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Yongqiang Fu, Binlin Zhang, Harbin
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Abstract. In this paper we consider the following Dirichlet problem for elliptic systems:

DA(x, u(x), Du(x)) = B(x, u(x), Du(x)), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where D is a Dirac operator in Euclidean space, u(x) is defined in a bounded Lipschitz
domain Ω in R

n and takes value in Clifford algebras. We first introduce variable exponent
Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and
the related operator theory in these spaces. Using the Galerkin method, we obtain the
existence of weak solutions to the scalar part of the above-mentioned systems in the space

W
1,p(x)
0 (Ω,Cℓn) under appropriate assumptions.
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1. Introduction

Since O.Kováčik and J.Rákosník first discussed the Lp(x) space andW k,p(x) space

in [24], many results have been obtained concerning these kinds of variable exponent

spaces, see for example [7], [14], [11], [12] and references therein. In [30] M.Růžička

presented the mathematical theory for the application of variable exponent spaces

in electrorheological fluids. For an overview of variable exponent spaces with various

applications to differential equations we refer to [22] and the references quoted there.

Clifford algebras were introduced by W.K.Clifford as geometric algebras in 1878,

which are a generalization of the complex numbers, the quaternions, and the exterior
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algebras, see [17]. Clifford algebras are playing a major role in quantum computing

and the design of quantum computers, see [1]. As an active branch of mathematics

over the past 40 years, Clifford analysis has usually studied the solutions of the Dirac

equation for functions defined on domains in the Euclidean space and taking value

in Clifford algebras, see [6], [18]–[21]. In [8] the authors gave in detail an overview

of the intrinsic value and usefulness of Clifford algebras and Clifford analysis for

mathematical physics.

In [27], [28] C.A.Nolder first introduced A-Dirac equations and developed tools

for the study of solutions to nonlinear A-Dirac equations in the space W 1,p
loc (Ω,Cℓn).

Inspired by his papers, we are working to study the existence of weak solutions for A-

Dirac equations. Also motivated by [15], we are interested in the following Dirichlet

problem in the setting of Clifford algebra:

DA(x, u(x), Du(x)) = B(x, u(x), Du(x)), x ∈ Ω(1.1)

u(x) = 0, x ∈ ∂Ω(1.2)

where Ω ⊂ R
n is a bounded Lipschitz domain, u ∈ Cℓn and A : Ω×Cℓn×Cℓn → Cℓn,

B : Ω × Cℓn × Cℓn → Cℓn satisfy the following conditions:

(H1) A(x, s, ξ) and B(x, s, ξ) are measurable with respect to x ∈ Ω for all (s, ξ) ∈
Cℓn × Cℓn and continuous with respect to (s, ξ) for a.e. x ∈ Ω.

(H2) |A(x, s, ξ)| 6 C0|ξ|p(x)−1+C1|s|p(x)−1+G(x), where G ∈ Lp′(x)(Ω), C0, C1 > 0.

(H3) |B(x, s, ξ)| 6 C̃0|ξ|p(x)−1+C̃1|s|p(x)−1+G̃(x), where G̃ ∈ Lp′(x)(Ω), C̃0, C̃1 > 0

and small.

(H4) [A(x, s, ξ)ξ]0 > C2|ξ|p(x) + C3|s|p(x) + h(x), where h ∈ L1(Ω), C2, C3 > 0.

(H5) For almost every x0 ∈ Ω, s0 ∈ Cℓn, the mapping ξ 7→ A(x0, s0, ξ) satisfies
∫

Ω̃

[A(x0, s0, ξ0 +Dz(x))Dz(x)]0 > C4

∫

Ω̃

|Dz(x)|p(x) dx

for each ξ0 ∈ Cℓn, Ω̃ ⊂ Ω, z ∈ C1
0 (Ω̃,Cℓn), where C4 > 0 is a constant. Here

p′(x) is the conjugate function of p(x).

Throughout this paper we suppose

(1.3) p ∈ P log(Ω) and 1 < p− =: inf
x∈Ω

p(x) 6 p(x) 6 sup
x∈Ω

p(x) := p+ <∞.

This paper is organized as follows. In Section 2, we will recall some basic knowledge

of Clifford algebras and variable exponent spaces of Clifford valued functions, then

discuss the properties of such spaces, which will be needed later. In Section 3, we

will prove the existence of weak solutions to the scalar part of the above equations

in the space W
1,p(x)
0 (Ω,Cℓn).
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2. Preliminaries

First, we recall some related notions and results from Clifford algebras. For a de-

tailed account we refer to [1], [2], [6], [18]–[21], [27]–[29], [31].

Let Cℓn be the real universal Clifford algebra over R
n, then

Cℓn = span{e0, e1, e2, . . . , en, e1e2, . . . , en−1en, . . . , e1e2 . . . en}

where e0 = 1 (the identity element in R
n), {e1, e2, . . . , en} is an orthonormal basis

of Rn with the relation eiej + ejei = −2δij. Thus the dimension of Cℓn is 2n. For

I = {i1, . . . , ir} ⊂ {1, . . . , n} with 1 6 i1 < i2 < . . . < in 6 n, put eI = ei1ei2 . . . eir
,

while for I = ∅, e∅ = e0. For 0 6 r 6 n fixed, the space Cℓrn is defined by

Cℓrn = span{eI : |I| := card (I) = r}.

The Clifford algebra Cℓn is a graded algebra

Cℓn =
⊕

r

Cℓrn.

Any element a ∈ Cℓn may thus be written in a unique way as

a = [a]0 + [a]1 + . . .+ [a]n

where [ ]r : Cℓn → Cℓrn denotes the projection of Cℓn onto Cℓrn. It is customary to

identify R with Cℓ0n and identify R
n with Cℓ1n. For u ∈ Cℓn, we know that [u]0

denotes the scalar part of u, that is the coefficient of the element e0. We define the

Clifford conjugation as follows:

(ei1ei2 . . . eir
) = (−1)r(r+1)/2ei1ei2 . . . eir

.

For A ∈ Cℓn, B ∈ Cℓn, we have

AB = B̄Ā, ¯̄A = Ā.

We denote

(A,B) = [ĀB]0.

Then an inner product is thus obtained, giving rise to the norm | · | on Cℓn given by

|A|2 = [ĀA]0.
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From [19], we know that this norm is submultiplicative:

(2.1) |AB| 6 C5|A||B|

where C5 is a positive constant depending only on n and not greater than 2n/2.

Throughout, let Ω ⊂ R
n be a bounded Lipschitz domain. A Clifford-valued func-

tion u : Ω → Cℓn can be written as u =
∑
I

uIeI , where the coefficients uI : Ω → R

are real valued functions.

The Dirac operator on the Euclidean space used here is

D =

n∑

j=1

ej
∂

∂xj
=

n∑

j=1

ej∂j .

If u is a C1 real-valued function defined on a domain Ω in R
n, then Du = ∂u =

(∂1u, ∂2u, . . . , ∂nu), where ∂ is the generalized derivative operator. A function is

left monogenic if it satisfies the equation Du(x) = 0 for each x ∈ Ω. A similar

definition can be given for right monogenic functions. An important example of

a left monogenic function is the generalized Cauchy kernel

G(x) = − 1

ωn

x

|x|n ,

where ωn denotes the surface area of the unit ball in R
n. This function is a funda-

mental solution of the Dirac operator. Basic properties of left monogenic functions

one can find in [18], [19].

Next we recall some basic properties of variable exponent spaces which will be

used later. For the details see [7], [24].

Let P (Ω) be the set of all Lebesgue measurable functions p : Ω → (1,∞). Given

p ∈ P (Ω) we define the conjugate function p′(x) ∈ P (Ω) by

p′(x) =
p(x)

p(x) − 1
, ∀x ∈ Ω.

Definition 2.1 (see [7]). A function a : Ω → R is globally log-Hölder continuous

in Ω if there exist Ci > 0 (i = 1, 2) and a∞ ∈ R
n such that

|a(x) − a(y)| 6
C1

log (e + 1/|x− y|) , |a(x) − a∞| 6
C2

log (e + |x|)

hold for all x, y ∈ Ω. We define the class of variable exponents

P log(Ω) =
{
p ∈ P (Ω):

1

p
is globally log-Hölder continuous

}
.
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Definition 2.2 (see [11], [24]). We define the variable exponent Lebesgue spaces

Lp(x)(Ω) by

Lp(x)(Ω) =

{
u ∈ P (Ω):

∫

Ω

|u|p(x) dx <∞
}

with the norm

‖u‖Lp(x)(Ω) = inf

{
t > 0:

∫

Ω

∣∣∣
u

t

∣∣∣
p(x)

dx 6 1

}
.

We define the Sobolev space W k,p(x)(Ω) by

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω): |∂αu| ∈ Lp(x)(Ω), |α| 6 k}

with the norm

(2.2) ‖u‖W k,p(x)(Ω) =
∑

|α|6k

‖∂αu‖Lp(x)(Ω).

Denote by W
k,p(x)
0 (Ω) the completion of C∞

0 (Ω) in W k,p(x)(Ω) with respect to the

norm (2.2).

Remark 2.1. We say that u ∈ Lp(x)(Ω,Cℓn) can be understood coordinatewise.

For example, u ∈ Lp(x)(Ω,Cℓn) means that {uI} ⊂ Lp(x)(Ω) for u = ΣIuIeI ∈ Cℓn

with the norm ‖u‖Lp(x)(Ω,Cℓn) =
∑
I

‖uI‖Lp(x)(Ω). A simple computation shows

that ‖u‖Lp(x)(Ω,Cℓn) is equivalent to ‖|u|‖Lp(x)(Ω). In the same way, the spaces

W k,p(x)(Ω,Cℓn), W
k,p(x)
0 (Ω,Cℓn), Ck(Ω,Cℓn) and Ck

0 (Ω,Cℓn) (k ∈ N ∪ {0}) can
be understood similarly.

Theorem 2.1. C∞
0 (Ω,Cℓn) is dense in Lp(x)(Ω,Cℓn).

P r o o f. For any u(x) =
∑
I

uI(x)eI ∈ Lp(x)(Ω,Cℓn) we have uI(x) ∈ Lp(x)(Ω) for

each I. Since C∞
0 (Ω) is dense in Lp(x)(Ω), there exists a sequence {uIk}∞k=1 ⊂ C∞

0 (Ω)

which converges to uI(x) in L
p(x)(Ω) for each I. Let uk(x) =

∑
I

uIkeI , then the

sequence {uk(x)} ⊂ C∞
0 (Ω,Cℓn) converges to u(x) in Lp(x)(Ω,Cℓn), since

∫

Ω

|u(x) − uk(x)|p(x) dx 6

∫

Ω

(∑

I

|uI(x) − uIk(x)|
)p(x)

dx

6 2np+

∑

I

∫

Ω

|uI(x) − uIk(x)|p(x) dx.

This completes the proof of Theorem 2.1. �
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Theorem 2.2. Lp(x)(Ω,Cℓn) is a separable and reflexive Banach space.

P r o o f. We first show that the dual of Lp(x)(Ω,Cℓn) is Lp′(x)(Ω,Cℓn) in several

steps (see [16]).

(i) For fixed v =
∑
I

vIeI ∈ Lp′(x)(Ω,Cℓn), we define a linear functional

Lv(u) =

∫

Ω

[ūv]0 dx =

∫

Ω

∑

I

uI(x)vI (x) dx.

Then Lv(u) is a bounded linear functional on L
p(x)(Ω,Cℓn).

(ii) Let L ∈ (Lp(x)(Ω,Cℓn))′, for any I and any w ∈ Lp(x)(Ω) we define a functional

LI as follows:

LI : Lp(x)(Ω) → R, LI(w) = L(weI).

Then LI is a continuous linear functional on Lp(x)(Ω). Let u =
∑
I

uIeI ∈

Lp(x)(Ω,Cℓn), then there exists vI ∈ Lp′(x)(Ω) such that LI can be represented

uniquely as follows:

LI(uI) =

∫

Ω

uI(x)vI(x) dx.

Let v =
∑
I

vIeI , then v ∈ Lp′(x)(Ω,Cℓn) and L(u) =
∫
Ω[ūv]0 dx.

(iii) We shall show ‖v‖Lp′(x)(Ω,Cℓn) 6 C‖Lv‖. Supposing ‖vI‖Lp′(x)(Ω) 6= 0, we take

u =
∑

I

(( |vI |
‖vI‖Lp′(x)(Ω)

)1/(p(x)−1)

sgn vI

)
eI .

Then ‖u‖Lp(x)(Ω,Cℓn) = 2n and Lv(u) > 2p−/(1−p−)‖v‖Lp′(x)(Ω,Cℓn). Therefore

‖v‖Lp′(x)(Ω,Cℓn) 6 2p−/(p−−1)+n‖Lv‖.

Now we reach the conclusion (Lp(x)(Ω,Cℓn))∗ = Lp′(x)(Ω,Cℓn) and, moreover,

Lp(x)(Ω,Cℓn) is reflexive.

In the following, we will prove that Lp(x)(Ω,Cℓn) is separable. Let u =
∑
I

uIeI ∈

Lp(x)(Ω,Cℓn). Since Lp(x)(Ω) is separable, there exists a dense, countable subset F

of Lp(x)(Ω). Then for any uI(x) above we can extract a sequence {uIk(x)} in F

which converges to uI(x) in L
p(x)(Ω). Similarly to the proof of Theorem 2.1, the

sequence
{
uk : uk =

∑
I

ukIeI

}
converges to u(x) in Lp(x)(Ω,Cℓn). �
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Theorem 2.3. W 1,p(x)(Ω,Cℓn) is a separable and reflexive Banach space.

P r o o f. We treat W 1,p(x)(Ω,Cℓn) as a subspace of the product space
n∏

m=1
Lp(x)

(Ω,Cℓn). Then by Theorem 2.2, we need only to show thatW 1,p(x)(Ω,Cℓn) is a closed

subspace of the product space
n∏

m=1
Lp(x)(Ω,Cℓn). Let {uk : uk =

∑
I

ukIeI} be con-

vergent in W 1,p(x)(Ω,Cℓn), then ukI(x) is a convergent sequence in L
p(x)(Ω, Cln).

By Theorem 2.2 in [14], there exists uI(x) ∈ Lp(x)(Ω) such that ukI(x) → uI(x) in

Lp(x)(Ω). Then we obtain uk(x) → u(x) in Lp(x)(Ω,Cℓn). Then, similarly to the

proof of Theorem 2.4 in [14], we can get the desired conclusion. �

Theorem 2.4. The embedding W
1,p(x)
0 (Ω,Cℓn) → Lp(x)(Ω,Cℓn) is compact.

P r o o f. First, we should show that W
1,p(x)
0 (Ω,Cℓn) ⊂ Lp(x)(Ω,Cℓn). Let

u(x) =
∑
I

uI(x)eI ∈ W
1,p(x)
0 (Ω,Cℓn). Then there exists a constant C > 0

such that ‖uI‖Lp(x)(Ω) 6 C‖∂uI‖Lp(x)(Ω). Therefore, we have ‖u‖Lp(x)(Ω,Cℓn) 6

C‖∂u‖Lp(x)(Ω,Cℓn).

Secondly, we should show that the embedding is compact. If {uk : uk =
∑
I

ukIeI}

is bounded inW
1,p(x)
0 (Ω,Cℓn), then there exists a subsequence of {ukI} (still denoted

by {ukI}) such that ukI → uI in L
p(x)(Ω,Cℓn). Let u =

∑
I

uIeI . Then u(x) ∈

Lp(x)(Ω,Cℓn) and uk → u in Lp(x)(Ω,Cℓn). �

Theorem 2.5. If u ∈W
1,p(x)
0 (Ω,Cℓn), then

‖u‖Lp(x)(Ω,Cℓn) 6 C(n,Ω)‖∂u‖(Lp(x)(Ω,Cℓn))n .

P r o o f. If u ∈ W
1,p(x)
0 (Ω,Cℓn), then by Proposition 2.5 in [13] there exists

a constant C(Ω) > 0 such that ‖uI‖Lp(x)(Ω) 6 C(Ω)‖∂uI‖Lp(x)(Ω). Hence we obtain

that ‖u‖Lp(x)(Ω,Cℓn) 6 2nC(Ω)‖∂u‖(Lp(x)(Ω,Cℓn))n . �

Remark 2.2. We say that fn ∈ Lp(x)(Ω,Cℓn) converge modularly to f ∈
Lp(x)(Ω,Cℓn) if lim

n→∞

∫
Ω |fn − f |p(x) dx = 0. It is easy to see that the topology of

Lp(x)(Ω,Cℓn) given by the norm coincides with the topology of modular convergence

(see [23]).

Definition 2.3 (see [7], [18], [19]).

(i) Let u ∈ C(Ω,Cℓn). Teodorescu operator is defined by

Tu(x) =

∫

Ω

G(x − y)u(y) dy,

where G(x) is the generalized Cauchy kernel mentioned above.
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(ii) Let u ∈ C1(Ω,Cℓn) ∩C(Ω,Cℓn). The boundary operator is defined by

Fu(x) =

∫

∂Ω

G(y − x)α(y)u(y) dy,

where α(y) denotes the outward normal unit vector at y.

(iii) Let u ∈ L1
loc(R

n). The maximal operator is defined by

Mu(x) = sup
r>0

1

meas(B(x, r))

∫

B(x,r)

|u(x)| dx.

Lemma 2.1 (see [7]). Let Ω ⊂ R
n be a bounded domain, x ∈ Ω and u ∈ L1

loc(R
n).

Then ∫

Ω

1

|x− y|n−1
|u(y)| dy 6 C(n)(diam Ω)Mu(x).

Lemma 2.2 (see [7]). Let p(x) satisfy (1.3). Then M is bounded in Lp(x)(Rn).

Lemma 2.3 (see [19]). Let u ∈ C1(Ω,Cℓn). Then

∂kTu(x) =
1

ωn

∫

Ω

∂

∂xk
G(x − y)u(y) dy +

u(x)

n
ēk.

Lemma 2.4 (see [18]). The operator T: Lp(Ω,Cℓn) → W 1,p(Ω,Cℓn) (1 <

p <∞) is continuous.

Lemma 2.5 (see [7]). Let Φ be a Calderón-Zygmund operator with Calderón-

Zygmund kernel K on R
n × R

n. Then Φ is bounded on Lp(x)(Rn).

Theorem 2.6. The operator ∂kT: Lp(x)(Ω,Cℓn) → Lp(x)(Ω,Cℓn) is continuous.

P r o o f. By Lemma 2.3 we have for u ∈ C∞
0 (Ω,Cℓn)

∂kTu(x) =
1

ωn

∫

Ω

∂

∂xk
G(x − y)u(y) dy +

u(x)

n
ēk.

Let K(x, y) = ω−1
n (∂/∂xk)G(x − y). Since

∂

∂xk
G(x− y) =

1

|x− y|n
( n∑

j=1

(xj − yj)
2

|x− y|2 ēk − n

n∑

i=1

(xk − yk)(xi − yi)

|x− y|2 ēi

)
,
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we obtain ∣∣∣
∂

∂xk
G(x− y)

∣∣∣ 6
n2 + 1

|x− y|n (k = 1, . . . , n).

Notice that

∫

S1

( n∑

j=1

(xj − yj)
2

|x− y|2 ēk − n
n∑

i=1

(xk − yk)(xi − yi)

|x− y|2 ēi

)
dS = 0,

hence it is easy to verify that K(x, y) satisfies the following conditions:

(a) |K(x, y)| 6 C|x− y|−n;

(b) K(t(x, y)) = t−nK(x, y), t > 0;

(c)
∫

S1
K(x, y) dS = 0, where S1 = {y ∈ Ω: |x− y| = 1}.

Now we define u(x) = 0, x ∈ R
n \ Ω. Then K(x, y) satisfies the conditions of

Calderón-Zygmund kernel on Rn ×R
n. By Theorem 2.1, we know the inequality can

be extended to Lp(x)(Ω,Cℓn). Therefore, we obtain by Lemma 2.4 and Lemma 2.5

(2.3)

∥∥∥∥
1

ωn

∫

Ω

∂

∂xk
G(x− y)u(y) dy

∥∥∥∥
Lp(x)(Ω,Cℓn)

6 C(n, p,Ω)‖u‖Lp(x)(Ω,Cℓn).

On the other hand, we have

(2.4)
∥∥∥
u(x)

n
ēk

∥∥∥
Lp(x)(Ω,Cℓn)

6
1

n
‖u‖Lp(x)(Ω,Cℓn).

Combining (2.3) with (2.4), we obtain

‖∂kTu‖(Lp(x)(Ω,Cℓn))n 6 C(n, p,Ω)‖u‖Lp(x)(Ω,Cℓn).

�

Theorem 2.7. The operator T: Lp(x)(Ω,Cℓn) →W 1,p(x)(Ω,Cℓn) is continuous.

P r o o f. First we prove that the operator T: Lp(x)(Ω,Cℓn) → Lp(x)(Ω,Cℓn) is

continuous. We define u(x) = 0, x ∈ R
n \ Ω. Since

|G(x − y)| =
1

ωn

1

|x− y|n−1
,

from (2.1) we have

|Tu(x)| =

∣∣∣∣
∫

Ω

G(x − y)u(y) dy

∣∣∣∣

6 C5

∫

Ω

|G(x − y)||u(y)| dy =
C5

ωn

∫

Ω

1

|x− y|n−1
|u(y)| dy.
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Then we get by Lemma 2.1

|Tu(x)| 6 C(n,Ω)M(|u|)(x), ∀x ∈ Ω.

In view of Lemma 2.2 we obtain

‖Tu‖Lp(x)(Ω,Cℓn) 6 C(n, p,Ω)‖u‖Lp(x)(Ω,Cℓn).

Secondly we prove that the operator T: Lp(x)(Ω,Cℓn) →W 1,p(x)(Ω,Cℓn) is contin-

uous.

By Theorem 2.6, we have

‖Tu‖W 1,p(x)(Ω,Cℓn) = ‖Tu‖Lp(x)(Ω,Cℓn) +
n∑

k=1

‖∂kTu‖(Lp(x)(Ω,Cℓn))n

6 C(n, p,Ω)‖u‖Lp(x)(Ω,Cℓn).

Then we get the desired conclusion. �

Lemma 2.6. The operator D : W 1,p(x)(Ω,Cℓn) → Lp(x)(Ω,Cℓn) is continuous.

P r o o f. If u ∈ ∑
I

uIeI ∈W 1,p(x)(Ω,Cℓn), then

∂u =
∑

I

∂uIeI =
∑

I

(∂1uI , . . . , ∂nuI)eI , Du =
∑

I

n∑

i=1

∂iuIeieI .

Since

‖Du‖Lp(x)(Ω,Cℓn) =
∑

I

∥∥∥∥−
∑

i∈I

∂iuIeI\{i} +
∑

i∈{1,...,n}\I

∂iuIeI∪{i}

∥∥∥∥
Lp(x)(Ω,Cℓn)

6
∑

I

n∑

i=1

‖∂iuI‖Lp(x)(Ω) = ‖∂u‖(Lp(x)(Ω,Cℓn))n ,

the conclusion follows from Remark 2.1. �

Lemma 2.7 (see [21]). Let u ∈ W 1,p(Ω,Cℓn) (1 < p < ∞). Then the Borel-

Pompeiu formula

Fu(x) + TDu(x) = u(x)

holds for all x ∈ Ω.
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Now we define another norm on the space W
1,p(x)
0 (Ω,Cℓn):

|||u|||
W

1,p(x)
0 (Ω,Cℓn)

= ‖u‖Lp(x)(Ω,Cℓn) + ‖Du‖Lp(x)(Ω,Cℓn).

Remark 2.3. By Theorem 2.7, Lemma 2.6 and Lemma 2.7, we obtain that

the Borel-Pompeiu formula still holds for u ∈ W 1,p(x)(Ω,Cℓn). Thus, we have for

u ∈W
1,p(x)
0 (Ω,Cℓn)

‖∂u‖(Lp(x)(Ω,Cℓn))n = ‖∂TDu‖Lp(x)(Ω,Cℓn) 6 C(n, p,Ω)‖Du‖Lp(x)(Ω,Cℓn)

6 C(n, p,Ω)‖∂u‖(Lp(x)(Ω,Cℓn))n .

Hence |||u|||
W

1,p(x)
0 (Ω,Cℓn)

is equivalent to ‖u‖
W

1,p(x)
0 (Ω,Cℓn)

. Moreover, by Theorem 2.5

and Remark 2.1, we know that |||u|||
W

1,p(x)
0 (Ω,Cℓn)

and ‖|Du|‖Lp(x)(Ω) are equivalent

norms on W
1,p(x)
0 (Ω,Cℓn).

3. The main theorem

In [27], [28] C.A.Nolder introduced A-Dirac equations DA(x,Du) = 0 and inves-

tigated some properties of weak solutions to the scalar part of the above equations.

Note that when u is a real-valued function, i.e. u ∈ Cℓ0n(Ω) and A : Ω × Cℓ1n(Ω) →
Cℓ1n(Ω), the scalar part of an A-Dirac equation is divA(x,∇u) = 0, i.e. an A-

harmonic equation. These equations have been extensively studied with many ap-

plications, see [23].

In this section we will establish the existence of weak solutions to the scalar part

of elliptic systems with variable growth.

Theorem 3.1. Under conditions (H1)–(H5), there exists a weak solution to the

scalar part of the Dirichlet problem (1.1)–(1.2) in W
1,p(x)
0 (Ω,Cℓn). In other words,

there exists at least one u ∈W
1,p(x)
0 (Ω,Cℓn) satisfying

(3.1)

∫

Ω

[A(x, u,Du)Dϕ−B(x, u,Du)ϕ]0 dx = 0

for each ϕ ∈ W
1,p(x)
0 (Ω,Cℓn).

Let V = W
1,p(x)
0 (Ω,Cℓn). For u ∈ V , we define T : V → V ∗ in the following way:

for each ϕ ∈ V

(3.2) 〈Tu, ϕ〉 =

∫

Ω

[A(x, u(x), Du(x))Dϕ−B(x, u(x), Du(x))ϕ]0 dx.

Now we need only to show that there exists u0 ∈ V such that 〈Tu0, ϕ〉 = 0 for any

ϕ ∈ V .
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Lemma 3.1. T is strongly-weakly continuous on V .

P r o o f. Suppose uk → u strongly in V , then {uk} is uniformly bounded in V .
Then, to see equiintegrability of the sequence {[A(x, uk, Duk)Dϕ]0}, we take a mea-
surable subset Ω′ ⊂ Ω. By (2.1) and (H2) we have for each ϕ ∈ V

(3.3)

∫

Ω′

|[A(x, uk, Duk)Dϕ]0| dx

6 C5

∫

Ω′

|A(x, uk(x), Duk(x))| |Dϕ| dx

6 C5

∫

Ω′

(C0|Duk|p(x)−1 + C1|uk|p(x)−1 +G(x)) · |Dϕ| dx

6 2C5(C0‖|Duk|p(x)−1‖Lp′(x)(Ω′ ) + C1‖ |uk|p(x)−1 ‖Lp′(x)(Ω′ )

+ ‖G‖Lp′(x)(Ω′)) · ‖|Dϕ|‖Lp(x)(Ω′ ).

By virtue of Remark 2.1, we obtain that the first term of (3.3) is bouded uniformly

in k. The second term of (3.3) is arbitrarily small if the measure of Ω′ is cho-

sen small enough. A similar argument gives the equiintegrability of the sequence

{[B(x, uk, Duk)ϕ]0}. Hence by (H1) and the Vitali convergence theorem, we obtain

lim
k→∞

〈Tuk, ϕ〉 = 〈T lim
k→∞

uk, ϕ〉 = 〈Tu, ϕ〉.

That is to say, T is strongly-weakly continuous. �

Lemma 3.2. T is coercive on V , that is,

lim
‖u‖V →∞

〈Tu, u〉
‖u‖V

= +∞.

P r o o f. By (H3) and (H4), for any λ ∈ (0, 1) there exists a positive constant

C(λ) such that

〈Tu, u〉 >

∫

Ω

(C2|Du|p(x) + C3|u|p(x) − h(x)

− C̃0C5|Du|p(x)−1|u| − C̃1C5|u|p(x) − C5G̃(x)|u|) dx

>

∫

Ω

(C2|Du|p(x) + C3|u|p(x) − h(x) − C̃0C5|Du|p(x) − C̃0C5|u|p(x)

− C̃1C5|u|p(x) − λ|u|p(x) − C(λ,C5)|G̃(x)|p(x)) dx

=

∫

Ω

((C2 − C̃0C5)|Du|p(x) + (C3 − C̃0C5 − C̃1C5 − λ)|u|p(x)

− h(x) − C(λ,C5)|G̃(x)|p(x)) dx.
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When C̃0, C̃1 are small enough such that C2 > C̃0C5 and C3 > C5(C̃0 + C̃1), then

we take λ < C3 − C5(C̃0 + C̃1). Hence we obtain

〈Tu, u〉
‖u‖V

>
C

∫
Ω
(|Du|p(x) + |u|p(x)) dx− C

‖u‖V
>
C

∫
Ω
|Du|p(x) dx− C

‖u‖V
.

Since

∫
Ω |Du|p(x) dx

‖|Du|‖Lp(x)(Ω)

=

∫

Ω

( |Du|
2−1‖|Du|‖Lp(x)(Ω)

)p(x)

·
(2−1‖|Du|‖Lp(x)(Ω))

p(x)

‖|Du|‖Lp(x)(Ω)

dx,

we have when ‖|Du|‖Lp(x)(Ω) > 1

∫
Ω
|Du|p(x) dx

‖|Du|‖Lp(x)(Ω)

> 2−p+‖|Du|‖p−−1

Lp(x)(Ω)
.

In virtue of Remark 2.3 we have as ‖u‖V → ∞

〈Tu, u〉
‖u‖V

→ +∞.

�

Lemma 3.3 (see [26]). If the mapping F : R
m → R

m is continuous and

lim
|x|→∞

〈F (x), x〉
|x| = +∞

then the range of F is the whole of Rm.

Lemma 3.4. There exist a sequence {uk} ⊂ V and u0 ∈ V such that

〈Tuk, uk − u0〉 → 0 as k → ∞.

P r o o f. By the separability of V , we can choose a basis {wk} of V such
that the union of subspaces finitely generated from wk are dense in V . Let

Vk = span{w1, . . . , wk}. Since Vk is topologically isomorphic to R
k, by Lemma 3.1,

Lemma 3.2 and Lemma 3.3 there exists uk ∈ Vk such that for any w ∈ Vk

(3.4) 〈Tuk, w〉 = 0
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By the coerciveness of T , uk is bounded in V . Since V is reflective, we can extract

a subsequence of {uk} (still denoted by {uk}) such that

uk ⇀ u0 weakly in V as k → ∞.

By (H2) and (H3), T is a bounded operator. By the separability of V again and

Corollary 3.30 in [4], we may suppose

Tuk ⇀ ξ weakly* in V ∗ as k → ∞.

From (3.4), we have for any w ∈ span{w1, w2, . . .}

〈ξ, w〉 = 0.

For fixed ξ, by the continuity of 〈ξ, ·〉, we get 〈ξ, w〉 = 0 for all w ∈ V . Furthermore,

we have

〈Tuk, uk − u0〉 = 〈Tuk, uk〉 − 〈Tuk, u0〉 = −〈Tuk, u0〉 → 0 as k → ∞.

This completes the proof of Lemma 3.4. �

Let zk = uk − u0 =
∑
I

zkIeI . Then

zk ⇀ 0 weakly in V as k → ∞.

By Theorem 2.4, we obtain

(3.5) zk → 0 strongly in Lp(x)(Ω,Cℓn).

Since

〈Tuk, uk − u0〉

=

∫

Ω

[A(x, u0 + zk, Du0 +Dzk)Dzk −B(x, u0 + zk, Du0 +Dzk)zk]0 dx→ 0

we have by virtue of (H3) and (3.5)
∫

Ω

[B(x, u0 + zk, Du0 +Dzk)zk]0 dx→ 0.

Therefore, we obtain

(3.6)

∫

Ω

[A(x, u0 + zk, Du0 +Dzk)Dzk]0 dx→ 0 as k → ∞.

Now if we can prove that there exists a subsequence of {zk} which is strongly
convergent in V , then from the strong-weak continuity of T we get Tuk → Tu0 = ξ

weakly in V ∗ as k → ∞ and u0 will be a weak solution of (1.1) and (1.2). Next we

need the following preliminary results.
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Definition 3.1. A function f : R
n × R

l × R
m → R is called a Carathéodory

function if it satisfies: for every (s, ξ) ∈ R
l × R

m that x 7→ f(x, s, ξ) is measurable;

and for almost every x ∈ R
n, (s, ξ) 7→ f(x, s, ξ) is continuous.

Lemma 3.5 (see [9]). f : R
n × R

l × R
m → R is a Carathéodory function if and

only if for each compact set K ⊂ R
n and any ε > 0 there exists a compact set

Kε ⊂ K satisfying meas(K \Kε) < ε such that f is continuous on Kε × R
l × R

m.

Lemma 3.6 (see [10]). Let E ⊂ R
n be measurable and measE < ∞. Suppose

that {Ek} is a sequence of subsets of E such that for some ε > 0

measEk > ε for each k ∈ N.

Then there exists a subsequence {Eki
} such that

∞⋂
i=1

Eki
6= ∅.

Lemma 3.7 (see [3]). Let {fk} be a sequence of bounded functions in L1(Rn).

For each ε > 0 there exist Eε, δ, J (where Eε is measurable and measEε < ε, δ > 0,

J is an infinite subset of N) such that for each k ∈ J

∫

E

|fk(x)| dx < ε

where E and Eε are disjoint and measE < δ.

Definition 3.2. For u ∈ C1
0 (Rn), define

(M∗u)(x) = (Mu)(x) +
n∑

α=1

(M∂αu)(x).

Lemma 3.8 (see [25]). If u ∈ C∞
0 (Rn), then M∗u ∈ C0(Rn) for all x ∈ R

n,

|u(x)| +
n∑

α=1

(∂αu)(x) 6 (M∗u)(x).

Furthermore, if p > 1, then

‖M∗u‖Lp(Rn) 6 C(n, p)‖u‖W 1,p

0 (Rn);

and if p = 1, then

meas{x ∈ R
n : (M∗u) > λ} 6

C(n)

λ
‖u‖W 1,1(Rn)

for all λ > 0.
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Lemma 3.9 (see [9]). Let u ∈ C∞
0 (Rn) and λ > 0. Set

Hλ = {x ∈ R
n : (M∗u)(x) < λ}.

Then for ∀x, y ∈ Hλ, we have

|u(y) − u(x)| 6 C(n)λ|y − x|.

Lemma 3.10 (see [9]). Let X be a metric space, E a subspace of X , and L a pos-

itive real number. Then any L-Lipschitz mapping from E into R can be extended to

an L-Lipschitz mapping from X into R.

P r o o f of Theorem 3.1. We need only to prove that there exists a subsequence

of {zk} which is strongly convergent in V .
For each measurable set E ⊂ Ω, define

F (v,E) =

∫

E

[A(x, u0 + v,Du0 +Dv)Dv]0 dx,

where v ∈ V . Similarly to the proof of Lemma 3.1, we can show that F (·, E) is

continuous in V . Since C∞
0 (Ω,Cℓn) is dense in V , there exists {fk} ⊂ C∞

0 (Ω,Cℓn)

such that

‖fk − zk‖V <
1

k
, |F (fk,Ω) − F (zk,Ω)| < 1

k
.

So we can suppose that zk is in C
∞
0 (Ω,Cℓn) and bounded in V .

Next we define

zk(x) = 0, ∀x ∈ R
n \ Ω.

In this way, we extend the domain of zk to R
n. Hence {zk} is bounded in

W
1,p(x)
0 (Rn,Cℓn) and supp zk ⊂ Ω.

Let η : R
+ → R

+ be a continuous increasing function satisfying η(0) = 0 and for

each measurable set E ⊂ Ω, let

sup
k

∫

E

(|G(x)|p′(x) + |h(x)| + (C0 + C1 + 1)(|u0|p(x) + |Du0|p(x) + |zk|p(x))) dx

6 η(measE).

where C0, C1 are the constants in (H2).

Let {εj} be a decreasing sequence with εj > 0 and let εj → 0 as j → 0. For ε1
and each {(M∗zk1I)

p(x)}, by Lemma 3.7 we get a subsequence {zk1}, a set Eε1 ⊂ Ω

satisfying measEε1 < ε1, and a real number δ1 > 0 such that

∫

U

(M∗zk1I)
p(x) dx < ε1
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for each k1, I and U ⊂ Ω\Eε1 satisfying measU < δ1. By Lemma 3.8, we can choose

λ > 1 so large that for all I and k1,

meas({x ∈ R
n : (M∗zk1I)(x) > λ}) 6 min{ε1, δ1}.

For each I and k1, define

Hλ
k1I = {x ∈ R

n : (M∗zk1I)(x) < λ}, Hλ
k1

=
⋂

I

Hλ
k1I .

In view of Lemma 3.9, we have

|zk1I(y) − zk1I(x)|
|y − x| 6 C(n)λ.

By Lemma 3.10, there exists a Lipschitz function gk1 which extends zk1I outside

Hλ
k1
and the Lipschitz constant of gk1I is not greater than C(n)λ. As Hλ

k1
is an

open set, we have gk1I(x) = zk1I(x) and ∂gk1I(x) = ∂zk1I(x) for all x ∈ Hλ
k1
, and

‖∂gk1I‖L∞(Rn) 6 C(n)λ. By Lemma 3.8, we can further suppose that

‖gk1I‖L∞(Rn) 6 ‖zk1I‖L∞(Hλ
k1

) 6 λ, ‖gk1I‖W 1,∞(Ω) 6 C(n, λ).

According to the uniform boundedness of {‖gk1I‖W 1,∞(Ω)}, there exists a subse-
quence of {gk1I} (still denoted by {gk1I}) such that

gk1I ⇀ vI weakly* in W 1,∞(Ω), as kI → ∞ for all I.

Setting v =
∑
I

vIeI and gk1 =
∑
I

gk1IeI , we have

F (zk1 ,Ω) = F (gk1 , (Ω \ Eε1) ∩Hλ
k1

) + F (zk1 , Eε1 ∪ (Ω \Hλ
k1

))

= F (gk1 ,Ω \ Eε1) − F (gk1 , (Ω \ Eε1 ) \Hλ
k1

) + F (zk1 , Eε1 ∪ (Ω \Hλ
k1

)).

Next we estimate F (zk1 ,Ω) in four steps.

(i) The estimate of F (gk1 , (Ω \ Eε1) \Hλ
k1

) and F (zk1 , Eε1 ∪ (Ω \Hλ
k1

)). Since

meas((Ω \Eε1 ) \Hλ
k1

) 6
∑

I

meas((Ω \ Eε1) \Hλ
k1I) 6 2n min{ε1, δ1},
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from (H2), (H4) and (2.1), we have

(3.7) |F (gk1 , (Ω \ Eε1) \Hλ
k1

)|

6

∫

(Ω\Eε1 )\Hλ
k1

|A(x, u0 + gk1 , Du0 +Dgk1)Dgk1 | dx

6 C5

∫

(Ω\Eε1)\Hλ
k1

(C0|Du0 +Dgk1 |p(x)−1|Dgk1 |

+ C1|u0 + gk1 |p(x)−1|Dgk1 | +G(x)|Dgk1 |) dx

6 C5

∫

(Ω\Eε1)\Hλ
k1

(C0|Du0 +Dgk1 |p(x) + C0|Dgk1 |p(x)

+ C1|u0 + gk1 |p(x) + C1|Dgk1 |p(x) + (G(x))p′(x) + |Dgk1 |p(x)) dx

6 C5

∫

(Ω\Eε1)\Hλ
k1

(C02
p+−1|Du0|p(x) + 2p+−1C0|Dgk1 |p(x)

+ C0|Dgk1 |p(x) + 2p+−1C1|u0|p(x) + 2p+−1C1|gk1 |p(x)

+ C1|Dgk1 |p(x) + (G(x))p′(x) + |Dgk1 |p(x)) dx

6 2p+−1C5η(meas((Ω \ Eε1 ) \Hλ
k1

))

+ 2p+C5(C0 + C1 + 1)

∫

(Ω\Eε1 )\Hλ
k1

(|gk1 |p(x) + |Dgk1 |p(x)) dx

6 2p+−1C5η(meas((Ω \ Eε1 ) \Hλ
k1

))

+ 2p+C5(C0 + C1 + 1)

∫

(Ω\Eε1 )\Hλ
k1

((∑

I

|gk1I |
)p(x)

+
(∑

I

|∂gk1I |
)p(x))

dx

6 2p+−1C5η(2
nε1) + 2p+C(n,Ω, C0, C1, C5)

∫

(Ω\Eε1 )\Hλ
k1

λp(x) dx

6 2p+−1C5η(2
nε1)

+ 2p+C(n,Ω, C0, C1, C5)
∑

I

∫

(Ω\Eε1 )\Hλ
k1

(M∗zk1I)
p(x) dx

6 2p+−1C5η(2
nε1) + 2n+p+C(n,Ω, C0, C1, C5)ε1 := V1(ε1)

and

F (zk1 , Eε1 ∪ (Ω \Hλ
k1

))

=

∫

Eε1∪(Ω\Hλ
k1

)

[A(x, u0 + zk1 , Du0 +Dzk1)Dzk1 ]0 dx
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=

∫

Eε1∪(Ω\Hλ
k1

)

[A(x, u0 + zk1 , Du0 +Dzk1)(Du0 +Dzk1)]0 dx

−
∫

Eε1∪(Ω\Hλ
k1

)

[A(x, u0 + zk1 , Du0 +Dzk1)Du0]0 dx

>

∫

Eε1∪(Ω\Hλ
k1

)

(C2|Du0 +Dzk1 |p(x) + C3|u0 + zk1 |p(x) − h(x)) dx

− C5

∫

Eε1∪(Ω\Hλ
k1

)

(C0|Du0 +Dzk1 |p(x)−1|Du0|

+ C1|u0 + zk1 |p(x)−1|Du0| +G(x)|Du0|) dx

> (C22
1−p+ − C0C5µ2p+−1)

∫

Eε1∪(Ω\Hλ
k1

)

|Dzk1 |p(x) dx

− Cη(meas(Eε1 ∪ (Ω \Hλ
k1

))),

where µ ∈ (0, 1) is small enough. Furthermore, if we take µ < 2C2/C0C54
p+ , then

(3.8) F (zk1 , Eε1 ∪ (Ω \Hλ
k1

)) > C22
−p+

∫

Eε1∪(Ω\Hλ
k1

)

|Dzk1 |p(x) dx− V2(ε1),

where V2(ε1) = Cη(meas(Eε1 ∪ (Ω \Hλ
k1

))) and V1(ε), V2(ε) → 0 as ε→ 0+.

Set U1
ε1,k1

= Eε1 ∪ (Ω \Hλ
k1

). From (3.7) and (3.8) we have

(3.9) F (zk1 ,Ω) > F (gk1 ,Ω \ Eε1)

+ C22
−p+

∫

Eε1∪(Ω\Hλ
k1

)

|Dzk1 |p(x) dx− V1(ε1) − V2(ε1).

(ii) The estimate of F (gk1 ,Ω \ Eε1). Set hk1I = gk1I − vk1I . Then

hk1I ⇀ 0 weakly* in W 1,∞(Ω) as k1 → ∞ for each I

and

‖hk1I‖L∞(Rn) 6 2λ, ‖Dhk1I‖L∞(Rn) 6 2C(n)λ.

Set

G =
⋃

I

GI

with GI = {x ∈ Ω: vI 6= 0}. According to Acerbi and Fusco [3], we have

meas(G) 6 (2n + 1)ε1.
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Set hk1 =
∑
I

hk1IeI , then

F (gk1 ,Ω \ Eε1) = F (hk1 , (Ω \Eε1 ) \G) + F (gk1 , (Ω \ Eε1) ∩Hλ
k1

∩G)

+ F (gk1 , (Ω \ Eε1) ∩ (G \Hλ
k1

))

= F (hk1 , (Ω \Eε1 ) \G) + F (zk1 , (Ω \ Eε1) ∩Hλ
k1

∩G)

+ F (gk1 , (Ω \ Eε1) ∩ (G \Hλ
k1

)).

Set

U2
ε1

= (Ω \Eε1) \G, U3
ε1,k1

= (Ω \Eε1 ) ∩Hλ
k1

∩G, U4
ε1,k1

= (Ω \Eε1) ∩ (G \Hλ
k1

).

Similarly to the proof of (3.8), we get

F (zkl
, U3

ε1,k1
) > C22

−p+

∫

U3
ε1,k1

|Dzk1 |p(x) dx− V3(ε1).

Since on U4
ε1,k1

we have

∫

U4
ε1,k1

(|gk1 |p(x) + |Dgk1 |p(x)) dx 6 C(n, p)(2n + 1)ε1,

hence similarly to the proof of (3.8) we obtain

|F (gk1 , U
4
ε1,k1

)| 6 C((2n + 1)ε1 + η((2n + 1)ε1)) := V4(ε1).

Furthermore, we have

F (gk1 ,Ω \ Eε1) > F (hk1 , U
2
ε1

) + C22
−p+

∫

U3
ε1,k1

|Dzk1 |p(x) dx− V3(ε1) − V4(ε1).

Denote U5
ε1,k1

= U1
ε1,k1

∪ U3
ε1,k1
. From (3.8) we have

(3.10) F (zk1 ,Ω) > F (hk1 , U
2
ε1

) + C22
−p+

∫

U5
ε1,k1

|Dzk1 |p(x) dx− V5(ε1),

where V5(ε1) =
4∑

j=1

Vj(ε1).

Choose an open set Ω′ ⊂ Ω which contains U2
ε1
such that

|F (hk1 ,Ω
′) − F (hk1 , U

2
ε1

)| 6 ε1.

662



From (3.10) we have

F (zk1 ,Ω) > F (hk1 ,Ω
′) + C22

−p+

∫

U5
ε1,k1

|Dzk1 |p(x) dx− V5(ε1).

Approximate Ω′ by a hypercube with edges parallel to the coordinate axes, i.e.

construct
Hj ⊂ Ω′,

meas(Ω′ \Hj) → 0, j → ∞,

Hj =

sj⋃

m=1

Dj,m,

meas(Dj,m) = 2−nj , 1 6 m 6 sj .

Let j > 0 be large enough such that for all k1 > 0 we have

(3.11) |F (hk1 ,Ω
′) − F (hk1 , Hj)| 6 ε1,

∫

Ω′\Hj

|Dhk1 |p(x) dx < ε1

and

meas(Ω′ \Hj) < min{ε1, δ1}.

Then

(3.12) F (zk1 ,Ω) > F (hk1 , Hj) + C22
−p+

∫

U5
ε1,k1

|Dzk1 |p(x) dx− V5(ε1) − 2ε1.

(iii) The estimate of F (hk1 , Hj). Let

M = 2n+1C(n)λ > ‖|Dhk1 |‖L∞(Ω)

and let α > 0 be large enough such that for E = {x ∈ Ω′ : a(x) 6 α}

meas(Ω′ \E) 6
ε1
M
,

∫

Ω′\E

a(x) dx 6 ε1,

where a(x) = 2p+−1C5(C0|Du0(x)|p(x) + C1|u0(x)|p(x) + (G(x))p′(x)).

For every x ∈ Ω, s ∈ Cℓn, ξ ∈ Cℓn, define

f(x, s, ξ) = [A(x, u0 + s,Du0 + ξ)ξ]0.

By Lemma 3.5 and (H1), there exists a compact subset K ⊂ Hj such that f(x, s, ξ)

is continuous on K × Cℓn × Cℓn and

meas(Hj \K) 6
ε1

α+M
.
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Divide each Dj,m into 2nl hypercubes Ql
h,m,j with edge length 2−jl, 1 6 h 6 2nl. For

all j, m, l, h, take xl
h,m,j ∈ Ql

h,m,j ∩K∩E (if this set is empty, take xl
h,m,j ∈ Ql

h,m,j)

such that

a(xl
h,m,j)meas(Ql

h,m,j) 6

∫

Ql
h,m,j

a(x) dx.

Then we have by (H2) and (2.1)

(3.13) F (hk1 , Hj) = F (hk1 , Hj ∩K ∩E) + F (hk1 , Hj \E) + F (hk1 , (Hj ∩ E) \K)

> F (hk1 , Hj ∩K ∩E) −
∫

Hj\E

a(x) dx−
∫

(Hj∩E)\K

a(x) dx

− 2p+C5(1 + C0 + C1) ·
( ∫

Hj\E

(|Dhk1 |p(x) + |hk1 |p(x)) dx

+

∫

(Hj∩E)\K

(|Dhk1 |p(x) + |hk1 |p(x)) dx

)

= F (hk1 , Hj ∩K ∩E) − V6(ε1)

= aj
k1

+ bl,jk1
+ cl,jk1

+ dl,j
k1

− V6(ε1)

where

aj
k1

=

∫

Hj∩K∩E

(f(x, hk1(x), Dhk1 (x)) − f(x, 0, Dhk1(x))) dx,

bl,jk1
=

∑

h,m

∫

Ql
h,m,j

∩K∩E

(f(x, 0, Dhk1(x)) − f(xl
h,m,j , 0, Dhk1(x))) dx,

cl,jk1
=

∑

h,m

∫

Ql
h,m,j

f(xl
h,m,j , 0, Dhk1(x)) dx,

dl,j
k1

= −
∑

h,m

∫

Ql
h,m,j

\(K∩E)

f(xl
h,m,j, 0, Dhk1(x)) dx.

Since hk1I ⇀ 0 weakly* in W 1,∞(Ω), we get that ‖hk1I‖L∞(Ω) → 0 as k1 → ∞ for
each I. Thus

Rk1,l
h,m,j := ‖|hk1 |‖L∞(Ql

h,m,j
) → 0 as k1 → ∞ for fixed l.

Since f is uniformly continuous on bounded subsets of K × Cℓn(Ω) × Cℓn(Ω), we

have

lim
k1→∞

aj
k1

= 0.

Because of xl
h,m,j ∈ Ql

h,m,j, we obtain for any x ∈ Ql
h,m,j

|x− xl
h,m,j | 6

√
n2−lj → 0 as l → ∞.
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Using the pointwise convergence of u0(x
l
h,m,j) and Du0(x

l
h,m,j), we have

lim
l→∞

bl,jk1
= 0

uniformly with respect to k1 for fixed j, and

|dl,j
k1
| 6

∑

h,m

∫

Ql
h,m,j

\(K∩E)

|f(xl
h,m,j, 0, Dhk1(x))| dx

6
∑

h,m

∫

Ql
h,m,j

\(K∩E)

|A(xl
h,m,j , 0, Du0(xl

h,m,j) +Dhk1(x))Dhk1(x)| dx

6 C5

∑

h,m

∫

Ql
h,m,j

\(K∩E)

(C0|Du0(x
l
h,m,j) +Dhk1(x)|p(x)−1|Dhk1(x)|

+ C1|u0(x
l
h,m,j)|p(x)−1|Dhk1(x)| +G(xl

h,m,j)|Dhk1(x)|) dx

6
∑

h,m

∫

Ql
h,m,j

\(K∩E)

(a(xl
h,m,j) + 2p+C5(1 + C0 + C1)M) dx

=
∑

h,m

∫

(Ql
h,m,j

∩E)\K

(a(xl
h,m,j) + 2p+C5(1 + C0 + C1)M) dx

+
∑

h,m

∫

Ql
h,m,j

\E

(a(xl
h,m,j) + 2p+C5(1 + C0 + C1)M) dx

6 C(α+M)meas((Hj ∩ E) \K) +

∫

Hj\E

(a(x) + 2p+C5(1 + C0 + C1)M) dx

6 Cε1.

From (3.6), we have

F (zk1 ,Ω) =

∫

Ω

[
A(x, u0 + zk1 , Du0 +Dzk1)Dzk1

]

0
dx→ 0 as k1 → ∞.

Now we suppose that l is large enough so that |bl,jk1
| 6 ε1 for each k1 and there exists

k̄1 such that F (zk1 ,Ω) < ε1 for k1 > k̄1. Therefore we have

(3.14) ε1 > F (zk1 ,Ω)

> cl,jk1
+ 2−p+C2

∫

U5
ε1,k1

|Dzk1 |p(x) dx− Cε1 − V5(ε1) − V6(ε1) − 3ε1.

(iv) The estimate of cl,jk1
. Define a hypercube Ek1,l

h,m,j contained in Q
l
h,m,j with edge

length 2−jl − 2Rk1,l
h,m,j such that

dist (∂Ql
h,m,j, E

k1,l
h,m,j) = Rk1,l

h,m,j.
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Next define

ψk1I(x) =

{
0, x ∈ ∂Ql

h,m,j,

hk1I(x), x ∈ Ek1,l
h,m,j .

Then ψk1I is a Lipschitz mapping on the set where it is defined and its Lipschitz

constant is not greater than 2C(n)λ. By Lemma 3.10, ψk1I can be extended to the

whole Ql
h,m,j, where it is also a Lipschiz mapping with the same Lipschitz constant.

We still denote the extension by ψk1I and suppose that it is defined on the whole Hj .

Then by [5]

∂ψk1I − ∂hk1I → 0, a.e. on Hj .

So there exists a ¯̄k1 > k̄1 such that for all k̄1 >
¯̄k1 we have

∫

Hj

|Dψk1 −Dhk1 |p(x) dx 6
ε1
2
,

and ∣∣∣∣
∑

h,m

∫

Ql
h,m,j

f(xl
h,m,j , 0, Dhk1(x)) − f(xl

h,m,j , 0, Dψk1(x)) dx

∣∣∣∣ 6
ε1
2
.

We obtain by (H5)

cl,jk1
=

∑

h,m

∫

Ql
h,m,j

f(xl
h,m,j, 0, Dhk1(x)) dx

>
∑

h,m

∫

Ql
h,m,j

f(xl
h,m,j, 0, Dψk1(x)) dx− ε1

2

=
∑

h,m

∫

Ql
h,m,j

[A(xl
h,m,j , u0(xl

h,m,j), Du0(xl
h,m,j) +Dψk1(x))Dψk1(x)]0 dx− ε1

2

>
∑

h,m

∫

Ql
h,m,j

C4|Dψk1(x)|p(x) dx− ε1
2

>
C4

2p+−1

∫

Hj

|Dhk1(x)|p(x) dx− (C4 + 1)ε1
2

.

Thus by (3.14) we obtain, as k1 >
¯̄k1,

ε1 > 2−p+

C2

∫

U5
ε1,k1

|Dzk1 |p(x) dx+ 21−p+

C4

∫

Hj

|Dhk1 |p(x) dx− V7(ε1),

where V7(ε1) = V5(ε1) + V6(ε1) + (3 + C)ε1 + 1
2 (1 + C4)ε1.

Set

k(ε1) =
V7(ε1) + ε1

min{2−p+C2, 21−p+C4}
.
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Then we have as k1 >
¯̄k1

(3.15)

∫

U5
ε1,k1

|Dzk1 |p(x) dx+

∫

Hj

|Dhk1 |p(x) dx 6 k(ε1).

Hence we get from (3.11) and (3.15) that

∫

U5
ε1,k1

|Dzk1 |p(x) dx 6 k(ε1),

and
∫

Ω′

|Dhk1 |p(x) dx =

∫

Hj

|Dhk1 |p(x) dx+

∫

Ω′\Hj

|Dhk1 |p(x) dx 6 k(ε1) + ε1.

According to the definition of Ω′, we have

∫

U2
ε1

|Dgk1 |p(x) dx =

∫

U2
ε1

|Dhk1 |p(x) dx 6 k(ε1) + ε1.

Since Dgk1(x) = Dzk1(x) for each x ∈ Hλ
k1
, we obtain

∫

U2
ε1

∩Hλ
k1

|Dzk1 |p(x) dx 6 k(ε1) + ε1.

By the definition of U2
ε1
and U5

ε1,k1
, it is immediate that

Ω = (U2
ε1

∩Hλ
k1

) ∪ U5
ε1,k1

,

which implies that

∫

Ω

|Dzk1 |p(x) dx 6 2k(ε1) + ε1 := O(ε1),

where O(ε) → 0 as ε→ 0+. For ε2 > 0 and the sequence {zk1}, repeating the above
argument we can extract a subsequence of {zk1}, denote it by {zk2}, such that

∫

Ω

|Dzk2 |p(x) dx 6 O(ε2)

whenever k2 > ¯̄k2 for some
¯̄k2. If {zkj

} has been obtained, repeating the above
process we can extract a subsequence of {zkj

}, denote it by {zkj+1}, such that
∫

Ω

|Dzkj+1 |p(x) dx 6 O(εj+1)
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whenever kj+1 > ¯̄kj+1 for some
¯̄kj+1. Finally, by a diagonal argument we get

a subsequence {zki
} which satisfies

∫

Ω

|Dzki
|p(x) dx→ 0 as i→ ∞.

By Remark 2.2, we get

‖|Dzki
|‖Lp(x)(Ω) → 0 as i→ ∞.

Therefore, by Remark 2.3 we have

zki
→ 0 strongly in V.

Now we have completed the proof of Theorem 3.1. �

Remark 3.1. In the case that u is a real-valued function, the scalar part of

elliptic systems (1.1) implies that

∫

Ω

[ n∑

i=1

Ai(x, u, ∂u)
∂ϕ

∂xi
−B(x, u, ∂u)ϕ

]
dx = 0

for all ϕ ∈W
1,p(x)
0 (Ω), where A = (A1, . . . , An). So in this case (3.1) can be identified

with the equation

− div(A(x, u, ∂u)) = B(x, u, ∂u).

Hence by Theorem 3.1, we obtain the existence of a weak solution in W
1,p(x)
0 (Ω) for

the above equation under the corresponding assumptions.
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