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POWER-MOMENTS OF SL3(Z) KLOOSTERMAN SUMS
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Abstract. Classical Kloosterman sums have a prominent role in the study of automorphic
forms on GL2 and further they have numerous applications in analytic number theory.
In recent years, various problems in analytic theory of automorphic forms on GL3 have
been considered, in which analogous GL3-Kloosterman sums (related to the corresponding
Bruhat decomposition) appear. In this note we investigate the first four power-moments
of the Kloosterman sums associated with the group SL3(Z). We give formulas for the first
three moments and a nontrivial bound for the fourth.
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1. Introduction

The classical Kloosterman sum is defined for integers a, b and a positive integer c

by

(1.1) S(a, b; c) =
∑∗

x (mod c)

e
(ax+ bx̄

c

)
,

where
∑∗
means that the summation is restricted to the residue classes x with

(x, c) = 1, xx̄ ≡ 1 (mod c) and e(z) = e2πiz.

These sums first appeared in Kloosterman’s paper [5], in his application of the

circle method to representations of integers by quadratic forms in four variables.

More importantly, they are related to Fourier coefficients of automorphic forms on

GL2 ([4], chapter 3).

This work was partially supported by Ministry of Science, Republic of Serbia, Project
no. 174008.
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One of the first results about classical Kloosterman sums was the evaluation of

the first few power-moments

(1.2) Vk(p) =
∑∗

a (mod p)

S(a, 1; p)k,

for Kloosterman sums to prime modulus p. The case of prime modulus is the key

for understanding of these sums because of the twisted multiplicativity formula

S(a, b; qr) = S(q̄a, q̄b; r)S(r̄a, r̄b; q), valid for (q, r) = 1,

where q̄q ≡ 1 (mod r), r̄r ≡ 1 (mod q) and the following exact evaluation in the case

when the modulus is a prime power pβ , β > 2:

S(a, a; pβ) = 2
( a

pβ

)
pβ/2ℜεpβe

(2a

pβ

)
,

where (p, 2a) = 1, (·/pβ) is the Legendre-Jacobi symbol and εc = 1 or i, according

to whether c ≡ 1 or −1 (mod 4).

We have (e.g. see Chapter 4 in [4])

V1(p) = 1,(1.3)

V2(p) = p2 − p− 1,(1.4)

V3(p) =
(−3

p

)
p2 + 2p+ 1,(1.5)

V4(p) = 2p3 − 3p2 − 3p− 1.(1.6)

In particular, by dropping all but one term in the last equality, one obtains

|S(a, b; p)| < 2p3/4 for (ab, p) = 1.

This bound was a crucial ingredient in [5].

1.1. SL3(Z) Kloosterman sums. Conceptually, the classical SL2(Z)-Klooster-

man sums (1.1) are related to the Bruhat decomposition for GL2(R), as explained

for example in [3], page 340.

The Weyl group W3 for GL3(R) consists of the following six elements:

w1 =




1 0 0

0 1 0

0 0 1



 , w2 =




0 1 0

1 0 0

0 0 1



 , w3 =




1 0 0

0 0 1

0 1 0



 ,

w4 =




0 1 0

0 0 1

1 0 0



 , w5 =




0 0 1

1 0 0

0 1 0



 , w6 =




0 0 1

0 1 0

1 0 0




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and then the Bruhat decomposition is given by

GL3(R) =
⊔

wi∈W3

Gwi
, with Gwi

= U3wi∆U3,

where

U3 =








1 ∗ ∗

0 1 ∗

0 0 1






 < GL3(R), ∆ =








∗ 0 0

0 ∗ 0

0 0 ∗






 < GL3(R)

are the minimal parabolic and diagonal subgroups of GL3(R).

Let Γ = SL3(Z) and Γ∞ = Γ∩U3. For any w ∈ W3, let Γw = (w−1 ·Γt
∞ ·w)∩Γ∞.

For two non-zero integers D1, D2 we denote

d =




1/D2 0

D2/D1 0

0 0 D1



 ∈ ∆.

Then, for any two characters ψ1 and ψ2 of the group U3, the SL3(Z)-Kloosterman

sum associated with d and a Weyl group element w is defined by

Sw(ψ1, ψ2; d) =
∑

γ∈Γ∞\Γ∩Gw/Γw

γ=b1wdb2

ψ1(b1)ψ2(b2),

provided it is independent of the choice of Bruhat decomposition for matrices γ and

otherwise it is set to be zero.

These exponential sums are extremely important in the spectral theory of auto-

morphic forms for SL3(Z) since all the six types of Kloosterman sums Swi
(ψ1, ψ2; d),

i = 1, . . . , 6 appear in the expressions for Fourier-Whittaker coefficients of SL3(Z)-

Poincaré series and consequently, they all appear in the trace formula of Kuznetsov

type for the group SL3(Z) (cf. [3], Chapter 11).

For a pair (m1,m2) ∈ Z2, we denote by ψ(m1,m2) the following character on U3:

ψ(m1,m2) :




1 u2 u3

0 1 u1

0 0 0


 7→ e(m1u1 +m2u2),

and in this notation we can write Sw(m1,m2, n1, n2; d) for Sw(ψ(m1,m2), ψ(n1,n2); d).

It is shown in [2] that the sums Swi
(m1,m2, n1, n2; d) for i = 1, 2, 3 are “degener-

ate” (i.e. trivial or coincide with the SL2(Z)-Kloosterman sums), while Sw6
and Sw4

,

Sw5
are new exponential sums.
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The sums Sw6
(m1,m2, n1, n2; d), corresponding to the so called long element

w6, can be given explicitly as follows (see [2] or [3]): for m1,m2, n1, n2 ∈ Z and

D1, D2 ∈ N,

S(m1,m2, n1, n2;D1, D2)

=
∑∑ ∑ ∑

B1,C1 (mod D1)
B2,C2 (mod D2)

(B1,C1,D1)=(B2,C2,D2)=1
D1C2+B1B2+C1D2≡0 (mod D1D2)

e
(m1B1 + n1(Y1D2 − Z1B2)

D1

)

× e
(m2B2 + n2(Y2D1 − Z2B1)

D2

)
,

where Y1, Z1, Y2, Z2 are chosen so that

Y1B1 + Z1C1 ≡ 1 (mod D1), Y2B2 + Z2C2 ≡ 1 (mod D2).

Some of their properties are proved in [2], Section 4. For example, if p1p2 ≡ q1q2 ≡

1 (mod D1D2) then we have

(1.7) S(m1p1, p2m2, n1q1, q2n2;D1, D2) = S(m1,m2, n1, n2;D1, D2).

Also we have

S(m1,m2, n1, n2;D1D
′
1, D2D

′
2)

= S(D′
1

2
D′

2m1, D′
2

2
D′

1m2, n1, n2;D1, D2)S(D1
2
D2m1, D2

2
D1m2, n1, n2;D

′
1, D

′
2),

where

(D1D2, D
′
1D

′
2) = 1,

and Di, D′
i, i = 1, 2 are given by

D1D1 ≡ D2D2 ≡ 1 (mod D′
1D

′
2), D′

1D
′
1 ≡ D′

2D
′
2 ≡ 1 (mod D1D2).

In particular, for (D1, D2) = 1 we have

(1.8) S(m1,m2, n1, n2;D1, D2) = S(D2m1, n1;D1)S(D1m2, n2;D2).

The SL3(Z)-Kloosterman sums corresponding to elements w4 and w5 are both of

the following form (see [2]):

S̃(m1, n1, n2;D1, D2) =
∑

C1 (mod D1)
(C1,D1)=1

∑

C2 (mod D2)
(C2,D2/D1)=1

e
(m1C1 + n1C1C2

D1

)
e
( n2C2

D2/D1

)
,

where m1, n1, n2 ∈ Z, and D1, D2 ∈ N such that D1 | D2.
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For p1q1 ≡ 1 (mod D1) and p2q2 ≡ 1 (mod D2) we have

(1.9) S̃(m1p1, q1n1p2, q2n2;D1, D2) = S̃(m1, n1, n2;D1, D2).

Also for (D2, D
′
2) = 1 we have

(1.10) S̃(m1, n1, n2;D1D
′
1, D2D

′
2)

= S̃(D′
1m1, D

′
2n1, D′

2

2
n2;D1, D2)S̃(D1m1, D2n1, D2

2
n2;D

′
1, D

′
2).

For pl ∤ n1 we have S̃(m1, n1, n2; p
l, pl) = 0. Further, for 1 6 l < k we have also

(1.11) S̃(m1, n1, n2; p
l, pk) = 0,

unless (i) k < 2l and p2l−k|n1, (ii) k = 2l or (iii) k > 2l and pk−2l | n2.

1.2. Main results. For m1, n2 ∈ Z with (m1n2, D1D2) = 1, from (1.7), we see

that

S(m1,m2, n1, n2;D1, D2) = S(1,m1m2, n1n2, 1;D1, D2),

so it is natural to consider the following analogue of (1.2) for a positive integer k and

two different prime numbers p and q:

Uk(p, q) =
∑∗

a (mod p)

∑∗

b (mod p)

S(1, a, b, 1; p, q)k.

But using (1.8) we get immediately

Uk(p, q) =
∑∗

a (mod p)

∑∗

b (mod p)

S(q, b; p)kS(pa, 1, q)k = Vk(p)Vk(q).

Hence, there is nothing new and the formula for Uk(p, q) for k = 1, 2, 3, 4 follows

from (1.3)–(1.6).

The case of equal prime moduli is also trivial, since there is an explicit formula

for such sums, see Property 4.10 in [2]. For example, if (p,m1m2n1n2) = 1, then

S(m1,m2, n1, n2; p, p) = p+ 1.

Similarly, because of the twisted multiplicativity (1.10) the exponential sums

S̃(m1, n1, n2;D1, D2) corresponding to Weyl group elements w4 and w5 reduce

to those with moduli of the form (D1, D2) = (pl, pk) for prime numbers p.

Then from (1.11) we see that we do not have an explicit evaluation of the sums
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S̃(m1, n1, n2; p, p
2) and hence it is interesting to study them on average by calculating

their moments.

Explicitly, these Kloosterman sums are given by

(1.12) S̃(m1, n1, n2; p, p
2) = p

∑∗

x (mod p)

∑∗

y (mod p)

e
(m1x+ n1x̄y + n2y

p

)
.

For (m1n1n2, p) = 1, from (1.9) we have

(1.13) S̃(m1, n1, n2; p, p
2) = S̃(m1n1n2, 1, 1; p, p2)

so it is natural to consider the power-moments

Wk(p) :=
∑∗

a (mod p)

S̃(a, 1, 1; p, p2)k,

which are analogous to the moments of classical Kloosterman sums (1.2).

In [6], Larsen showed, using a theorem of Deligne, that the following bound holds

for all a, p ∤ a:

(1.14) |S̃(a, 1, 1; p, p2)| 6 3p2.

Also, it should be noted that the sums S̃(a, 1, 1; p, p2) are not real in general, in

contrast to the case of classical Kloosterman sums (1.1).

We compute the first three power-moments of the sums S̃(a, 1, 1; p, p2) in the

following theorems:

Theorem 1.1. For a prime number p > 2 we have

(1.15) W1(p) = −p and W2(p) = −p4 − p3 − p2,

while

(1.16)
∑∗

a (mod p)

|S̃(a, 1, 1; p, p2)|2 = p5 − p4 − p3 − p2.
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Theorem 1.2. For a prime number p > 2 we have

W3(p) = p7 − p6 −
(−3

p

)
p6 − 3p5 − 2p4 − p3.

The exact evaluation of the fourth power-moment W4(p) reduces to counting the

number of points on the variety in (F×
p )8 given by the equations

x1 + x2 + x3 + x4 ≡ 0 (mod p),

y1 + y2 + y3 + y4 ≡ 0 (mod p),

x1y1 + x2y2 + x3y3 + x4y4 ≡ 0 (mod p).

The number of points on this variety can be expressed as a sum of Jacobsthal sums

over Fp, associated with certain polynomials of degree 4, but we are not aware of

any explicit evaluations of such sums, so this remains as an open problem.

On the other hand, it follows trivially from Larsen’s bound (1.14) that

W4(p) ≪ p9.

It is interesting to note that by Theorem 1.2, the analogous trivial bound for W3(p)

is of the true order of magnitude, i.e. curiously there is no cancelation in the sum∑∗

a(p)

S̃(a, 1, 1; p, p2)3.

Therefore, it is natural at least to ask if there is some cancelation in the fourth mo-

mentW4(p). An answer in this direction can be given using the work of A. Adolphson

and S. Sperber from [1]:

Theorem 1.3. For a prime number p, we have

(1.17) W4(p) ≪ p17/2.

2. Proof of Theorem 1.1

For the first moment, since S̃(0, 1, 1; p, p2) = p, we have trivially, after completion

to all residues modulo p,

W1(p) =
∑∗

a (mod p)

S̃(a, 1, 1; p, p2) =
∑

a (mod p)

S̃(a, 1, 1; p, p2) − S̃(0, 1, 1; p, p2)

= p
∑∗

x (mod p)

∑∗

y (mod p)

e
( x̄y + y

p

) ∑

a (mod p)

e
(ax
p

)
− p = −p.
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For the second moment we calculate similarly

W2(p) =
∑

a (mod p)

S̃(a, 1, 1; p, p2)2 − p2

= −p2 + p2
∑∗

x1,x2 (mod p)
y1,y2 (mod p)

e
(x1y1 + x2y2 + y1 + y2

p

) ∑

a (mod p)

e
(a(x1 + x2)

p

)

= −p2 + p3
∑∗

y1,y2 (mod p)

e
(y1 + y2

p

) ∑∗

x (mod p)

e
(x(y1 − y2)

p

)

= −p2 − p3
∑∗

y1,y2 (mod p)

e
(y1 + y2

p

)
+ p4

∑∗

y (mod p)

e
(2y

p

)

= −p4 − p3 − p2.

In the same manner one can get
∑∗

a (mod p)

|S̃(a, 1, 1; p, p2)|2 = p5 − p4 − p3 − p2. �

3. The third power-moment W3(p) and proof of Theorem 1.2

We start by completing the sum:

∑

a (mod p)

S̃(a, 1, 1; p, p2)3 = W3(p) + S̃(0, 1, 1; p, p2)3 = W3(p) + p3.

Hence we have

W3(p) + p3 = p3
∑

a (mod p)

[ ∑∗

x (mod p)

∑∗

y (mod p)

e
(ax+ x̄y + y

p

)]3

= p3
∑∗

x1,x2,x3 (mod p)

∑∗

y1,y2,y3 (mod p)

e
(x1y1 + x2y2 + x3y3 + y1 + y2 + y3

p

)

×
∑

a (mod p)

e
(a(x1 + x2 + x3)

p

)

= p4
∑∗

x1,x2,x3 (mod p)
x1+x2+x3≡0(p)

∑∗

y1,y2,y3 (mod p)

e
(x1y1 + x2y2 + x3y3 + y1 + y2 + y3

p

)
.

Here we change the variables by writing

x1 ≡ x, x2 ≡ xz and x3 ≡ −x(1 + z),
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with the conditions x 6= 0 and z 6= 0,−1. We get further that W3(p) + p3 is equal to

p4
∑∗

x (mod p)

∑

z (mod p)
z 6=0,−1

∑∗

y1,y2,y3 (mod p)

e
(xy1 + x zy2 − x̄ 1 + z y3 + y1 + y2 + y3

p

)

= p4
∑

z (mod p)
z 6=0,−1

∑∗

y1,y2,y3 (mod p)

e
(y1 + y2 + y3

p

) ∑∗

x (mod p)

e
(x(y1 + zy2 − 1 + z y3)

p

)

= p5
∑

z (mod p)
z 6=0,−1

∑∗

y1,y2,y3 (mod p)

y1+zy2−1+z y3≡0 (mod p)

e
(y1 + y2 + y3

p

)

− p4
∑

z (mod p)
z 6=0,−1

∑∗

y1,y2,y3 (mod p)

e
(y1 + y2 + y3

p

)
.

The contribution of the second line is p4(p − 2), while in the first double sum we

introduce the change of variables

y1 = y, y2 = yu, y3 = yv,

where y, u, v 6= 0 (mod p) and 1 + zu − 1 + zv ≡ 0 (mod p). Therefore, the inner

summation becomes

∑∗

y1,y2,y3 (mod p)

y1+zy2−1+z y3≡0 (mod p)

e
(y1 + y2 + y3

p

)
=

∑∗

y,u,v (mod p)

1+zu−1+zv≡0 (mod p)

e
(y(1 + ū+ v)

p

)

= p
∑∗

u,v (mod p)

1+zu−1+zv≡0 (mod p)
1+ū+v≡0 (mod p)

1 −
∑∗

u,v (mod p)

1+zu−1+zv≡0 (mod p)

1.

In the last summation v is uniquely determined by a pair z, u, with the only constraint

being u 6= −z (mod p), since v 6= 0 (mod p). Therefore, for every admissible z, the

last sum is p− 2 and we obtain

(3.1) W3(p) = −p3 + p4(p− 2) − p5(p− 2)2 + p6
∑

z (mod p)
z 6=0,−1

∑∗

u,v (mod p)

1+zu−1+zv≡0 (mod p)
1+ū+v≡0 (mod p)

1.

The conditions in the last summation are equivalent to

u+ v + uv ≡ 0 (mod p)
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and

0 ≡ z2 + (1 + u− v)z + u

≡ z2 + (1 + u− v)z − v(u+ 1) ≡ (z − v)(z + u+ 1) (mod p).

If here v = z, we must have u = −z1 + z, giving p− 2 solutions. If z = −u− 1, we

must have u 6= 0,−1 (mod p) and then v = −z(1+z), giving another p−2 solutions.

These two sets of solutions intersect if and only if

z2 + z + 1 ≡ 0 (mod p)

is solvable, in which case there are 2 elements in the intersection. Therefore the

double sum in (3.1) is equal to 2(p − 2) − (1 + (−3/p)) = 2p − 5 − (−3/p), where

(·/p) is the Legendre symbol. This proves the theorem. �

4. The fourth power-moment W4(p) and proof of Theorem 1.3

Let us denote by x the vector (x1, x2, x3, x4, y1, y2, y3, y4, a) ∈ (F∗
p)

9. Then from

(1.12) we have that the fourth moment of S̃(a, 1, 1; p, p2) is equal to

W4(p) = p4
∑

x∈(F∗

p)9

ψ(g(x)),

where ψ(y) := e(y/p) is a nontrivial additive character of Fp and

g(x) = a(x1 + x2 + x3 + x4) +
y1
x1

+
y2
x2

+
y3
x3

+
y4
x4

+
1

y1
+

1

y2
+

1

y3
+

1

y4

is a regular function on (F∗
p)

9.

After the change of variables, axi 7→ xi, 1/yi 7→ yi, for i = 1, 2, 3, 4, we get that

W4(p) = p4
∑

x∈(F∗

p)9

ψ(f(x)),

where

(4.1) f(x) = x1 + x2 + x3 + x4 + y1 + y2 + y3 + y4 +
a

x1y1
+

a

x2y2
+

a

x3y3
+

a

x4y4
.

In the general situation, let us denote an Fp-regular function on the torus (F∗
p)

n

by

f(x) =
∑

j∈J

ajx
j ∈ Fp[x1, x2, . . . , xn, (x1, . . . , xn)−1],
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where x = (x1, x2, . . . , xn), xj = xj1
1 x

j2
2 . . . xjn

n and the sum is over a finite subset J

of Zn. Then the Newton polyhedron ∆(f) of f(x) is defined as the convex hull in Rn

of J ∪ {(0, 0, . . . , 0)}.

With any face (of any dimension) σ of ∆(f) one associates the corresponding

Laurent polynomial

fσ =
∑

j∈σ∩J

ajx
j .

The function f is said to be nondegenerate with respect to its Newton polyhedron

∆(f), if for every face σ of ∆(f), not containing the origin, the partial derivatives

∂fσ

∂x1
,
∂fσ

∂x2
, . . . ,

∂fσ

∂xn

have no common zero in (F
∗

p)
n, where Fp is the algebraic closure of Fp. Then the

following holds:

Theorem 4.1 (Adolphson, Sperber, [1]). For a given n-dimensional polyhedron

∆ in Rn there is a set S∆ which can be effectively determined and which consists of

all but finitely many prime numbers, such that for all p ∈ S∆ and for any regular

function

f ∈ Fp[x1, x2, . . . , xn, (x1, . . . , xn)−1]

with ∆(f) = ∆ which is nondegenerate with respect to ∆ we have

(4.2)

∣∣∣∣
∑

x∈(F∗

p)n

ψ(f(x))

∣∣∣∣ 6 n!V (f)pn/2,

where V (f) denotes the volume of ∆(f).

The bound (1.17) will follow immediately from this theorem, if we show that our

particular function (4.1) is nondegenerate.

For any face σ of ∆(f) for which the corresponding Laurent polynomial fσ has at

most two of the terms xi, yi, or ax
−1
i y−1

i for some i = 1, 2, 3, 4, the nondegeneracy

condition is trivially satisfied.

Therefore, the only problem can occur if fσ, for some face σ, is of the form

∑

i

(
xi + yi +

a

xiyi

)
,

where i runs over some subset of {1, 2, 3, 4}.

If fσ = xi + yi + a/xiyi, then ∂fσ/∂a 6= 0 everywhere on (F
∗

p)
9.
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If fσ is of the form
2∑

i=1

(xi + yi + a/xiyi), from

∂fσ

∂x1
=
∂fσ

∂x2
=
∂fσ

∂y1
=
∂fσ

∂y2
=
∂fσ

∂a
= 0,

one would get first that x1 = y1, x2 = y2 and then also that x
−2
1 + x−2

2 = 0 and

x3
1 = x3

2 (= a). But the last two equations have no common solutions in (F
∗

p)
2, if p

is odd.

If fσ =
4∑

i=1

(xi + yi + a/xiyi), the system

∂fσ

∂x1
= . . . =

∂fσ

∂x4
=
∂fσ

∂y1
= . . . =

∂fσ

∂y4
=
∂fσ

∂a
= 0

leads to xi = yi for i = 1, . . . , 4 and then also to x3
1 = x3

2 = x3
3 = x3

4 (= a) and

x−2
1 + x−2

2 + x−2
3 + x−2

4 = 0. This gives the equation

1 +
(x1

x2

)2

+
(x1

x3

)2

+
(x1

x4

)2

= 0,

where all x1/x2, x1/x3, x1/x4 are the cube roots of unity in Fp. By checking all the

cases, this has no solutions for all odd primes p 6= 7.

In the remaining case, when fσ is of the form

(4.3) fσ =
3∑

i=1

(
xi + yi +

a

xiyi

)
,

the corresponding system of equations actually has solutions on the torus (F
∗

p)
9. But

in this case, σ (that is, the convex hull of the exponents of all monomials occurring

in fσ) is not a face of the polyhedron ∆(f)!

To see this, let us denote by j1, . . . , j4, k1, . . . , k4, l the coordinates in the 9-

dimensional space in which the Newton polyhedron ∆(f) is defined. That is, with

a monomial xj1
1 . . . xj4

4 y
k1

1 . . . yk4

4 al we associate the lattice point (j1, . . . , j4, k1, . . . ,

k4, l) in Z
9. Then all the exponents of Laurent polynomial (4.1) lie on the hyperplane

j1 + j2 + j3 + j4 + k1 + k2 + k3 + k4 + 3l = 1

in this 9-space.

The key remark (and the author is grateful to A.Adolphson for pointing out this

fact) is that this implies that the faces of ∆(f) not containing the origin (which are
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the only faces we need to consider) are exactly the intersections of this hyperplane

with the faces of ∆(f) that do contain the origin.

An arbitrary hyperplane containing the origin is of the form

A1j1 +A2j2 +A3j3 +A4j4 +B1k1 +B2k2 +B3k3 +B4k4 + Cl = 0,

where A1, . . . , A4, B1, . . . , B4, C are real constants. Let us suppose that this hyper-

plane contains the lattice points corresponding to the exponents of the monomials

in (4.3). This implies first that A1 = A2 = A3 = B1 = B2 = B3 = 0 and then

further that C = 0. Therefore, the only hyperplanes through the origin containing

the lattice points corresponding to the monomials from (4.3) will have the form

A4j4 +B4k4 = 0.

But no such hyperplane can be the support of a face of the Newton polyhedron

∆(f). Namely, if A4 and B4 are not both zero, then A4j4 +B4k4 will be positive on

one of the lattice points corresponding to the three monomials x4, y4 and ax
−1
4 y−1

4 ,

and at the same time, negative on another one of those lattice points. This means

that there are vertices of the Newton polyhedron ∆(f) which lie on opposite sides

of this hyperplane. Hence, (4.3) cannot correspond to a face of ∆(f) not containing

the origin, and (4.1) is nondegenerate. �
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