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Abstract. This paper deals with multivalued identification problems for parabolic equa-
tions. The problem consists of recovering a source term from the knowledge of an addi-
tional observation of the solution by exploiting some accessible measurements. Semigroup
approach and perturbation theory for linear operators are used to treat the solvability in
the strong sense of the problem. As an important application we derive the corresponding
existence, uniqueness, and continuous dependence results for different degenerate identifica-
tion problems. Applications to identification problems for the Stokes system, Poisson-heat
equation, and Maxwell system are given to illustrate the theory.
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1. Introduction

Using partial differential equations to model physical systems is one of the oldest

activities in applied mathematics. A complete model requires certain state inputs in

the form of initial and/or boundary data together with what might be called structure

inputs such as coefficients or source terms which are related to the physical properties

of the system. When some of the required inputs are not available we may be able to

determine the missing inputs from outputs that are measured rather than computed

by formulating and solving an appropriate inverse problem. In particular, when

the missing inputs are one or more unknown coefficients in the partial differential

equation, the problem is called a coefficient identification problem, and when a source

term is missing it is a source identification problem (see [4], [10], [14], [21], [22]).

Inverse problems lie at the heart of scientific inquiry and technological develop-

ment. Applications include a number of medical as well as other imaging techniques,
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location of oil and mineral deposits in the earth’s substructure, creation of astrophys-

ical images from telescope data, finding cracks and interfaces within materials, shape

optimization, model identification in growth processes and, more recently, modelling

in the life sciences. During the last 10 years or so there have been significant devel-

opments both in the mathematical theory and applications of inverse problems.

We point out that the problem of identifying a linear source in nondegenerate

parabolic equations is very popular and widely studied in the literature concerning

inverse problems for PDEs. The question of uniqueness has been solved in [7], [8],

[13] by a method based on local Carleman estimates. There have been many papers

dealing with the Lipschitz stability for parabolic problems (see for instance [12]).

All the Lipschitz stability results were obtained using global Carleman estimates,

which were first introduced to prove observability inequalities and null controllability

results. Semigroup theory and fixed point arguments are also applied in the field of

inverse problems by Prilepko et al. [23, Chapter 7], Orlovsky [19], [20], Awawdeh [4],

[5], [6], Lorenzi [15], [16], [17], [18].

However, to the authors’ knowledge, degenerate inverse problems for parabolic

systems have not been studied thoroughly yet, even though this class of operators

occurs in interesting theoretical and applied problems such as heat conduction pro-

cesses, geophysics, controllability, oil search and underground filtration (see, e.g., [1],

[2], [3] and [7], [8]). The main difficulties for these inverse problems come from the

fact that the operators associated with the problem may have no bounded inverse

and so the classical theory of semigroups does not apply.

Let X be a Banach space endowed with the norm ‖ · ‖, let M and L be two single-

valued linear operators in X , and M∗ be the adjoint operator of M . Let z ∈ X ,

let ϕ : X → R+ be a C1 functional and let us consider the following identification

problems for degenerate equations:

(IP1) Find f ∈ C1([0, τ ];R) and a strict solution u ∈ C1([0, τ ]; X) of the degener-

ate problem
{

M
du(t)

dt
= Lu(t) + Mf(t)z, 0 6 t 6 τ,

u(0) = u0,

satisfying the additional condition

ϕ[u(t)] = g(t), 0 6 t 6 τ.

(IP2) Find f ∈ C1([0, τ ];R) and a strict solution v ∈ C1([0, τ ]; X) of the degenerate

problem
{

M∗ dMv(t)

dt
= Lv(t) + M∗f(t)z, 0 6 t 6 τ,

Mv(0) = u0,
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satisfying the additional condition

ϕ[Mv(t)] = g(t), 0 6 t 6 τ.

Roughly speaking, we will use the semigroup approach and perturbation theory for

linear operators to treat problems of the form (IP1)–(IP2). This approach reduces

the problems to the multivalued problem:

(IP3) Find f ∈ C1([0, τ ];R) and a strict solution u ∈ C1([0, τ ]; X) of the problem















du(t)

dt
∈ Au(t) + f(t)z, 0 6 t 6 τ,

u(0) = u0,

ϕ[u(t)] = g(t), 0 6 t 6 τ,

where A is a multivalued linear operator that generates a c0-semigroup on X . It

shows all its power when A is dissipative, because then we are able to treat even

nonlinear operators A. However, maximal dissipativity of A is in general achieved

only with respect to weak norms, for example, norms of distribution spaces H−m.

Here we exploit the linearity of the operator involved to develop a theory for the

multivalued problem that seems much more satisfactory from this point of view.

The rest of the paper is organized as follows. In the next section, some definitions

and preliminary results are introduced. Section 3 is devoted to the global existence in

time and the uniqueness results of the identification problems (IP1)–(IP3). Section

4 is devoted to different applications of our results including identification problems

related to the Navier-Stokes system, Maxwell equations, and Poisson-heat equations.

2. Preliminary Results

We denote by X a Banach space with norm ‖ · ‖ and A : D(A) → X is the

infinitesimal generator of a c0-semigroup of bounded linear operators T (t), t > 0, on

X . It is well known that A is closed and its domain D(A) equipped with the graph

norm

‖x‖A = ‖x‖ + ‖Ax‖

becomes a Banach space, which we shall denote by XA.

Let L and M be two single-valued, closed linear operators in X with D(L) ⊂

D(M). We are concerned with the resolvent of the multivalued linear operator

LM−1. In order to represent (λ − LM−1)−1 by L and M , we introduce the notion

̺M (L) of the M resolvent set of L by:

̺M (L) = {λ ∈ C : λM − L has a single-valued and bounded inverse on X}
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and the bounded operator (λM −L)−1 is called the M resolvent of L. In subsequent

sections we shall need the following assertion concerning multivalued linear operators.

Theorem 1 ([11]). Let A be a multivalued linear operator on X such that A− β

is maximal dissipative with some real number β, i.e., A satisfies

(1) Re(f, u)X 6 β‖u‖2
X for all f ∈ Au

with the range condition

(2) R(λ0 − A) = X for some λ0 > β.

Then, ̺(A) ⊃ (β,∞) and A satisfies

‖(λ − A)−1‖L(X) 6
1

λ − β
, λ > β.

By virtue of Theorem 1, if A is a multivalued linear operator on X with a maximal

dissipative A − β, β ∈ R, a semigroup T (t) = etA is generated by A on the whole

space X .

In the sequel, special attention is being paid to necessary and sufficient conditions

under which one can determine a unique solution of the multivalued Cauchy problem:

u′(t) ∈ Au(t) + f(t), 0 6 t 6 T,(3)

u(0) = u0.(4)

This type of situation is covered by the following result.

Theorem 2 ([11]). Let X be a Banach space and A be a multivalued linear

operator generating a c0-semigroup T (t) on X . For any f ∈ C1([0, T ]; X) and any

u0 ∈ D(A), the function

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s) ds

is the unique solution to the multivalued problem (3)–(4).

The following result from perturbation theory for linear operators will be helpful

in the sequel.
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Theorem 3 ([9]). Let X be a Banach space and let A be the infinitesimal gener-

ator of a c0-semigroup T (t) on X . If B : XA −→ XA is a continuous linear operator,

then A + B is the infinitesimal generator of a c0-semigroup on X .

3. Main Results

Let us first consider the multivalued identification problem (IP3) in a Banach

space X :

du(t)

dt
∈ Au(t) + f(t)z, 0 6 t 6 τ,(5)

u(0) = u0,(6)

ϕ[u(t)] = g(t), 0 6 t 6 τ.(7)

The following result allows to formulate some conditions under which one can find a

unique strong solution to the identification problem (5)–(7).

Theorem 4. Let A be a multivalued linear operator that generates a c0-semigroup

on X , z ∈ X , u0 ∈ D(A), g ∈ C1([0, τ ];R), ϕ ∈ X∗, and ϕ[z] 6= 0. Then the

identification problem (5)–(7) possesses a unique solution in the class of functions

u ∈ C1([0, τ ]; D(A)), f ∈ C1([0, τ ];R).

P r o o f. By applying the linear functional ϕ to both sides of (5) and using (7),

we have

g′(t) ∈ ϕ[Au(t)] + f(t)ϕ[z],

and if ϕ[z] 6= 0, we obtain

(8) f(t) ∈
1

ϕ[z]
(g′(t) − ϕ[Au(t)]).

Substituting (8) in (5), we get

(9) u′(t) ∈ Au(t) +
1

ϕ[z]
(g′(t) − ϕ[Au(t)])z.

By defining the operator

(10) Bx =
−1

ϕ[z]
(ϕ[Ax])z,
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then (9) becomes

(11) u′(t) ∈ (A + B)u(t) +
1

ϕ[z]
g′(t)z.

The boundedness of the operator B in XA follows from the estimate

‖B‖A = sup
‖x‖A=1

‖Bx‖

= sup
‖x‖A=1

∥

∥

∥

−1

ϕ[z]
(ϕ[A(x)])z

∥

∥

∥

6 sup
‖x‖A=1

1

|ϕ[z]|
‖z‖‖ϕ‖‖Ax‖

6
1

|ϕ[z]|
‖z‖‖ϕ‖.

This proves that B is a bounded linear operator on XA. By virtue of Theorem 3,

A + B is the infinitesimal generator of a semigroup S(t), t > 0. Since u0 ∈ D(A),

Theorem 2 implies that the Cauchy problem (5)–(6) has a unique solution

(12) u(t) = S(t)u0 +
1

ϕ[z]

∫ t

0

S(t − s)g′(s)z ds,

and by (8) and (12), f(t) is uniquely determined. Therefore, the problem (5)–(7)

has a unique solution (u, f) and the proof is completed. �

We now turn our attention to degenerate identification problems. Consider the

degenerate identification problem (IP1) in the Banach space X , where M and L are

single-valued linear operators. Note that M may have no bounded inverse and so

the classical theory of semigroups does not apply here.

We assume the resolvent set ̺M (L) contains a region

(13) Σγ = {λ ∈ C : Re(λ − γ) > −c(|Im λ| + 1)α}, γ ∈ R,

and the M resolvent satisfies

(14) ‖(λM − L)−1M‖L(X) 6
C

(|λ − γ| + 1)β
, λ ∈ Σγ ,

with some exponents 0 < β 6 α 6 1 and constants c, C > 0.

We can now prove the existence and uniqueness theorem of solutions to the iden-

tification problem (IP1).
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Theorem 5. Let X , Y be two Banach spaces such that X ⊂ Y , M is a bounded

linear operator from X to Y and L is a single-valued closed linear operator in Y with

D(L) ⊂ X , z ∈ X , u0 ∈ X , g ∈ C1([0, τ ];R), ϕ ∈ X∗, ϕ[z] 6= 0 and let (13) and (14)

be satisfied. Then, problem (IP1) possesses a unique solution (u, f) such that

u ∈ C1((0, τ ]; X), Lu ∈ C((0, τ ]; Y ), f ∈ C([0, τ ];R).

P r o o f. We rewrite the identification problem (IP1) into the multivalued form

(15)















du

dt
∈ M−1Lu(t) + f(t)z, 0 6 t 6 τ,

u(0) = u0,

ϕ[u(t)] = g(t)

in the spaceX . Notice thatM−1L acts inX . In addition, the change of the unknown

function to uγ(t) = e−γtu(t) yields that (15) is regarded as a multivalued problem

of the form (5)–(7) with the operator coefficient A = M−1L− γ. We can verify that

̺M (L) ⊂ ̺(LM−1) and M(λM − L)−1 = (λ − LM−1)−1 (see [11]). It follows for

λ + γ ∈ ̺M (L) that

(λ − A)−1 = ((λ + γ)M − L)−1M.

In this line, (13) and (14) yields directly that the resolvent set ̺(A) contains a region

(16) Σ = {λ ∈ C : Re λ > −c(|Im λ| + 1)α}, γ ∈ R,

and the resolvent (λ − A)−1 satisfies

(17) ‖(λ − A)−1‖L(X) 6
C

(|λ| + 1)β
, λ ∈ Σ,

with some exponents 0 < β 6 α 6 1 and constants c, C > 0. Formulae (16) and (17)

ensure that the multivalued linear operator A generates an infinitely differentiable

semigroup on X (see [2]). Therefore, the reduced multivalued problem (5)–(7) pos-

sesses a unique strict solution (u, f). Clearly uγ is a strict solution to (5)–(7) if and

only if u is a strict solution to the identification problem (IP1) in the sense

u ∈ C1((0, τ ]; X), Lu ∈ C((0, τ ]; Y ), f ∈ C([0, τ ];R).

�

Continuity of the solution u(t) at t = 0 in the topology of X is achieved as follows.
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Theorem 6. Let u0 ∈ L−1(R(M)). In the case when α = β = 1, let u0 ∈

L−1(R(M)). Then, the solution u obtained in Theorem 5 is continuous at t = 0 in

the norm of X , i.e. u ∈ C([0, τ ]; X) with u(0) = lim
t→0

u(t) = u0.

P r o o f. Since in this case D(A) = D(M−1L) = L−1(R(M)), the continuity of

u(t) at t = 0 in the topology of X is obtained. �

The identification problem (IP2) can be handled in the same manner, provided

that we assume:

Re(Lv, v)X 6 β‖Mv‖2
X for all v ∈ D(L),(18)

R(λ0M
∗M − L) ⊃ R(M∗),(19)

and

(20) (λ0M
∗M − L)−1 is single-valued on R(M∗) with some λ0 > β.

Then we prove the following theorem.

Theorem 7. Let M be a bounded linear operator on the Banach space X , M∗

is the adjoint operator of M , L is a single-valued linear operator in X , z ∈ X ,

g ∈ C1([0, τ ];R), ϕ ∈ X∗, ϕ[z] 6= 0 and let (18)–(20) be satisfied. Then, for any u0

satisfying

(21) u0 = Mv0, Lv0 ∈ R(M∗) with some v0 ∈ D(L),

problem (IP2) possesses a unique solution (v, f) such that

Mv ∈ C1((0, τ ]; X), Lv ∈ C((0, τ ]; X), f ∈ C([0, τ ];R).

P r o o f. By changing the unknown function to u(t) = Mv(t), we rewrite the

identification problem (IP2) into a multivalued equation of the form (5)–(7) with

the coefficient operator A = (M∗)−1LM−1. Then A − β is shown to be maximal

dissipative in X . Indeed, if h ∈ Au, then M∗h = Lv and Mv = u with some

v ∈ D(L), so

(h, u)X = (h, Mv)X = (Lv, v)X .

This shows that (1) follows from (18). On the other hand, for any h ∈ X , we have

by (18) that

M∗h = (λ0M
∗M − L)v with some v ∈ D(L).
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If we put u = Mv, then v ∈ M−1u and λ0u−h ∈ (M∗)−1Lv. That is, h ∈ (λ0−A)u

and (2) is satisfied. According to Theorem 1, A − β is maximal dissipative in X

and so A is the infinitesimal generator of a c0-semigroup on X . It is easy to verify

that u0 ∈ D(A) is equivalent to (21). Therefore, the reduced multivalued problem

(5)–(7) possesses a unique strict solution (u, f). It is also easy to verify that u = Mv

is a strict solution to (5)–(7) if and only if v is a strict solution to the identification

problem (IP2) in the sense

Mv ∈ C1((0, τ ]; X), Lv ∈ C((0, τ ]; X), f ∈ C([0, τ ];R).

The uniqueness of the solution v follows from the invertibility of (λ0M
∗M − L)−1,

as assumed in (20). �

4. Applications

4.1. Identification problem of the system of Navier-Stokes equations.

Let Ω ⊂ R
n be a bounded domain with smooth boundary ∂Ω. We focus our

attention on the system consisting of the linearized Navier-Stokes equations

(22)
∂u

∂t
= ν∆u −∇p + f(t)h(x), (x, t) ∈ Ω × (0, T ],

and the incompressibility equation

(23) div u = 0, (x, t) ∈ Ω × (0, T ].

The direct problem here consists of finding a vector-valued function

u : Ω × [0, T ] → R
n

and a scalar-valued function

p : Ω × [0, T ] → R,

satisfying the system (22)–(23) with the supplementary boundary and initial condi-

tions

u = 0, (x, t) ∈ ∂Ω × (0, T ],(24)

u(x, 0) = u0(x), x ∈ Ω.(25)
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Here h(x) is a given function, u0(x) is an initial function and ν = const > 0. The

system (22)–(25) permits us to describe the motion of a viscous incompressible fluid

in the domainΩ, where the velocity of the fluid is well-characterized by the function u,

while the function p is associated with the pressure. The coefficient ν is called the

coefficient of kinematic viscosity. The fluid is supposed to be homogeneous with unit

density. We impose a normalization condition on the pressure values. For example,

one way of proceeding is to require that

(26)

∫

Ω

p(x, t) dx = 0.

We proceed further by completely posing the inverse problem for the Navier-Stokes

equation assuming that the external force function f is unknown. In this line, we

impose the subsidiary information in the form of integral overdetermination

(27)

∫

Ω

(u(x, t), w(x)) dx = g(t) ∀t ∈ [0, T ],

where the vector-valued function w(x) and the scalar-valued function g(t) are given.

We show that the identification problem (22)–(27) can be formulated by using a

multivalued problem of the form (5)–(7).

Take X = {L2(Ω)}n. It is well known that X is the orthogonal direct sum of two

subspaces:

{

Xs = The closure of {u ∈ C∞
0 (Ω): div u = 0 in Ω} in X,

Xg = {∇p : p ∈ H1(Ω)}.

In X we define the multivalued linear operator A as follows:

{

D(A) = {H2(Ω)}n ∩ {H1
0 (Ω)}n ∩ Xs,

Au = ∆u + Xs.

Then (22)–(27) is written in the form















du

dt
∈ νAu + f(t)h(x), 0 < t 6 T,

u(0) = u0,

ϕ[u] = g(t)

with u0 ∈ Xs.
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As a matter of fact, this formulation is essentially equivalent to the classical one

which is written as















du

dt
= νAsu + Pf(t)h(x), 0 < t 6 T,

u(0) = u0,

ϕ[u] = g(t)

in the subspace Xs by using a linear section As (called the Stokes operator) of A

such that
{

D(As) = D(A),

As = P∆u,

P being the orthogonal projection on Xs, P : X → Xs.

For u ∈ D(A), f ∈ (λ − νA)u if and only if (λ − νAs)u = Pf . Therefore,

(λ − νA)−1 = (λ − νAs)
−1P with ̺(A) = ̺(As). Since νAs is the generator of an

analytic semigroup on Xs, the same is true for νA on X with

etνA = etνAsP, t > 0.

In particular, it follows for g ∈ Xs = D(A) that

etνAg = etνAsg, t > 0,

and for h ∈ Xg

etνAh = 0, t > 0.

4.2. The identification problem related to the system of Maxwell equa-

tions.

Consider the system of Maxwell equations in a bounded domain Ω ⊂ R
3:

rot E = −
∂B

∂t
,(28)

rot H =
∂D

∂t
+ J,

whereE is the vector of the electric field strength,H is the vector of the magnetic field

strength, D and B denote the electric and magnetic induction vectors, respectively.

In what follows, we denote by J the current density.

In the sequel, we deal with a linear medium in which the vectors of strengths are

proportional to those of inductions in accordance with the governing laws:

(29) D = εE, B = µH,
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and we assume, in addition, that Ohm’s law

(30) J = σE + I

is satisfied in the domain Ω, where ε is the dielectric permeability of the medium, µ

is the magnetic permeability, σ is the electric conductance, and I the density of the

extraneous current. Further development is connected with the initial conditions for

the vectors of the electric and magnetic inductions:

D(x, 0) = D0(x),(31)

B(x, 0) = B0(x).

The direct problem here consists of finding the functions E, D, H, B from the system

(28)–(31) for the given functions ε, µ, σ, I, D0, and B0. The formulation of an inverse

problem involves the density of the extraneous current as an unknown of the structure

(32) I(x, t) = f(t)p(x),

where the matrix p(x) of size 3×3 is known for all x ∈ Ω, while the unknown vector-

valued function f(t) is sought. To complete such a setting of the problem, we take

the integral overdetermination in the form

(33)

∫

Ω

E(x, t)w(x) = g(t), 0 6 t 6 T,

where the function w(x) is known in advance. The system of equations (28)–(33)

is treated as the inverse problem for the Maxwell system related to the unknown

functions E, H and f .

By setting

v =

(

E

H

)

, c(x) =

(

ε(x) 0

0 µ(x)

)

,(34)

b(x) = −

(

σ(x) 0

0 0

)

, f(x, t) = −

(

I(x, t)

0

)

,

the system (28)–(31) can be written as

(35)
∂c(x)v

∂t
=

3
∑

i=1

ai

∂v

∂xi

+ b(x)v + f(x, t), (x, t) ∈ R
3 × [0, T ],

with certain 6 × 6 matrices ai, i = 1, 2, 3.
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The quantities ε(x), µ(x) and σ(x) are assumed to be real matrices whose com-

ponents are bounded measurable functions in R
3. In addition, we assume:

ε(x) is symmetric and ε(x) > 0 for all x ∈ R
3;(36)

µ(x) is symmetric and µ(x) > δ, for some δ > 0 uniformly in x ∈ R
3;(37)

({γε(x) + σ(x)}ξ, ξ) > δ‖ξ‖2, ξ ∈ R
3,(38)

for some δ > 0 and γ > 0 uniformly in x ∈ R
3. Further treatment of the system

(28)–(33) as an abstract problem is connected with introducing the Lebesgue space

X = (L2(R3))3 × (L2(R3))3 = (L2(R3))6,

using the bounded operator M of multiplication by c(x) acting in X (the adjoint

operator M∗ of M satisfies M∗ = M) and the closed linear operator L satisfies, for

each v ∈ D(L) the set of relations

D(L) =

{

v ∈ X :
3

∑

i=1

ai

∂v

∂xi

∈ X

}

,

Lv =
3

∑

i=1

ai

∂v

∂xi

+ b(x)v.

Accordingly, the symbols v(t) and f(t)z will refer to the same functions v(x, t) and

f(t)p(x) but viewed as abstract functions of the variable t with values in the spaceX .

The symbol u0 will be used in treating the function u0(x) = (D0(x), B0(x)) as the

element of the space X . With these ingredients, the system (28)–(33) reduces to the

inverse problem (IP2) in the Banach space X .

Condition (18) is verified as follows. Let v ∈ Y = (H1(R3))6 ⊂ D(L). Then,

(Lv, v)X = −

(

v,

3
∑

i=1

ai

∂v

∂xi

+ b(x)v

)

X

+ (b(x)v, v)X + (v, b(x)v)X ;

so

Re(Lv, v)X = Re(b(x)v, v)X = −Re(σE, E)L2 .

In this line, (37) and (38) yield that

(39) Re(Lv, v)X 6 − δ(‖E‖2
L2 + ‖H‖2

L2) + γ(ε(x)E, E)L2 + (µ(x)H, H)L2

6 − δ‖v‖2
X + λ((ε(x)E, E)L2 + (µ(x)H, H)L2)

= − δ‖v‖2
X + λ‖Mv‖2

X ,
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where λ > max{γ, 1}. This estimate is in fact verified for v ∈ D(L) also, because

there exists a sequence vn ∈ Y such that vn → v and Lvn → Lv in X . Thus, (1)

holds with β = max{γ, 1}.

Let us next verify (19) and (20). Since (39) yields that

‖(λM∗M − L)v‖X > δ‖v‖X , v ∈ D(L),

(λM∗M − L) is seen to be one-to-one and to have a closed range. Therefore, it

suffices to verify that R(λM∗M − L)⊥ = {0}. Let w ∈ R(λM∗M − L)⊥. Then

w ∈ D(L∗) and (λM∗M −L∗)w = 0. On the other hand, since the principal part of

L is symmetric, w ∈ D(L). Therefore, (39) yields

−δ‖w‖2
X + λ‖Mw‖2

X > Re(Lw, w)X = Re(w, L∗w)X = λ‖Mw‖2
X ,

and so w = 0.

As a result, if conditions (36)–(38) are satisfied, then a solution E, H, p of the

identification problem (28)–(33) exists and it is unique in the class of functions

E, H ∈ C([0, T ]; (L2(R3))3), p ∈ C([0, T ];R3).

4.3. Identification problem of the Poisson-Heat equation.

In several applications, when the temperature of a thermal body, subjected to

an external supply of heat, is to be determined, the source itself is often unknown

or scarcely known. So, we are faced with recovering both the temperature and the

unknown source. To compensate for the lack of information, suitable measurements

involving the temperature are given, as well as suitable assumptions on the source are

made. For instance, it is assumed to depend on a single space variable, i.e. on time

only, or to be the product of two functions, the first depending on the temperature

and the second on the space variable.

Consider the Poisson-heat equation:

(40) m(x)
∂u

∂t
= ∆u + m(x)f(t)h(x), (x, t) ∈ Ω × (0, T ],

v = 0, (x, t) ∈ ∂Ω × (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

with the supplementary condition

(41)

∫

Ω

η(x)u(x, t) dx = g(t) ∀t ∈ [0, T ]
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in a bounded region Ω ⊂ R
n with a smooth boundary ∂Ω. Here m(x) > 0 in Ω is a

given function in L∞(Ω), u0, η, h ∈ H−1(Ω), and g is a continuous function on [0, T ].

This problem is regarded as a problem of the form (IP1) in which M is the multi-

plication operator by m(x) and L is ∆ with the Dirichlet boundary conditions. As

the underlying space Y , we take H−1(Ω). Then L : H1
0 (Ω) → H−1(Ω). We can take

X = H1
0 (Ω), then M : X → L2(Ω) ⊂ Y . We can verify that (λM − L)−1, λ ∈ Σ,

exists as a bounded operator from X to Y . Consider the scalar product

〈(λM − L)−1Mu, ϕ〉H1

0
×H−1 = 〈u, M(λM − L)−1, ϕ〉H1

0
×H−1 .

Moreover, noting the identity

λM(λM − L)−1 = 1 + L(λM − L)−1,

we obtain that

(42) ‖M(λM − L)−1ϕ‖H−1 6 C|λ|−1‖ϕ‖H−1 , ϕ ∈ H−1(Ω).

Then it follows from (42) that

|〈(λM − L)−1Mu, ϕ〉H1

0
×H−1 | 6 C|λ|−1‖ϕ‖H−1‖u‖H1

0

,

and this immediately yields that (13) and (14) are valid with α = β = 1, γ = 0.

Therefore for any f ∈ Cσ([0, T ]; H1
0 (Ω)), σ > 0, and any u0 ∈ H1

0 (Ω), the problem

(40)–(41) possesses a unique solution

u ∈ C1([0, T ]; H1
0 (Ω)) ∩ C([0, T ]; H1

0 (Ω) ∩ H2(Ω)), f ∈ C([0, T ];R).

From Theorem 6, u is continuous at t = 0 if ∆u0 = mu1 with some u1 ∈ L2(Ω)

(note that mu1 belongs to the closure of R(M) in Y ).
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