields

(3.3) w(t) = u(to) +u'(to)(t — to)

+ plto)u” (to) /t:tp(_—T)TdTJr/t:;(_—r)T/t:z(s)deT'

The equation (3.3) satisfies m(u(to),u” (o)) = 0, n(u(T),u'(T)) = 0, l(u(&), v (&),
u”(€)) = 0 if and only if there exist real numbers a; (i = 1,2,...,5) such that

(3.4) al/tOT%/t:z(s)dsdT—f—ag/toT}%/t:z(s)dsdT

+ /gg_T/T()dd+ /51/7()dd+ 0
as z(s)dsdr + au — z(s)dsdr + a5 = 0.
to p(T) to top(T) to °
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On the other hand, if (3.4) holds, then for some z € ImL, if we take u € Dom L as
given by (3.3), then (p(t)u”(¢)) = z(¢) for a.e. ¢ € [to,T]. So

ImL { € L'[to, T /TT_T/T (s)dsdr + /T ! /T (s)dsd
m = z 5 - a —_— zZ\S sSaT a — VAR SarT
0 Y () L ? Joo p(0) Jyy
+ /ff_”:/T()d dr + ./E ! /W (s)dsdr + o}

a —_— Z\S SarT a — zZ\S sSaT as = .
> o (1) iy Y 2(7) Ly ’

Further, we define the mapping Q: Z — Z by

1 T 7 I
QZA_l(al/to —p(T) /to Z(S)deT+a2/to ZTT)~/tO z(s)dsdr

55_7— i 13 1 T
+a3/to W‘/to Z(S)d8d7+a4/to ]TT),/tO Z(S)deT+a5)

for z € Z. It is easy to see that Q: Z — Z is a linear continuous projector. For the
mapping L and the continuous linear projector @, it is not difficult to check that
ImL = Ker Q. Set z = (2 — Qz) + Qz, thus z — Qz € Ker @ = ImL and Qz € ImQ),
so Z =ImL +ImQ. If z € ImL N Im@Q), then z(t) = 0, hence Z = ImL & Im@Q. From
Ker L = R we obtain that Ind L = dim Ker L — codim ImL = dim Ker L — dim ImQ =
0, that is, L is a Fredholm mapping of index zero.

Take P: X — X as follows:

Pu(t) = u(to) + u'(to)(t — to) + p(to)u” (to) /t ;(_T; dr, t€[to,T),
and set v € X in the form
ult) = ulto) + ')t = t0) + it () [ SFare [LL "a(s)dsdr
ty—r

T ult) — ulto) — o (1)t — to) — plto)u” (to) / LT

to P(T)
[

Obviously, ImP = Ker L and X = Ker L ® Ker P, hence the generalized inverse
Kp: ImL — Dom L N Ker P is defined by

Kpz(t) = /t: tp(_—r; /tOT z(s)dsdr,

and it follows that (Kpz)'( fto p(7) fto s)dsdr, (Kpz)"(t) = p(t) ft s)ds. Tt
is not difficult to obtain that IKpz| = max{{l, (a2, (3} ||L1
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For z € ImL, we have

(3.5) virao) = (o [ ey +(s)dsar ) — 200,

and for v € Dom L N Ker P,

Kr(tut) = [ 5=

o p(7)

/t(:(p(s)“”(s))/ dsdr
— /t:(t — )" (1) dT — p(to)u” (to) /t1t =7 ar

o p(7T)

In view of u € Dom L NKer P we have Pu(t) = u(to) +u'(to)(t —to) +p(to)u” (to) x
ftto((t —7)/p(7))d7 = 0, thus

(3.6) Kp(Lu(t)) = u(t), te to,T].
(3.5) and (3.6) yield Kp = (L|pom Lnker P) ', and the proof is complete. O
Furthermore,

T T T T
Q(Nu)—Ail<a1/ T—:_)T/t Nu(s)dsdT—i—ag/t ]% Nu(s)dsdr

to p( to

T

¢ T 13 1
+a3/ g—T Nu(s)dsd7+a4/ —
t to p(T)

o) Nu(s) dsdT—l—a5)
0 to

to

(o T [ 7G50, + oyt asar

s b(7)

T ]- T / "
o [ = / (f (s u(s). o (), u"()) + q(s)u(s)) dsdr

‘ 5 T ’ / "
e /t () /t (f(s:uls),u'(s),u"(5)) + a(s)u(s)) dsdr

va | fL [ 610,09+ o)l s+ i),
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o P
- A% (m/t 11;(_7)7 /tT<f(s, u(s), u'(s),u"(s)) + q(s)u(s)) ds dr

‘ E 7 ’ / "
+a3/t ™ / (f(s,u(s),u'(s),u"(s)) + q(s)u(s)) dsdr

+as /E s [ sl 6009+ ale)ute)) s +as ) ).

p(7) to

Since the first and second-order derivatives are involved in the nonlinear term f
explicitly and the nontrivial solutions u of the problem (P) exitsts, let us prove now
some a priori estimates which will be useful later.

Lemma 3.2. Let b; > 0 (i = 1,2,3,4) and ¢; # 0 (i = 1,2,3). A solution of the
problem (P) satisfies

(3.7) [u”ller < bulluflor + b2, (lw'ller < bslluller + ba,

where

T T
n= g [ s =6 [ s

|C1 | to to

b= [ T e / lg(s) dsdr + b, <|c2|p<to> +a(t) [ T o d7>,

b4:b2<|02|p(to)+p(to)/:}%d7) —|—/:]%/t;a,«(s)dsd7+|%|.

Proof. By virtue of m(u(tg),u”(to)) = 0, there exists a nonzero real number c;
such that

(3.8) u(to) = c1p(to)u” (to).

Also, the boundary conditions being n(u(T"),u'(T)) = 0 or I(u(§), v (§),u"(§)) = 0,
there exist two nonzero real numbers co and c3 such that

(39) u/(to) = Cgp(to)u/,(to) + c3.
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For a.e. t € [to,T], by (3.3), (3.8), (3.9) and sup |u(t)| < r < oo, one has that
tE]to,T[

1
[u” (t)] < p(to)|u” (to)] sup —
telto,T P(t)

o~ [ ), (00,0716 + o)t st

+
te]to, T p(t) to

|U'(t0)| 1 1 /T ’ "
< sup —— + sup — f(s,u(s),u'(s),u"(s))]ds
|c1] tE]to,T[p( ) t€lto, T[P( ) to | ) ) )

p_lu®l | | (s)] ds,

+ sup —=
telto, [ P(t) te]tm [

and so we have

T T
sup |uu(t)|g<_3 sup |u(t)|—|—§3/ ar(s)ds+ sup |u(t)|C3/t lg(s)| ds.

t€to, T lea t€lto,T| to t€lto,T|

The above argument yields

sup |u”(#)] < <|CB| + 3 /T Iq(S)IdS) sup |u(t)] + C3 /Tozr('a’)ds

tE]to,T[ to tE]to,T[ to

=0b; sup |u(t)|+ bo.
te]to,T[

Similarly to the above argument, we have

T T
|u<>|<|u<mn-+puonu"to|J/ df-%J/ 5§5¥[ ar(s) ds dr

+ sup |u(t) /|q )| dsdr
te]to, T

<@mmw4ﬁ>ww[$£wmh

1 T
+ sup |u(t —/ q(s)|dsdr + |c
te]toﬂl (t)] e t0| )| |es]
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T 1 T 1 T
< | e2lp(to) + p(t )/ —dT) sup |u”(t) —l—/ —/ a,(s)dsdr
<| zlp(to) (to to p(7) te]to,T[| | to p(7) to )
T 1 T
+ sup |u(t — q(s)|dsdr + |c
te]toﬂl (t)] e t0| )| |es]

T
< (|cQ|p<to>+p<to> / idr)a)l supu(t)] + ba)

to p(7) t€]to,T[

T 1 T T 1 T
—l—/ —/ ar(s)dsdr + sup |u(t —/ q(s)|dsdr + |c
to p(7) to ( ) te]to,T[l ()| to p(7) to | ( >| | 3|
T 1 T T 1
= — s)|dsdr +b (c to) + p(t / —dT)) sup |u(t
(] 5 /[ (lealott) 0000 [ Esar) ) s Jute)

+bz(|02|P(to)+P(t0)/:2%7_)d7) +/tf]%/t;ar<s)dsd7+|c3|,

therefore,

sup (1)) < (/:L T|q(s)|dsdr+b1<|czlp(to)+p(to)/Tidr))

tE]to,T[ p(7) to to p(7)

X sup |u(t)|+b2<|02|p(to)+p(to)/ }%dT)

te]to,T| to

T T

1

+/ —/ ap(s)dsdr + |e3| = b3 sup |u(t)] + ba.
o P(7) Jio te€lto,T|

This implies that the desired conclusion. ([

Lemma 3.3. The mapping N is L-completely continuous.

Proof. Assume that u,,uo € E satisfy ||u, — uo|| — 0 (n — o0), thus there
exists R > 0 such that |lu,|| < R for any n > 1. One has that

INup, — Nugllcr = sup |Nup(t) — Nug(t)]

te(to, T

< tes[}tlpT](lf(t Un (t)7 u;z (t)7 u;; (t)) - f(t, Ug (t)7 u(/) (t)7 u(/) (t))|

+ lg(®)un(t) — uo(t)])-

In view of the fact that f satisfies the Carathéodory conditions, we can obtain that
for a.e. t € [to, T,
INu, — Nug|lcr — 0 (n — o0).

This means that the operator N: E — Z is continuous. By the definitions of QN
and Kp N, we can obtain that QN: E — Z and KpoN: E — X are continuous.
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Let E C X be a bounded set and r = sup{||u||: v € E} < co. Then for a.e.
t € [to,T] we have

[N (8)] < [f(t, un(t), i, (8), wy (0))| + 1g() [Jun] < laa(B)] + rlg(t)] == (1),

|Q(Nuy)| < L <|a | TT_T/T |Nuy(s)|dsdr + |a |/T 1 /T|Nu (s)|dsd
n)l = a9l Ty n T 2 — n T
|A1| to p(T) to to p(T) to

55_7_ T T
Nuy(s)|dsdr + |a — Nuy,(s)|dsdr + |a )
o 7 Jy, VTl oy ), Wl dsdr o

+ |as]

1 T 77 T 1 T
<—| |a —_— P(s)dsdr + |as — P(s)dsdr
|A1|(' L) T A o2l |5 J,, v

55_7_ T £ 1 T
ool [ W/ (s)dadr +fos] [ m/ w<s>dsdT+|a5|),
b7 [T by —r [T
Ko (Nun(t))] g/t m/to |Nun(s)|dsd7-+/t0 W/t 1O(Nup)(s)| ds dr
vy 1 1 ty o T TT
<[5 [, ey [ [ (o ) S [, vorasar

p(7) (1)
/ ¥(s)dsdr

+|a2|/ / P(s dsd7—|—|a3|/
+|a4|/ /w deT+|a5|>deT

B te—r [T sdr 1 t(t—T)(T—tQ) Tr_ sdr
‘/to o), VSR L TTm (' S w”d a
|
+ |as| \ ZTT)~/tO w(s)dsd7+|a3| / P(s)dsdr

—|—|a4|/ /w dsd7’+|a5|>d7

Since the functions «;., ¢ € L*([to, T], R), we get that ¢» € L([to, T],R). Further,

T
| Nunllz1 < / hp(t)] dt = x < oc.

It follows that Q(N(E)) and Kpg(N(E)) are bounded.
It is easy to see that {Q(Nuy)}52, is equicontinuous at a.e. t € [tg, T, so we only
show that {Kpo(Nu,)}o2, is equicontinuous at a.e. ¢ € [tg,T]. For any t1,t2 €
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[to, T] with t; < t2 one has
(3.10)  |Kpq(Nun(tr)) — Kpo(Nun(t2))| </t [(Kp(Nun))'(t)] dt
</1t2 /t% t:Nun(s)—(QNun)(s)dsdT dt
/t1 /to . |Nun(s)|dsd7'dt
/ / / [(QNuy)(s)|dsdr dt
to
/t1 /to to s)dsdr

|A1|/tl/to to(' il e w()dsdr

é‘_ T
+ |a2| ” p(,]_) w( )deT+ |Cl3| ' p(’T) “ w(s) dsdr
+ |aa| . o . w(s)| dsdr + |a5|) drdt.

Since ¢ € L'([to, T], R), thus (3.10) shows that { K p o(Nu,)}52, is equicontinuous
at a.e. t € [tg, T]. On the other hand,

(3.11) [Kpq(Nuy, (tl) — Kpg(Nu,(ts2))]

/ / [Nun(s) = (QNuy)(s)| ds dr
s ~/t W/ <w(s)+ _T/ W(s)dsdr
‘/ t(:w 8)dsdr +‘A1‘/to . 1/’(S)dsdT

‘/ " (s dsdT—f—‘—DdsdT
to to

(3.11) shows that {Kp g(Nu,) }22, is also equicontinuous at a.e. ¢t € [to,T]. Hence,

by the Arzela-Ascoli theorem, {QNu,}>2, and {Kpo(Nu,)} are compact on an
arbitrary bounded F C X, and the mapping N: X — Z is L-completely continuous.
O

Now we are ready to apply the coincidence degree theorem of Mawhin to give
sufficient conditions for the existence of at least one nontrivial solution to the prob-

lem (P).
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Theorem 3.1. Let (|c1] + |c2|(T — to) + ¢1 + max{(1, (2, G el < 1, let f:
[to, T] x R® — R satisfy the Carathéodory conditions, and let us assume:
(Hy) There exist functions «, 3,7,6 € L'[ty, T| and constants ¢; € |0, 1] (i = 1,2, 3)
such that for any (u,v,9) € R® and a.e. t € [tg,T], one of the following three
conditions is fulfilled:

(3.12) [t v, )| < a(®)|p] + BT + @)W + 6097 +6(1),
B13)  [f(t v, )| < (@)t + BE) W] + (B[] +0@)]9]% + 6(),
(3.14)  [f(t; v, D) < a(®)|pl™ + SOV +(@)]I] + 5[] + 6(2).

(Hz) There exists a constant M > 0 such that for any u € Dom L, if |p(t)u” (¢)| > M
for a.e. t € [to, T, then

al/t % /tT (f(s,u(s),u'(s), u"(s)) + q(s)u(s)) dsdr

T T / "
+ / p(7) / (F(s,u(s), v/ (5),u"(5)) + a(s)u(s)) ds dr

o p(T

Ee_ o 7
+a3/t 3 /t (f(s,u(s)ﬂ’(s),uu(s)) +q(s)u(s)) dsdr

s p(7)

E L ’ / "
o[ o [ o0 o) it 0,

(r

(H3) There exists a constant M > 0 such that for any w € R, if |w| < M, then we
have either

(3.15) —<a1 /TT_T/T(f(S,w,O,O)-FWQ(S))deT

to p(T) to

T T
—l—ag/ L/ (f(s,w,0,0) + wq(s))dsdr

55_7_ T
—|—a3/t0 o) /to (f(s,w,0,0) + wgq(s))dsdr

€ 1 T
+a4/ —/ (f(s,w,O,O)—l—wq(s))dsdT—i—a5) <0
to to

p(7)
w T —r T
(3.16) A_l(al/t z];(r) /t (f(s,w,0,0) + wq(s))dsdr

T 1 T
ton [ [ (F5.0.0,0) + wg(s) dsar
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3 E—r T
+ay / e / (f(5,,0,0) + wy(s)) ds dr

3

+a4/t:%/to (f(s,w,0,0)+wq(s))dsd7+a5) > 0.

s

Then for every q(t) € L'[tg, T], the problem (P) when
Se—1
(00 ) + i) —t0) 4 [ ST ar

§ T C
A((p(to)) ™) + ¢ / ]%@> —0

admits at least one nontrivial solution at resonance provided that

ol + 1Bl + (203)%2 |yl £y + (201)°2][0]| 1
1 — (Jex] + |ea| (T — to) + ¢1 4+ max{¢1, ¢, G}l e
ler] + |e2| (T — to) + ¢ + max{C1, (2, (3} '

Proof. The mapping L and N are defined by (3.1) and (3.2), respectively. We
note that L is a Fredholm mapping of index zero and NNV is L-completely continuous
by Lemma 3.1 and Lemma 3.3, respectively. Let

O ={u€eDomL\KerL: Lu= ANu for some X € ]0,1[}.

For u € Q4, we have u ¢ Ker L and Nu € ImL = Ker @, thus

oo [T [ u00 000+ afshuts) s

0 p(7) to

T T
o [ [ (7(su()(5) 0 (0) + a)u(e) dsdr

0 p(7) to

Ee_r [T
+as / [ a6 (6) + als)uls) dsr

0 p(7) to

g 1 T ) , .
+ a4 /to e /to (f(s,u(s),u'(s),u"(s)) + q(s)u(s))dsdr + a5 = 0.

It follows from condition (Hz) that there exists ¢ € [to, T] such that |p(t)u” (t)| < M.
Taking account of ftto (p(r)u (7)) dr = p(t)u” (t) — p(to)u” (to), one has

(317)  plto)lu" (to)] < Ip(Du" ()] + / (p(r)u" (7))’ dr

<M+ |[(pu”")||pr = M + || Lul|pr < M + || Nul 1.
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Also, for u € Qq, observe that (I — P)u € ImKp = Dom L N Ker P, hence by (3.17)
we can obtain

(3.18) (I = P)ul| = |[KpL(I — P)ul| = max{C1, C2, (3} || L(I — P)ul|r
= max{(1, G2, G3}[| Lu| 1+ < max{(1, (2, (3} Nul|z.

So combining (3.8), (3.9), (3.17) and (3.18), we have

lull < [[Pull + [[(I = Pull < |u(to)| + [u'(to)|(T — to)

T
/to %dr
< |exlp(to)|u”(to)| + (le2p(to)|u” (to)| + [es|)(T — to)

+ p(to)|u" (to)|¢1 + max{(1, (2, G| Nul| 12
< (Jea] + [e2] (T = to) + C1)p(to) [u” (o) | + max{C1, G2, G} Null 1 + |es|(T — to)
< (leal + le2|(T = to) + Q) (M + || Nul| 1) + max{C1, G2, GsHINull 1 + |es|(T — to)
< (len] + lea|(T = to) + G + max{(1, G2, (3 }) | NVul[ 1

+ (lea| + [e2[(T" = to) + C1)M + |es|(T — to)

< (lea] + le2l(T = to) + ¢ + max{C1, G2, (3})
T
X </ |f(s,u(s),u(s),u"(s))|ds + ||Q||L1||U||01>
to
+ (lea] + [e2|(T = to) + C1)M + [es| (T — to)
< (lea] + Je2|(T — to) + ¢ + max{¢1, (2, (3})

T
x ( (s u(s), o (), () ds + ||q||L1||u||)

to

+ p(to)u” (to)| + max{(1, (2, 3 }||Nul| 12

+ (Je1] + |ea|(T = to) + ()M + |es|(T — to),
hence,

|ex] + Jea|(T" — to) + G1 + max{Cy, G2, ¢3}
(lex| + [e2l(T' = to) + ¢1 + max{Cy, G2, G3}) [l gl 1

T
x / (s, u(s), o (s), u(s))| ds

(lea| + lea|(T — to) + G)M + |es|(T — to)
1= (lex| + [e2[(T — to) + C1 + max{C1, ¢z, G} llgl v

Jull < =
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If (3.12) holds, by (3.7), then

lea] + lea|(T' = to) + G + max{Gi, ¢2, (3}
1= (Jex] + [e2|(T" = to) + C1 + max{(1, (2, (3}l ¢]| 1
X (lledlrlluller + 181 L lullgy + vl e g + [0l ol lIE + 1161 21)
(lea| + leal(T = to) + Q)M + |es|(T — to)
1 — (ex] + [e2| (T = to) + ¢ + max{C1, (2, (3}l ¢| 1
le1| + [e2| (T — to) + ¢1 + max{(i, (2, (3}
S 1= (Jea| + e2(T = to) + G + max{C1, ¢2, G llgll 1
x ([ledlpflullor + 1B e llull gy + [yl La (bsllullcr + ba)=
+ 16122 (b1 l[ullor +b2)%* + (1€ 1)
(Je1| + [ea|(T = to) + C1)M + |es|(T = to)
1 — (Jex] + [e2| (T = to) + ¢ + max{(1, (2, (3}l ¢| 1
le1| + [e2| (T — to) + ¢1 + max{(i, (2, (3} (el [l e
S 1= (lex] + [eal(T = to) + ¢1 + max{¢1, G2, G} gl 21
+ 1Bl L llullgn + 2bs)= [yl o llulld + (261)%2 (0] 1 [Jullch
+ (2b2)° |7l 22 + (2b2)°* (|| L1 + (10][ 1)
(lex] + [e2| (T = to) + G)M + |es|(T — o)
L~ (lei] + leal(T —to) + G + max{Ci, G2, G })llgll 21

(3.19) flull <

Since €; € 10,1 (: = 1,2,3), u &€ Ker L, the rest of the proof is divided in two
cases.

Case 1. |ullgy, l[ullgy, [lullgh € ]1, luller[-

Case 2. ||ullgs, [ullgy, [lullgh € Jlluller, 1)

For Case 1, in view of |[ul|gy, [[ull&, lulldh < [|uller, (3.19) yields

le1] + [e2|(T = to) + ¢1 + max{¢i, G2, (3}
(lea| + le2[(T" = o) + ¢ + max{C1, ¢2, G }llgll e
x ((adlzr + 1Bl zr + (2b3)= [|7[[ 22 + (261)=* [0 ]| 1) |l o2
+ (264)* [l 22 + (2b2)°*[[0]| L2 + (€] 1)
(Jex] + |ea(T = to) + )M + |es|(T — to)
1—(ler] + [e2[(T = to) + ¢+ max{C1, ¢, G} lall oo

Jull < =

Noting that ||ul|cr < ||u||, we have

C1((2b4)2 ||yl r + (2b2)%2[|0]| L2 + 0] 1)
L=Ci(lleflzr + (1Bllzr + (2b3)=2][y[| 22 + (2b1)%2|[6]| £1)
Co
o P T PP W o P G 2 i PO

[lull <

+
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where

_ 1| + [e2|(T = to) + C1 + max{(1, (2, (3}
1 — (ex] + Je2| (T = to) 4+ ¢+ max{¢1, ¢2, G} |lall 2
(ler| + e2|(T = to) 4+ C1)M + |es|(T — to)
1 — (lex] + Je2| (T = to) 4+ ¢+ max{¢1, C2, 3} llall

CQ =

For Case 2, we get that the right hand side of (3.19) equals a constant, that is

lei| + |e2 (T —to) + ¢ + max{(1, (2, (3}
L= (Jer] + le2(T" = to) + ¢1 + max{¢1, C2, G}l gl 1
X ([lallzr + (18l + ((203)% + (2b4)2) [yl L + ((261)%* + (2b2)°*)[|6][ 2+ + [|€]| 1)
(lex] + [e2 (T = to) + G)M + |es|(T — to)
L= (le1] + fe2|(T — to) + C1 + max{C1, G2, G} gl

[[ull <

Thus for ¢; € ]0,1[ (i = 1,2,3) and u € 4 there exists M > 0 such that lu|l < M
when

el + 18l + (263)7 [l Lr + (201)7(|8]| 1

L — (lex] + |e2| (T = to) + G + max{¢y, ¢2, G3})llgll
ler] + |e2| (T — to) + ¢ + max{(1, (2, (3} ’

that is, €2 is bounded.
If (3.13) or (3.14) holds, we can argue in an analogous manner and derive the
desired conclusion.
Let
Oy ={ueKerL: NuelmL}

for u € Q. Taking u(t) = w (w € R), a.e. t € [ty,T], Nu € ImL = Ker @, we have
T T
T—-71 /
a1 — f(s,w,0,0) + wgq(s)) dsdr
/to p(T) to ( ( (

vao | o [ 706.0.0,0) (s asr

0 p(7) to

55_7_ T
tay / o / (f(5,,0,0) +wy(s)) ds dr

: .
+a4/t0 Z%T)~/to (f(s,w,0,0) 4+ wq(s))dsdr + a5 = 0,

since QNu = 0. From (Hj3) we know that |lu| = |e| < M, thus Qs is bounded.
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If (3.15) holds, then let
Qs={ueKerL: —AJu+ (1 =N (QNu)=0, Xe€][0,1]},

where J: Ker L — ImQ is a linear isomorphism given by J(k) = k for any k € R.
Since u(t) = k, thus

Me = (1= X\ (QNk) = (1=2) (a

T _ T
- 1/t T T/(f(s,k,O,O)—i—kq(s))dsdT

0 p(7) to

T T
—l—ag/ L/ (f(s,k,0,0) 4+ kq(s))dsdr

to (1) to

—|—a3/t0 G /to(f(s,k;,0,0)—i—k;q(s))dsdT

—l—a4/tg L/T(f(s,k,O,O)+kq(s))dsd7'+a5>.

0 p(7) to

m
MR

B

If A\ =1, then k = 0 and in the case A € [0, 1], if |k| < M, we have

Q—M a Tb ’ s s))dsdr
we =M= (1/ e /to(f(,k,o,owkq( ))dsd

T 1 T
—|—a2/t0 m/ (f(s,k,0,0) + kq(s))dsdr

to

£§—T T
—|—a3/t0 W/to (f(s,k,0,0) + kq(s))dsdr

+a4/:}%/T(f(s,k,O,O)+kq(s))dsd7+a5> <0,

to
which is a contradiction. Again, if (3.16) holds, then let
Qs ={ueKerL: AMu+ (1 —-X)(QNu)=0, X e [0,1]},
where J is as above, similarly to the above argument. Thus in either case ||u| =
|k| < M for any u € Q3, that is, Q3 is bounded.
3
Let Q be a bounded open subset of X such that |J ©; C Q. By Lemma 3.3, we
i=1

can check that Kp(I — Q)N: Q — X is compact, th;s N is L-compact on ).
Finally, we verify that the condition (3) of Theorem 2.1 is fulfilled. We define
a homotopy

H(u,\) = £XJu+ (1 — A)(QNu).
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According to the above argument, we have
H(u,\) #0, uwednKerlL,
thus, by the degree property of homotopy invariance, we obtain

deg(QNker, 2N Ker L,0) = deg(H(-,0),2 NKer L, 0)
=deg(H(-,1),Q2NKerL,0) = deg(+J,Q2NKerL,0) # 0.

Thus, the conditions of Theorem 2.1 are satisfied, that is, the operator equation
Lu = Nu admits at least one nontrivial solution in Dom L N Q. Therefore, the
problem (P) has at least one solution in C[tg, T O

4. APPLICATION

Consider the problem

(4.1) { (Pt ()" — q(t)u(t) + 3(O + u" ()u(t) + E(1 — ' (t)*) =0,
' m(u(0),u"(0)) = 0, n(u(1),u'(1)) =0, l(u(),u'(}),v"(3)) = 0.

The equation (4.1) is the well known Falkner-Skan equation [6], [11] when p(t) =1
and ¢(t) = 0, 0 < ¢t < 1, which describes a nonlinear one-dimensional third-order
boundary value problem, whose solutions are the similarity solutions of the two-
dimensional incompressible laminar boundary layer equations. When © = 1, it arises
in the study of two-dimensional incompressible viscous flow past a thin semiinfinite
flat plate =, 0 < = < 1. The special case Z = 0 is Blasius’s equation, in which the
wedge reduces to a flat plate. The special case Z = 1/2 is called Homann’s equation,
in which the wedge reduces to a flat plate. The special case = = 1 is called Hiemenz’s
equation. = > 0 corresponds to a flow toward the wedge, otherwise, to a flow away
from the wedge. When © # 1, taking © = =, we have a Blasius flow over a flat plate
with a sharp edge as E = 0; a flow over a wedge with half angle 6, = E/(E41),
0 < 9% < 7/2 as 0 < E < 1; a Hiemenz flow toward a plane stagnation point as
= = 1; a flow into a corner with 9% > /2 as 1 < E < 2; no corresponding simple
ideal flow as 2 < =.

Set ¢1 = ¢o = 1/50, p(t) = 10 — x, ¢(t) = 1/12. Tt is easy to calculate that ¢; ~
0.051, {2 ~ 0.105, (3 = 1/9, by =~ 5.565, by =~ 6.426. Let r = sup{||u||: p € E} <1,

380



so u, v, < 1, and by the Young inequality (p — ¢ inequality), we have

1 -
|f(t v, 9)| = 5(@+1)m9+:(1—1/2)
1
:5(9+1)|m9|+5(u2+1)
1 32 1 s, 20 32 1o s =
<O+ Dp)l*+ O+ DI° + zEv[* + Ev|° + E
3 6 3 3
1 1 2 1
<30+ )| + SEll + §E|y|3/7 +50+ DS+ =,

where f(t,u,v,9) satisfies (3.13). Taking © = 1, = = 1/2, we consider the well-
known Homann’s equation, in which the wedge reduces to a flat plate. Further, we
have

ladles + 1Bl + (203)72 [|yllr + (2b1)% (6] 1
2 1 1 1 17
=2 4 24 2(12.853)37T + Z(11.129)%/5 ~ —
576" 3( I 3( ) 6
L — (lex] + |e2|(T = to) + G + max{(1, (2, G3}) gl

lex] 4 [e2|(T' — to) + ¢ + max{(i, 2, (3}
1— (L +0.051+31)L
— (125 * +19)12 ~ 4.855.

= +0.051 + &

Then all hypotheses of Theorem 3.1 hold. Hence, the problem (4.1) when

l(~(1)+3~(1)+(3 371 40) ~(1)4_1404) 0
— —n|-— - — —In— — n—,—c) =
"\10) T4"\10) TN\g T g Mar) "\10) T3 e

admits at least one nontrivial solution at resonance.
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