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THE ROTHE METHOD FOR THE MCKENDRICK-VON FOERSTER

EQUATION

Henryk Leszczyński, Piotr Zwierkowski, Gdańsk

(Received March 13, 2012)

Abstract. We present the Rothe method for the McKendrick-von Foerster equation with
initial and boundary conditions. This method is well known as an abstract Euler scheme
in extensive literature, e.g. K.Rektorys, The Method of Discretization in Time and Partial
Differential Equations, Reidel, Dordrecht, 1982.

Various Banach spaces are exploited, the most popular being the space of bounded and
continuous functions. We prove the boundedness of approximate solutions and stability of
the Rothe method in L

∞ and L
1 norms. Proofs of these results are based on comparison

inequalities. Our theory is illustrated by numerical experiments. Our research is motivated
by certain models of mathematical biology.

Keywords: Rothe method; stability; comparison
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1. Introduction

The model proposed by Gurtin and MacCamy [4] is well known in mathematical

biology and is used for various problems related to age-structured populations, see [3],

[12]. The birth process is described by a renewal condition with a fertility function.

The death process is governed by a differential equation with a mortality function.

A detailed introduction to age structured population models can be found in [5].

There is rich literature concerning the existence and uniqueness of solutions of such

problems, see for example [6] and the bibliography therein. It is possible to consider

populations with a structure given by some other measurable features such as size

of individuals, their maturity or level of nutrition, etc. These types of models are

discussed in [22]. Many other models of mathematical biology can be found in the

monograph [14].
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Solutions of both the age and size structured models can be found analytically

only in special cases. Therefore, numerical approximation plays an important role in

any analysis of these problems. Their solutions are approximated by finite difference

schemes [1], discretized methods of characteristics [2] or finite element methods [13].

Solutions of a partial differential equation can be approximated by solutions of sys-

tems of ordinary differential equations, provided that one transforms the particular

PDE to a system of ODE’s using the method of lines (MOL) or the Rothe method.

In the former case, spatial partial derivatives are replaced by appropriate finite differ-

ence quotients. In the latter case, the time derivative is replaced by a finite difference

quotient. If the space variable is one dimensional, then we can interchange the time

variable and the space variable, so that the Rothe method becomes MOL. Then one

can take advantage of various programs designed for numerical approximation of

systems of ODE’s.

The Rothe method can be regarded as an abstract Euler method. Indeed, an

evolutionary problem d
dtu + A(t)u = F (t, u), u(0) = u0 is approximated by

u(i) − u(i−1)

h
+ A(t(i))u(i) = F (t(i), u(i−1)), u(0) = u0.

The right-hand side can be modified for a particular equation. Moreover, if

F (t(i), u(i−1)) is replaced by F (t(i), u(i), u(i−1)), then one obtains an abstract gen-

eralized Euler method, see [19]. The L∞-dynamics leads to classical maximum

principles and convergence statements. Examples of abstract Runge-Kutta methods

for parabolic equations are described in [15].

In [8] the existence of solutions of a linear hyperbolic equation equipped with initial

and boundary conditions is proved by means of the Rothe method and variational

inequalities. An application of the Rothe method to parabolic problems can be

found in [9], [18]. The monograph [16] provides existence results for hyperbolic and

parabolic problems, proved by means of energy functionals. The book contains many

illustrative examples.

Semidiscretization methods are applied to problems of mathematical biology. In

[20] the author considered an age-dependent model with an additional structure.

This structure can represent for example the size or weight of individuals. A bound-

ary condition, given by a renewal equation, includes a dependence on time and the

additional structure mentioned above. The main result of [20] is a convergence theo-

rem concerning a semidiscrete scheme with discrete time, age and with a continuous

parameter.

1.1. Formulation of the PDE. Let E = [0, T ]×R+, R+ = [0, +∞), c, T > 0 and

λ : E × R
2
+ → R. Suppose that v : R+ → R+, ṽ : [0, T ] → R+ are given. Consider
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the differential equation

(1.1)
∂u

∂t
(t, x) + c

∂u

∂x
(t, x) = u(t, x)λ

(

t, x, u(t, x),

∫

∞

0

u(t, y) dy

)

with the initial and boundary conditions

(1.2) u(0, x) = v(x) for x ∈ R+, u(t, 0) = ṽ(t) for t ∈ [0, T ].

We assume that the functions v and ṽ satisfy the consistency condition v(0) = ṽ(0).

1.2. Semidiscretization. Suppose that N is a given natural number. Then

h = T/N > 0 is the discretization parameter. Denote t(i) = i ·h for i = 0, . . . , N . We

will approximate the solution u(t(i), x) of problem (1.1)–(1.2) by a function u(i)(x)

which satisfies an ordinary differential equation. We write the Rothe method for

(1.1)–(1.2) as follows:

u(i)(x) − u(i−1)(x)

h
+ c

d

dx
u(i)(x)(1.3)

= u(i)(x)λ

(

t(i), x, u(i−1)(x),

∫

∞

0

u(i−1)(x) dx

)

, i = 1, . . . , N,

u(0)(x) = v(x) for x ∈ R+, u(i)(0) = ṽ(t(i)) for i = 1, . . . , N.(1.4)

By L1(R+) we denote the class of all real-valued Lebesgue integrable functions on

R+ with the standard L1-norm ‖ · ‖1. The symbols L∞(R+) and L∞([0, T ]) stand

for the classes of all real-valued measurable and essentially bounded functions on R+

and [0, T ], respectively, equipped with the essential supremum norms ‖ · ‖.
The data satisfy the following assumptions:

Assumption [v, ṽ]. Suppose that v : R+ → R+ is bounded, continuous, inte-

grable, vanishing at +∞, ṽ : [0, T ] → R+ is continuous, and there is a constant

Mv > 0 such that ‖v‖, ‖ṽ‖ 6 Mv.

Assumption [λ]. λ : E × R
2
+ → R is continuous, |λ| is bounded by a positive

constant Mλ, and

|λ(t, x, p̄, q̄) − λ(t, x, p, q)| 6 Lλ(|p̄ − p| + |q̄ − q|)

for (t, x, p, q), (t, x, p̄, q̄) ∈ E × R
2
+ with some Lλ > 0.

We know from the theory of linear ODE’s that, if the data λ and v are continu-

ous, then the solutions u(i) of the Cauchy problems (1.3), (1.4) are continuous too.

Moreover, u(i)(x) > 0 for i = 1, . . . , N , x ∈ R+, provided that v, ṽ are nonnegative.

We will prove that u(i) is bounded and integrable for i = 1, . . . , N .
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Suppose that |λ| 6 Mλ on E×R
2
+, whereMλ > 0. Consider the following auxiliary

comparison problem with respect to (1.3)–(1.4):

(1.5)
F (i) − F (i−1)

h
= F (i)Mλ, i = 1, . . . , N, F (0) = Mv.

This is a recurrence equation, however, it can be regarded as a system of ODE’s,

whose solutions are constant.

Lemma 1.1. Suppose that c > 0, λ is continuous, |λ| is bounded by a constant
Mλ > 0, and Assumption [v, ṽ] is satisfied. If M > Mλ for some M > 0, then there

is h0 > 0 such that h0Mλ < 1 and

u(i)(x) 6 F (i)
6 Mve

Mt(i)

for x ∈ R+, i = 0, . . . , N , h < h0, sufficiently small.

P r o o f. The first inequality is proved by induction on i ∈ {0, . . . , N}. The in-
equality u(0)(x) 6 F (0) for x ∈ R+ is obvious. Suppose that for some i = 1, . . . , N we

have u(i−1)(x) 6 F (i−1) on R+. Then we derive from (1.3) the differential inequality

c
d

dx
u(i)(x) +

u(i)(x)

h
6 u(i)(x)Mλ +

F (i−1)

h
, u(i)(0) 6 F (i).

By the comparison theorem on linear differential inequalities (see [21]) we obtain the

estimate u(i)(x) 6 F (i) for x ∈ R+. From (1.5) we obtain

F (i) = Mv

(

1 +
hMλ

1 − hMλ

)i

6 Mv(1 + hM)i.

The last inequality is satisfied for sufficiently small h. Therefore, the second assertion

is a consequence of the inequality 1 + ε 6 eε. �

Lemma 1.2. Suppose that the assumptions of Lemma 1.1 are satisfied. Then

∫

∞

0

u(i)(x) dx 6 (‖v‖1 + ct(i)‖ṽ‖M/Mλ)eMt(i)

for i = 0, . . . , N and sufficiently small h.

P r o o f. The assertion for i = 0 is obvious. If u(i−1) ∈ L1(R+) for some

i = 1, . . . , N , then the solution of (1.3) is given by

u(i)(x) = ṽ(t(i)) exp

(

−
∫ x

0

1 − hλ(i)(y)

ch
dy

)

+
1

ch

∫ x

0

u(i−1)(y) exp

(

−
∫ x

y

1 − hλ(i)(τ)

ch
dτ

)

dy,
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where

(1.6) λ(i)(x) = λ

(

t(i), x, u(i−1)(x),

∫

∞

0

u(i−1)(x) dx

)

.

Since |λ(t, x, p, q)| 6 Mλ for (t, x, p, q) ∈ E × R
2
+, we obtain the inequality

u(i)(x) 6 ṽ(t(i))e−((1−hMλ)/ch)x +
1

ch

∫ x

0

u(i−1)(y)e−((1−hMλ)/ch)(x−y) dy.

If we integrate this relation over R+, we get

∫

∞

0

u(i)(x) dx 6
ch

1 − hMλ
ṽ(t(i)) +

1

1 − hMλ

∫

∞

0

u(i−1)(x) dx.

By Assumption [v, ṽ] we have 0 6 ṽ(t(i)) 6 ‖ṽ‖ < +∞, hence we obtain the recur-
rence inequalities

‖u(i)‖1 6
ch

1 − hMλ
‖ṽ‖ +

1

1 − hMλ
‖u(i−1)‖1 for i = 1, . . . , N

with the initial condition ‖u(0)‖1 = ‖v‖1. By an elementary argument on recurrence

inequalities we get the estimate

‖u(i)‖1 6

(

1 +
hMλ

1 − hMλ

)i

‖v‖1 + c‖ṽ‖
(

(

1 +
hMλ

1 − hMλ

)i − 1

)

/

Mλ

for i = 0, . . . , N . Thus by the inequalities 1+ε 6 eε, Mλ/(1−hMλ) 6 M , we obtain

the desired assertion, provided that h is sufficiently small. �

2. Stability

Consider the perturbed Rothe method

ū(i)(x) − ū(i−1)(x)

h
+ c

d

dx
ū(i)(x)(2.1)

= ū(i)(t)λ

(

t(i), x, ū(i−1)(x),

∫

∞

0

ū(i−1)(x) dx

)

+ ξ
(i)
h (x), i = 1, . . . , N

with the initial condition

(2.2) ū(0)(x) = v(x) + ξ
(0)
h (x) for x ∈ R+,
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and the boundary condition

(2.3) ū(i)(0) = ṽ(t(i)) + ξ̂
(i)
h for i = 1, . . . , N.

The perturbations ξ
(i)
h for i = 0, . . . , N and ξ̂

(i)
h for i = 1, . . . , N may appear as

a result of inaccurate computations or a substitution into the semidiscrete scheme

(1.3)–(1.4) of other functions, for instance: the solution of the PDE (1.1)–(1.2),

restricted to the lines (t(i), x), i = 0, 1, . . . , N , x ∈ R+. Denote ε(i)(x) = ū(i)(x) −
u(i)(x) for i = 0, . . . , N . This is the error function, i.e. the difference between the

solutions of the perturbed problem (2.1)–(2.3) and the exact solution of the Rothe

method (1.3)–(1.4). Recall that λ(i)(x) is defined by (1.6) and denote

λ̄(i)(x) = λ

(

t(i), x, ū(i−1)(x),

∫

∞

0

ū(i−1)(x) dx

)

.

If we subtract (2.1)–(2.3) and (1.3)–(1.4), then we obtain the recurrence error rela-

tions

(2.4)
ε(i)(x) − ε(i−1)(x)

h
+ c

d

dx
ε(i)(x) = ū(i)(t)λ̄(i)(x) − u(i)(t)λ(i)(x) + ξ

(i)
h (x)

for i = 1, . . . , N , equipped with the initial and boundary conditions

ε(0)(x) = ξ
(0)
h (x) for x ∈ R+, ε(i)(0) = ξ̂

(i)
h for i = 1, . . . , N.

Assumption [ξ, ξ̂]. Suppose that the perturbations ξ
(i)
h , i = 0, . . . , N , ξ̂

(i)
h , i =

1, . . . , N , satisfy the conditions

ξ
(i)
h ∈ L1(R+) ∩ L∞(R+) for i = 0, . . . , N,

‖ξ(i)
h ‖ 6 αh, ‖ξ(i)

h ‖1 6 α
(1)
h for i = 0, . . . , N,

|ξ̂(i)
h | 6 α̂h for i = 1, . . . , N,

where αh, α
(1)
h , α̂h → 0 as h → 0.

Remark 2.1. If λ is Lipschitz continuous then the above Assumption [ξ, ξ̂] is

satisfied for the exact solution ū of the PDE (1.1)–(1.2), restricted to the grids,

provided that ū, ∂
∂t ū are of the class L∞(R+) ∩ L1(R+) (uniformly in t) and ∂

∂t ū

satisfies the “tempered” Hölder condition

∣

∣

∣

∂

∂t
ū(t + ∆t, x) − ∂

∂t
ū(t, x)

∣

∣

∣
6 |∆t|αHα(x)

for some α ∈ (0, 1], Hα ∈ L∞(R+) ∩L1(R+) and for all admissible (t + ∆t, x), (t, x).

Of course these sufficient conditions are simple but not optimal. There are many

cases of less regular solutions with nice L∞ ∩ L1 perturbations.
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Theorem 2.2. Suppose that c > 0 and Assumptions [v, ṽ], [λ], [ξ, ξ̂] are satisfied.

Then

max
i

‖ε(i)‖, max
i

‖ε(i)‖1 → 0 as h → 0.

P r o o f. Without loss of generality, in the same way as in Lemmas 1.1, 1.2, one

can prove that solutions of (2.1)–(2.3) satisfy the L∞ and L1 estimates:

(2.5) ‖ū(i)‖ 6 U, ‖ū(i)‖1 6 U1 for i = 0, . . . , N.

Assumption [λ] applied to (2.4) yields

(2.6)
∣

∣

∣

ε(i)(x)

h
+ c

d

dx
ε(i)(x)

∣

∣

∣
6

|ε(i−1)(x)|
h

+ Lλū(i)(x)

[

|ε(i−1)(x)| +
∫

∞

0

|ε(i−1)(x)| dx

]

+ Mλ|ε(i)(x)| + |ξ(i)
h (x)|

for i = 1, . . . , N . It follows from Assumption [ξ, ξ̂] that |ξ̂(i)
h | 6 α̂h for i = 1, . . . , N ,

thus we consider the following auxiliary problem associated with (2.6):

(2.7)
e(i)(x)

h
+ c

d

dx
e(i)(x) =

e(i−1)(x)

h
+ Γ(i)(x, e(i)), e(i)(0) = α̂h

for i = 1, . . . , N , where

Γ(i)(x, e(i)(x)) = LλUe(i−1)(x) + Lλū(i)(x)‖e(i−1)‖1 + Mλe(i)(x) + |ξ(i)
h (x)|

with e(0)(x) = |ξ(0)
h (x)| for x ∈ R+. Note that the linear ODE (2.7) leads to the

integral representation of e(i):

(2.8) e(i)(x) = e−x/che(i)(0) +
e−x/ch

ch

∫ x

0

e(i−1)(y)ey/ch dy

+
e−x/ch

c

∫ x

0

Γ(i)(y, e(i)(y))ey/ch dy.

The proof of the estimates |ε(i)| 6 e(i) goes by induction on i ∈ {0, . . . , N}. The
induction step

|ε(i−1)| 6 e(i−1) =⇒ |ε(i)| 6 e(i)

is based on the comparison theorem [21] (p. 96) as follows. Since |ε(i−1)| 6 e(i−1),

|ε(i)(0)| 6 e(i)(0) and (2.7) is a comparison ODE with respect to (2.6), we have

|ε(i)| 6 e(i) on R+.
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In order to get effective estimates of ‖e(i)‖ and ‖e(i)‖1 let us integrate (2.8) over

R+. Then we obtain the recurrence equation

(2.9) ‖e(i)‖1 = che(i)(0)+‖e(i−1)‖1 +h{Lλ(U +U1)‖e(i−1)‖1 +Mλ‖e(i)‖1 +‖ξ(i)
h ‖1}

with the initial condition ‖e(0)‖1 = ‖ξ(0)
h ‖1. By analogous means as in the proof of

Lemma 1.1, using (2.5), we derive from (2.7) the recurrence inequality

‖e(i)‖ 6 ‖e(i−1)‖ + h{LλU(‖e(i−1)‖ + ‖e(i−1)‖1) + Mλ‖e(i)‖ + αh}

with the initial condition

‖e(0)‖ 6 max{αh, α̂h}.

We find the following estimates of ‖e(i)‖1, ‖e(i)‖:

‖e(i)‖1 6 α
(1)
h et(i)M + (cα̂h + α

(1)
h )t(i)et(i)M ,

‖e(i)‖ 6 max{αh, α̂h}et(i)M + t(i)et(i)M (αh + LλU1‖e(N)‖1),

where M > Mλ + Lλ(U + U1). Hence we have

‖ε(i)‖1 6 ‖e(i)‖1, ‖ε(i)‖ 6 ‖e(i)‖ for i = 0, . . . , N,

and ‖ε(i)‖1, ‖ε(i)‖ tend to zero as h → 0, uniformly with respect to i. �

We formulate a simple conclusion for a classical McKendrick-von Foerster model

with a mortality coefficiet dependent on the total size of individuals.

Corollary 2.3. Let d : R+ → R+ be boundend and Lipschitz continuous. Sup-

pose that v : R+ → R+ is continuous, |v|, |v′|, |v′′| 6 V for some V ∈ L∞(R+) ∩
L1(R+), vanishing at +∞. Then the Rothe method corresponding to

∂u

∂t
+

∂u

∂x
= −u(t, x)d

(
∫

∞

0

u(t, y) dy

)

with the initial-boundary conditions u(0, x) = v(x) and u(t, 0) = v(0) is convergent.

P r o o f. The function λ(t, x, p, q) = −d(q) satisfies the assumption of the above

theorem. The assumptions on v imply the desired estimates of the perturbations for

the exact solution ū of the PDE restricted to the grids. �
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Remark 2.4. The results of the paper, under some slight modification of assump-

tions, remain true if we consider the following implicit Rothe method for (1.1)–(1.2):

u(i)(x) − u(i−1)(x)

h
+ c

d

dx
u(i)(x)(2.10)

= u(i)(t)λ

(

t(i), x, u(i)(x),

∫

∞

0

u(i)(x) dx

)

for i = 1, . . . , N,

u(0)(x) = v(x) for x ∈ R+, u(i)(0) = ṽ(t(i)) for i = 1, . . . , N.(2.11)

To be more precise, if u(i), i = 0, . . . , N , are solutions of (2.10)–(2.11), then u(i) ∈
L1(R+)∩L∞(R+) and the estimates of ‖u(i)‖, ‖u(i)‖1 are the same as those in Lem-

mas 1.1, 1.2. In the stability analysis of (2.10)–(2.11) we consider a system similar to

(2.6) and the corresponding comparison problems for errors in ‖·‖, ‖·‖1. Under the

assumptions of Theorem 2.2 with the additional condition h0(Mλ +Lλ(U +U1)) < 1,

we obtain the stability criterion for the implicit Rothe method (2.10)–(2.11).

Remark 2.5. Due to the Lax-Richtmyer equivalence theorem, convergence of

a scheme is equivalent to its stability and consistency, provided that the problem is

linear, cf. [11]. The same statement holds also for nonlinear problems, see [7]. We

provide here a brief description of the consistency for our problem.

Suppose that the data v, ṽ are such that the derivatives v′, ṽ′ exist, v, v′ ∈ L1(R+)∩
L∞(R+), ṽ, ṽ′ are bounded on [0, T ] and there are α ∈ (0, 1), L∗ : R+ → R+ such

that L∗ ∈ L1(R+) ∩ L∞(R+) and

|v′(x + ∆x) − v′(x)| 6 L∗(x)|∆x|α on R+

for |∆x| 6 1. Moreover, λ : E × R+ → R satisfies the Lipschitz condition with

respect to (t, x, u, z) on E ×R
2. Then the Rothe method (1.3)–(1.4) is consistent at

a solution of (1.1)–(1.2), see [17].

Remark 2.6. Suppose that real numbers c, T, X > 0 and a function d : R → R+

are given. Consider the differential equation

(2.12)
∂u

∂t
(t, x) + c

∂u

∂x
(t, x) = −d

(
∫ X

0

u(t, y) dy

)

u(t, x)

on [0, T ]× [0, X ] with the initial and boundary conditions

(2.13) u(0, x) = v(x) for x ∈ [0, X ], u(t, 0) = ṽ(t) for t ∈ [0, T ],

597



such that v(0) = ṽ(0). Problem (2.12)–(2.13) with c = 1 was considered in [10].

Denote z(t) =
∫ X

0 u(t, y) dy. Using the method of characteristics one can write

a solution of the above problem:

(2.14) u(t, x) =















ṽ
(

t − x

c

)

exp

(

−
∫ t

t−x/c

d(z(s)) ds

)

, x < ct,

v(x − ct) exp

(

−
∫ t

0

d(z(s)) ds

)

, X > x > ct.

If t ∈ [0, T ] and 0 6 ct 6 X , then z satisfies the integral equation

z(t) = c

∫ t

0

ṽ(y) exp

(

−
∫ t

y

d(z(s)) ds

)

dy +

∫ X−ct

0

v(y) exp

(

−
∫ t

0

d(z(s)) ds

)

dy,

which is equivalent to the differential-integral equation

(2.15) z′(t) + z(t)d(z(t)) = cṽ(t) − cv(X − ct) exp

(

−
∫ t

0

d(z(s)) ds

)

with the initial condition z(0) =
∫ X

0 v(x) dx. If t ∈ [X/c, T ], then z satisfies the

integral equation

z(t) =

∫ X

0

ṽ

(

t − x

c

)

exp

(

−
∫ t

t− x

c

d(z(s)) ds

)

dx,

or equivalently

(2.16) z′(t) + z(t)d(z(t)) = cṽ(t) − cṽ
(

t − X

c

)

exp

(

−
∫ t

t−X/c

d(z(s)) ds

)

.

Suppose that an initial function v is defined on R+ and v ∈ L1(R+) ∩ L∞(R+).

Then we can consider equation (2.12) on [0, T ] × R+. A solution of problem (2.12)

on [0, T ] × R+ can be computed by the same method as the case (2.12)–(2.13) on

[0, T ] × [0, X ]. Moreover, solutions of this problem on [0, T ] × [0, X ] tend to the

solution on [0, T ]× R+.

Example. Consider problem (2.12)–(2.13) with c = 1, T = 10, X = 2 and

d(x) = x, equipped with the initial and boundary conditions

(2.17) v(x) = 1 for x ∈ [0, X ]; ṽ(t) = e−t for t ∈ [0, T ].

This problem was discussed in [10], page 434. Solutions of (2.15), (2.16) are ap-

proximated by a finite difference method. Then we find an approximate solution of

problem (2.12)–(2.13), based on formula (2.14). In our numerical experiment we set

h = 10−4, N = 105. The integrals in the above formulas are approximated by the

trapezoidal rules. Figure 1 displays the approximation of z obtained by the above

procedure, whereas Figure 2 presents the approximation of u.
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Figure 1. Numerical approximation of z with h = 10−4

0
0.5

1
1.5

2

x
012345 t

0

0.2

0.4

0.6

0.8

1

u

Figure 2. Approximate solution of (2.12), (2.13) with v(x) = 1, ṽ(t) = e−t

Consider the Rothe method for (2.12)–(2.13) with the initial and boundary data

(2.17). Then we get the recurrence relations

d

dx
u(i)(x) + u(i)(x)

(

z(i−1) +
1

h

)

=
u(i−1)(x)

h
, u(i)(0) = ṽ(i)

for i = 1, . . . , N , where z(i) =
∫ 2

0 u(i)(x) dx. If we integrate the above differential

equations over [0, 2], we obtain

z(i) =
ṽ(i) − u(i)(2) + z(i−1)/h

z(i−1) + 1/h
, z(0) = 2.
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The solution is given by

u(i)(x) = ṽ(i)e−(z(i−1)+1/h)x +
1

h

∫ x

0

u(i−1)(y)e−(x−y)(z(i−1)+1/h) dy

for i = 1, . . . , N . In our experiment we approximate the functions u(i) by piecewise

linear functions û(i), i = 1, . . . , N , given by

û(i)(y) = u
(i)
j

H(j + 1) − y

H
+ u

(i)
j+1

y − Hj

H
, y ∈ [Hj, H(j + 1)]

for j = 0, . . . , 2/H − 1, where H =
√

h and

u
(i)
j = ṽ(i)e−(z(i−1)+1/h)Hj +

1

h

j−1
∑

k=0

∫ H(k+1)

Hk

û(i−1)(y)e−(Hj−y)(z(i−1)+1/h) dy

for j = 1, . . . , 2/H with the initial data u
(0)
j = 1, j = 0, . . . , 2/H. Figure 3 shows the

approximate solution of (2.12)–(2.13) obtained by the Rothe method. Computations

were performed by Octave Ver. 3.4.3.
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Figure 3. The Rothe method for (2.12), (2.13) with v(x) = 1, ṽ(t) = e−t
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