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A model theory approach to structural limits

Jaroslav Nešetřil, Patrice Ossona de Mendez

Abstract. The goal of this paper is to unify two lines in a particular area of graph
limits. First, we generalize and provide unified treatment of various graph limit
concepts by means of a combination of model theory and analysis. Then, as an
example, we generalize limits of bounded degree graphs from subgraph testing
to finite model testing.
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Classification: 05C99

1. Introduction

Recently, graph sequences and graph limits are intensively studied, from diverse
point of views: probability theory and statistics, property testing in computer
science, flag algebras, logic, graphs homomorphisms, etc. Four standard notions
of graph limits have inspired this work:

– the notion of dense graph limit [4], [15];
– the notion of bounded degree graph limit [3], [2];
– the notion of elementary limit e.g. [12], [13];
– the notion of left limit developed by the authors [20], [21].

Let us briefly introduce these notions. Our combinatorial terminology is stan-
dard and we refer to the standard books (such as [12], [17], [21], [23]) or original
papers for more information.

The first approach consists in randomly picking a mapping from a test graph
and to check whether this is a homomorphism. A sequence (Gn) of graphs will
be said to be L-convergent if

t(F,Gn) =
hom(F,Gn)

|Gn||F |

converges for every fixed (connected) graph F .
The second one is used to define the convergence of a sequence of graphs with

bounded degrees. A sequence (Gn) of graphs with bounded maximum degrees
will be said to be BS-convergent if, for every integer r, the probability that the
ball of radius r centered at a random vertex of Gn is isomorphic to a fixed rooted
graph F converges for every F .

Supported by grant ERCCZ LL-1201 and CE-ITI of the Czech Ministry of Education.
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The third one is a general notion of convergence based on the first-order proper-
ties satisfied by the elements of the sequence. A sequence (Gi)i∈N is elementarily

convergent if, for every sentence φ there exists an integer nφ such that either all
the Gi with i > nφ satisfy φ or none of them do.

The fourth notion of convergence is based on testing existence of homomor-
phisms from fixed graphs: a sequence (Gn) is said to be left-convergent if, for every
graph F , either all but a finite number of the graphs Gn contain a homomorphic
image of F or only a finite number of Gn does. In other words, left-convergence
is a weak notion of elementary convergence where we consider primitive positive
sentences only.

These four notions proceed in different directions and, particularly, relate to
either dense or sparse graphs. The sparse–dense dichotomy seems to be a key
question in the area.

In this paper we provide a unifying approach to these limits. Our approach is
a combination of a functional analytic and model theoretic approach and thus ap-
plies to more general structures (rather than graphs). Thus we use term structural

limits .
The paper is organized as follows: In Section 2 we briefly introduce a gen-

eral machinery based on the Boolean algebras and dualities, see [10] for standard
background material. In Section 3 we apply this to Lindenbaum-Tarski alge-
bras to get a representation of limits as measures (Theorem 1). In Section 4 we
mention an alternative approach by means of ultraproducts (i.e. a non-standard
approach) which yields another representation (of course ineffective) of limits
(Proposition 4). In Section 5 we relate this to examples given in this section and
particularly state results for bounded degree graphs, thus extending Benjamini-
Schramm convergence [3] to the general setting of FO-convergence (Theorem 5).
In the last section, we discuss the type of limit objects we would like to construct,
and introduce some applications to the study of particular cases of first-order
convergence which are going to appear elsewhere.

2. Boolean algebras, Stone representation, and measures

Recall that a Boolean algebra B is an algebra with two binary operations ∨
and ∧, a unary operation ¬ and two elements 0 and 1, such that (B,∨,∧) is a
distributive lattice with minimum 0 and maximum 1 which is complemented (in
the sense that the complementation ¬ satisfies a ∨ ¬a = 1 and a ∧ ¬a = 0).

The smallest Boolean algebra, denoted 2, has elements 0 and 1. In this Boolean
algebra it holds 0 ∧ a = 0, 1 ∧ a = a, 0 ∨ a = a, 1 ∨ a = 1, ¬0 = 1, and ¬1 = 0.
Another example is the powerset 2X of a set X which has a natural structure
of Boolean algebra, with 0 = ∅, 1 = X , A ∨ B = A ∪ B, A ∧ B = A ∩ B and
¬A = X \A.

Key examples for us are the following:

Logical Example 1. The class of all first-order formulas on a language L, con-
sidered up to logical equivalence, form a Boolean algebra with conjunction ∨,
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disjunction ∧ and negation ¬ and constants “false” (0) and “true” (1). This
Boolean algebra will be denoted FO(L).

Also, we denote by FO0(L) the Boolean algebra of all first-order sentences
(i.e. formulas without free variables) on a language L, considered up to logical
equivalence. Note FO0(L) is a Boolean sub-algebra of FO(L).

Logical Example 2. Consider a logical theory T (with negation). The Lin-

denbaum-Tarski algebra LT of T consists of the equivalence classes of sentences
of T (here two sentences φ and ψ are equivalent if they are provably equivalent
in T ). The set of all the first-order formulas that are provably false from T forms
an ideal IT of the Boolean algebra FO0(L) and LT is nothing but the quotient
algebra FO0(L)/IT .

With respect to a fixed Boolean algebra B, a Boolean function is a function
obtained by a finite combination of the operations ∨, ∧, and ¬.

Recall that a function f : B → B′ is a homomorphism of Boolean algebras if
f(a ∨ b) = f(a) ∨ f(b), f(a ∧ b) = f(a) ∧ f(b), f(0) = 0 and f(1) = 1. A filter
of a Boolean algebra B is an upper set X (meaning that x ∈ X and y ≥ x
imply y ∈ X) that is a proper subset of B and that is closed under ∧ operation
(∀x, y ∈ X it holds x ∧ y ∈ X). It is characteristic for Boolean algebras that the
maximal filters coincide with the prime filters , that is, the (proper) filters X such
that a ∨ b ∈ X implies that either a ∈ X or b ∈ X . One speaks of the maximal
(i.e. prime filters) as of ultrafilters (they are also characterized by the fact that for
each a either a ∈ X or ¬a ∈ X). It is easily checked that the mapping f 7→ f−1(1)
is a bijection between the homomorphisms B → 2 and the ultrafilters on B.

A Stone space is a compact Hausdorff space with a basis of clopen subsets.
With a Boolean algebra B associate a topological space

S(B) = ({x, x is a ultrafilter in B}, τ),

where τ is the topology generated by all the KB(b) = {x, b ∈ x} (the subscript
B will be omitted if obvious). Then S(B) is a Stone space. By the well-known
Stone Duality Theorem [24], the mappings B 7→ S(B) and X 7→ Ω(X), where
Ω(X) is the Boolean algebra of all clopen subsets of a Stone space X , constitute a
one-one correspondence between the classes of all Boolean algebras and all Stone
spaces.

In the language of category theory, Stone’s representation theorem means that
there is a duality between the category of Boolean algebras (with homomorphisms)
and the category of Stone spaces (with continuous functions). The two contravari-
ant functors defining this duality are denoted by S and Ω and defined as follows:

For every homomorphism h : A → B between two Boolean algebra, we define
the map S(h) : S(B) → S(A) by S(h)(g) = g ◦ h (where points of S(B) are
identified with homomorphisms g : B → 2). Then for every homomorphism
h : A → B, the map S(h) : S(B) → S(A) is a continuous function. Conversely,
for every continuous function f : X → Y between two Stone spaces, define the
map Ω(f) : Ω(Y ) → Ω(X) by Ω(f)(U) = f−1(U) (where elements of Ω(X) are
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identified with clopen sets of X). Then for every continuous function f : X → Y ,
the map Ω(f) : Ω(Y ) → Ω(X) is a homomorphism of Boolean algebras.

We denote by K = Ω ◦ S one of the two natural isomorphisms defined by the
duality. Hence, for a Boolean algebra B, K(B) is the set algebra {KB(b) : b ∈ B},
and this algebra is isomorphic to B.

Thus we have a natural notion for convergent sequence of elements of S(B)
(from Stone representation follows that this may be seen as the pointwise conver-
gence).

Logical Example 3. Let B = FO0(L) denote the Boolean Lindenbaum-Tarski
algebra of all first-order sentences on a language L up to logical equivalence. Then
the filters of B are the consistent theories of FO0(L) and the ultrafilters of B are
the complete theories of FO0(L) (that is maximal consistent sets of sentences). It
follows that the closed sets of S(B) correspond to finite sets of consistent theories.
According to Gödel’s completeness theorem, every consistent theory has a model.
It follows that the completeness theorem for first-order logic — which states that
a set of first-order sentences has a model if and only if every finite subset of
it has a model — amounts to say that S(B) is compact. The points of S(B)
can also be identified with elementary equivalence classes of models. The notion
of convergence of models induced by the topology of S(B), called elementary

convergence, has been extensively studied.

An ultrafilter on a Boolean algebra B can be considered as a finitely additive
measure, for which every subset has either measure 0 or 1. Because of the equiv-
alence of the notions of Boolean algebra and of set algebra, we define the ba space

ba(B) of B as the space of all bounded additive functions f : B → R. Recall that
a function f : B → R is additive if for all x, y ∈ B it holds

x ∧ y = 0 =⇒ f(x ∨ y) = f(x) + f(y).

The space ba(B) is a Banach space for the norm

‖f‖ = sup
x∈B

f(x) − inf
x∈B

f(x).

(Recall that the ba space of an algebra of sets Σ is the Banach space consisting of
all bounded and finitely additive measures on Σ with the total variation norm.)

Let h be a homomorphism B → 2 and let ι : 2 → R be defined by ι(0) = 0 and
ι(1) = 1. Then ι ◦ h ∈ ba(B). Conversely, if f ∈ ba(B) is such that f(B) = {0, 1}
then ι−1 ◦ f is a homomorphism B → 2. This shows that S(B) can be identified
with a subset of ba(B).

One can also identify ba(B) with the space ba(K(B)) of finitely additive mea-
sure defined on the set algebra K(B). As vector spaces ba(B) is isomorphic to
ba(K(B)) and thus ba(B) is then clearly the (algebraic) dual of the normed vector
space V (B) (of so-called simple functions) generated by the indicator functions
of the clopen sets (equipped with supremum norm). Indicator functions of clopen



A model theory approach to structural limits 585

sets are denoted by 1K(b) (for some b ∈ B) and defined by

1K(b)(x) =

{
1 if x ∈ K(b)

0 otherwise.

The pairing of a function f ∈ ba(B) and a vector X =
∑n

i=1 ai1K(bi) is defined
by

[f,X ] =
n∑

i=1

aif(bi).

That [f,X ] does not depend on a particular choice of a decomposition of X
follows from the additivity of f . We include a short proof for completeness:
Assume

∑
i αi1K(bi) =

∑
i βi1K(bi). As for every b, b′ ∈ B it holds f(b) = f(b ∧

b′) + f(b ∧ ¬b′) and 1K(b) = 1K(b∧b′) + 1K(b∧¬b′) we can express the two sums as∑
j α

′
j1K(b′

j
) =

∑
j β

′
j1K(b′

j
) (where b′i∧b

′
j = 0 for every i 6= j), with

∑
i αif(bi) =∑

j α
′
jf(b′j) and

∑
i βif(bi) =

∑
j β

′
jf(b′j). As b′i ∧ b

′
j = 0 for every i 6= j, for x ∈

K(b′j) it holds α′
j = X(x) = β′

j . Hence α′
j = β′

j for every j. Thus
∑

i αif(bi) =∑
i βif(bi).
Note that X 7→ [f,X ] is indeed continuous. Thus ba(B) can also be identified

with the continuous dual of V (B). We now show that the vector space V (B) is
dense in the space C(S(B)) of continuous functions from S(B) to R, hence that
ba(B) can also be identified with the continuous dual of C(S(B)):

Lemma 1. The vector space V (B) is dense in C(S(B)) (with the uniform norm).

Proof: Let f ∈ C(S(B)) and let ǫ > 0. For z ∈ f(S(B)) let Uz be the preimage
by f of the open ball Bǫ/2(z) of R centered in z. As f is continuous, Uz is a open
set of S(B). As {K(b) : b ∈ B} is a basis of the topology of S(B), Uz can be
expressed as a union

⋃
b∈F(Uz)

K(b). It follows that
⋃
z∈f(S(B))

⋃
b∈F(Uz)

K(b) is

a covering of S(B) by open sets. As S(B) is compact, there exists a finite subset
F of

⋃
z∈f(S(B))F(Uz) that covers S(B). Moreover, as for every b, b′ ∈ B it holds

K(b) ∩K(b′) = K(b ∧ b′) and K(b) \ K(b′) = K(b ∧ ¬b′) it follows that we can
assume that there exists a finite family F ′ such that S(B) is covered by open sets
K(b) (for b ∈ F ′) and such that for every b ∈ F ′ there exists b′ ∈ F such that
K(b) ⊆ K(b′). In particular, it follows that for every b ∈ F ′, f(K(b)) is included
in an open ball of radius ǫ/2 of R. For each b ∈ F ′ choose a point xb ∈ S(B) such
that b ∈ xb. Now define

f̂ =
∑

b∈F ′

f(xb)1K(b)

Let x ∈ S(B). Then there exists b ∈ F ′ such that x ∈ K(b). Thus

|f(x) − f̂(x)| = |f(x) − f(xb)| < ǫ.

Hence ‖f − f̂‖∞ < ǫ. �
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It is difficult to exhibit a basis of C(S(B)) or V (B). However, every meet sub-
semilattice of a Boolean algebra B generating B contains (via indicator functions)
a basis of V (B):

Lemma 2. Let X ⊆ B be closed by ∧ and such that X generates B (meaning

that every element of B can be obtained as a Boolean function of finitely many

elements from X).
Then {1b : b ∈ X} ∪ {1} (where 1 is the constant function with value 1)

includes a basis of the vector space V (B).

Proof: Let b ∈ B. As X generates B there exist b1, . . . , bk ∈ X and a Boolean
function F such that b = F (b1, . . . , bk). As 1x∧y = 1x 1y and 1¬x = 1 − 1x
there exists a polynomial PF such that 1b = PF (1b1 , . . . ,1bk). For I ⊆ [k], the
monomial

∏
i∈I 1bi rewrites as 1bI where bI =

∧
i∈I bi. It follows that 1b is a

linear combination of the functions 1bI (I ⊆ [k]) which belong to X if I 6= ∅ (as
X is closed under ∧ operation) and equal 1, otherwise. �

We are coming to the final transformation of our route: One can see that
bounded additive real-value functions on a Boolean algebra B naturally define
continuous linear forms on the vector space V (B) hence, by density, on the Ba-
nach space C(S(B)) (of all continuous functions on S(B) equipped with supremum
norm). It follows (see e.g. [23]) from Riesz representation theorem that the topo-
logical dual of C(S(B)) is the space rca(S(B)) of all regular countably additive
measures on S(B). Thus the equivalence of ba(B) and rca(S(B)) follows. We
summarize all of this as the following:

Proposition 1. Let B be a Boolean algebra, let ba(B) be the Banach space of

bounded additive real-valued functions equipped with the norm

‖f‖ = sup
b∈B

f(b) − inf
b∈B

f(b),

let S(B) be the Stone space associated to B by Stone representation theorem,

and let rca(S(B)) be the Banach space of the regular countably additive measure

on S(B) equipped with the total variation norm.

Then the mapping CK : rca(S(B)) → ba(B) defined by CK(µ) = µ ◦K is an

isometric isomorphism. In other words, CK is defined by

CK(µ)(b) = µ({x ∈ S(B) : b ∈ x})

(considering that the points of S(B) are the ultrafilters on B).

Note also that, similarly, the restriction of CK to the space Pr(S(B)) of all
(regular) probability measures on S(B) is an isometric isomorphism of Pr(S(B))
and the subset ba1(B) of ba(B) of all positive additive functions f on B such
that f(1) = 1.

A standard notion of convergence in rca(S(B)) (as the continuous dual of
C(S(B))) is the weak ∗-convergence: a sequence (µn)n∈N of measures is conver-
gent if, for every f ∈ C(S(B)) the sequence

∫
f(x) dµn(x) is convergent. Thanks
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to the density of V (B) this convergence translates as pointwise convergence in
ba(B) as follows: a sequence (gn)n∈N of functions in ba(B) is convergent if, for
every b ∈ B the sequence (gn(b))n∈N is convergent. As rca(S(B)) is complete, so
is rca(B). Moreover, it is easily checked that ba1(B) is closed in ba(B).

In a more concise way, we can write, for a sequence (fn)n∈N of functions in
ba(B) and for the corresponding sequence (µfn)n∈N of regular measures on S(B):

lim
n→∞

fn pointwise ⇐⇒ µfn ⇒ µf .

The whole situation is summarized on Figure 1.

B ≈ K(B) S(B)

ba(B) ≈ ba(K(B)) rca(S(B))

C(S(B))

Stone duality

Continuous

dual

dense

subspace

(injection)

Continuous

dual

V (B)

Figure 1. Several spaces defined from a Boolean algebra, and
their inter-relations.

The above theory was not developed for its own sake but in order to demon-
strate a natural approach to structural limits. The next example is a continuation
of our main interpretation, which we started in Logical examples 2 and 3.

Logical Example 4. Let B = FO0(L) denote the Boolean algebra of all first-
order sentences on a language L up to logical equivalence. We already noted
that the points of S(B) are complete theories of FO0(L), and that each complete
theory has at least one model. Assume L is a finite language. Then for every
n ∈ N there exists a sentence φn such that for every complete theory T ∈ FO0(L)
it holds φn ∈ T if and only if T has a unique model and this model has at most
n elements. Let U =

⋃
n≥1K(φn). Then U is open but not closed. The indicator
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function 1U is thus measurable but not continuous. This function has the nice
property that for every complete theory T ∈ S(B) it holds

1U (T ) =

{
1, if T has a finite model;

0, otherwise.

3. Limits via fragments and measures

We provide a unifying approach based on the previous section. We consider
the special case of Boolean algebras induced by a fragment of the class FO(L) of
the first-order formulas over a finite relational language L. In this context, the
language L will be described by its signature, that is the set of non-logical symbols
(constant symbols, and relation symbols, along with the arities of the relation
symbols). An FO(L)-structure is then a set together with an interpretation of all
relational and function symbols. Thus for example the signature of the language
LG of graphs is the symbol ∼ interpreted as the adjacency relation: x ∼ y if
{x, y} is an edge of the graph.

We now introduce our notion of convergence. Our approach is a combination
of model theoretic and analytic approach.

Recall that a formula is obtained from atomic formulas by the use of the nega-
tion (¬), logical connectives (∨ and ∧), and quantification (∃ and ∀). A sentence

(or closed formula) is a formula without free variables.
The quantifier rank qrank(φ) of a formula φ is the maximum depth of a quan-

tifier in φ. For instance, the quantifier rank of the formula

∃x ((∃y (x ∼ y)) ∨ (∀y ∀z ¬(x ∼ y) ∧ ¬(y ∼ z)))

has quantifier rank 3.
The key to our approach is the following definition.

Definition 1. Let φ(x1, . . . , xp) be a first-order formula with p free variables (in
the language L) and let G be an L-structure. We denote

(1) 〈φ,G〉 =
|{(v1, . . . , vp) ∈ Gp : G |= φ(v1, . . . , vp)}|

|G|p
.

In other words, 〈φ,G〉 is the probability that φ is satisfied in G when the p
free variables correspond to a random p-tuple of vertices of G. The value 〈φ,G〉
is called the density of φ in G. Note that this definition is consistent in the sense
that although any formula φ with p free variables can be considered as a formula
with q ≥ p free variables with q − p unused variables, we have

|{(v1, . . . , vq) : G |= φ(v1, . . . , vp)}|

|G|q
=

|{(v1, . . . , vp) : G |= φ(v1, . . . , vp)}|

|G|p
.
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It is immediate that for every formula φ it holds 〈¬φ,G〉 = 1−〈φ,G〉. Moreover,
if φ1, . . . , φn are formulas, then by de Moivre’s formula, it holds

〈
n∨

i=1

φi, G〉 =

n∑

k=1

(−1)k+1

( ∑

1≤i1<···<ik≤n

〈
k∧

j=1

φij , G〉

)
.

In particular, if φ1, . . . , φk are mutually exclusive (meaning that φi and φj
cannot hold simultaneously for i 6= j) then it holds

〈
k∨

i=1

φi, G〉 =

k∑

i=1

〈φi, G〉.

In particular, for every fixed graph G, the mapping φ 7→ 〈φ,G〉 is additive (i.e.
〈 · , G〉 ∈ ba(FO(L))):

φ1 ∧ φ2 = 0 =⇒ 〈φ1 ∨ φ2, G〉 = 〈φ1, G〉 + 〈φ2, G〉.

Thus we may apply the above theory to additive functions 〈 · , G〉 and to struc-
tural limits we shall define now.

Advancing this note that in the case of a sentence φ (that is a formula with no
free variables, i.e. p = 0), the definition reduces to

〈φ,G〉 =

{
1, if G |= φ;

0, otherwise.

Thus the definition of 〈φ,G〉 will suit to the elementary convergence. Ele-
mentary convergence and all above graph limits are captured by the following
definition:

Definition 2. Let X be a fragment of FO(L).
A sequence (Gn)n∈N of L-structures is X-convergent if for every φ ∈ X , the

sequence (〈φ,Gn〉)n∈N converges.

For a Boolean sub-algebra X of FO(L), we define T(X) as the space of all
ultrafilters on X , which we call complete X-theories . The space T(X) is endowed
with the topology defined from its clopen sets, which are defined as the sets
K(φ) = {T ∈ T(X) : T ∋ φ} for some φ ∈ X . For the sake of simplicity, we
denote by 1φ (for φ ∈ X) the indicator function of the clopen set K(φ) defined
by φ. Hence, 1φ(T ) = 1 if φ ∈ T , and 1φ(T ) = 0 otherwise.

It should be now clear that the above general approach yields the following:

Theorem 1. Let X be a Boolean sub-algebra of FO(L) and let G be the class

of all finite L-structures.
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There exists an injective mapping G 7→ µG from G to the space of probability

measures on T(X) such that for every φ ∈ X it holds

〈φ,G〉 =

∫
1φ(T ) dµG(T ).

A sequence (Gn)n∈N of finite L-structures is X-convergent if and only if the se-

quence (µGn
)n∈N is weakly convergent. Moreover, if µGn

⇒ µ then for every

φ ∈ X it holds

lim
n→∞

〈φ,Gn〉 =

∫
1φ(T ) dµ(T ).

In this paper, we shall be interested in specific fragments of FO(L):

– FO(L) itself;
– FOp(L) (where p ∈ N), which is the fragment consisting of all formulas

with at most p free variables (in particular, FO0(L) is the fragment of all
first-order sentences);

– QF(L), which is the fragment of quantifier-free formulas (that is: propo-
sitional logic);

– FOlocal(L), which is the fragment of local formulas , defined as follows.

Let r ∈ N. A formula φ(x1, . . . , xp) is r-local if, for every L-structure G and every
v1, . . . , vp ∈ Gp it holds

G |= φ(v1, . . . , vp) ⇐⇒ G[Nr(v1, . . . , vp)] |= φ(v1, . . . , vp),

where Nr(v1, . . . , vp) is the closed r-neighborhood of x1, . . . , xp in the L-structure
G (that is the set of elements at distance at most r from at least one of x1, . . . , xp
in the Gaifman graph of G), and where G[A] denotes the sub-L-structure of G
induced by A. A formula φ is local if it is r-local for some r ∈ N; the fragment
FOlocal(L) is the set of all local formulas (over the language L). This fragment
form an important fragment, particularly because of the following structure the-
orem.

Theorem 2 (Gaifman locality theorem [9]). For every first-order formula

φ(x1, . . . , xn) there exist integers t and r such that φ is equivalent to a Boolean

combination of t-local formulas ξj(xi1 , . . . , xis) and sentences of the form

(2) ∃y1 . . . ∃ym

( ∧

1≤i<j≤m

dist(yi, yj) > 2r ∧
∧

1≤i≤m

ψ(yi)

)

where ψ is r-local. Furthermore, if φ is a sentence, only sentences (2) occur in

the Boolean combination.

From this theorem follows a general statement:

Proposition 2. Let (Gn) be a sequence of graphs. Then (Gn) is FO-convergent

if and only if it is both FOlocal-convergent and elementarily-convergent.
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Proof: Assume (Gn)n∈N is both FOlocal-convergent and elementarily-convergent
and let φ ∈ FO be a first order formula with n free variables. According to
Theorem 2, there exist integers t and r such that φ is equivalent to a Boolean
combination of t-local formula ξ(xi1 , . . . , xis) and of sentences. It follows that
〈φ,G〉 can be expressed as a function of values of the form 〈ξ,G〉 where ξ is either
a local formula or a sentence. Thus (Gn)n∈N is FO-convergent. �

Notice that if φ1 and φ2 are local formulas, so are φ1 ∧φ2, φ1 ∨φ2 and ¬φ1. It
follows that FOlocal is a Boolean sub-algebra of FO. It is also clear that all the
other fragments described above correspond to sub-algebras of FO. This means
that there exist canonical injective Boolean-algebra homomorphisms from these
fragments X to FO, that will correspond to surjective continuous functions (pro-
jections) from S(FO) to S(X) and it is not hard to see that they also correspond
to surjective maps from ba(FO) to ba(X) and to surjective pushforwards from
rca(S(FO) to rca(S(X)).

Recall that a theory T is a set of sentences. (Here we shall only consider
first-order theories, so a theory is a set of first-order sentences.) The theory T
is consistent if one cannot deduce from T both a sentence φ and its negation.
The theory T is satisfiable if it has a model. It follows from Gödel’s completeness
theorem that, in the context of first-order logic, a theory is consistent if and only if
it is satisfiable. Also, according to the compactness theorem, a theory has a model
if and only if every finite subset of it has a model. Moreover, according to the
downward Löwenheim-Skolem theorem, there exists a countable model. A theory
T is a complete theory if it is consistent and if, for every sentence φ ∈ FO0(L),
either φ or ¬φ belongs to T . Hence every complete theory has a countable model.
However, a complete theory which has an infinite model has infinitely many non-
isomorphic models.

It is natural to ask whether one can consider fragments that are not Boolean
sub-algebras of FO(L) and still have a description of the limit of a converging
sequence as a probability measure on a nice measurable space. There is obviously
a case where this is possible: when the convergence of 〈φ,Gn〉 for every φ in
a fragment X implies the convergence of 〈ψ,Gn〉 for every ψ in the minimum
Boolean algebra containing X . We prove now that this is an instance of a more
general phaenomenon:

Proposition 3. Let X be a fragment of FO(L) closed under (finite) conjunction
— that is: a meet semilattice of FO(L) — and let BA(X) be the Boolean algebra

generated by X (that is the closure of X by ∨,∧ and ¬). Then X-convergence is

equivalent to BA(X)-convergence.

Proof: Let Ψ ∈ BA(X). According to Lemma 2, there exist φ1, . . . , φk ∈ X and
α0, α1, . . . , αk ∈ R such that

1Ψ = α01 +

k∑

i=1

αi1φi
.
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Let G be a graph, let Ω = S(BA(X)) and let µG ∈ rca(Ω) be the associated
measure. Then

〈Ψ, G〉 =

∫

Ω

1Ψ dµG =

∫

Ω

(
α01 +

k∑

i=1

αi1φi

)
dµG = α0 +

k∑

i=1

αi〈φi, G〉.

Thus if (Gn)n∈N is an X-convergent sequence, the sequence (〈ψ,Gn〉)n∈N con-
verges for every ψ ∈ BA(X), that is (Gn)n∈N is BA(X)-convergent. �

Continuing to develop the general mechanism for the structural limits we con-
sider fragments of FO quantified by the number of free variables.

We shall allow formulas with p free variables to be considered as a formula
with q > p variables, q − p variables being unused. As the order of the free
variables in the definition of the formula is primordial, it will be easier for us
to consider sentences with p constants instead of formulas with p free variables.
Formally, denote by Lp the language obtained from L by adding p (ordered)
symbols of constants c1, . . . , cp. There is a natural isomorphism of Boolean al-
gebras νp : FOp(L) → FO0(Lp), which replaces the occurrences of the p free
variables x1, . . . , xp in a formula φ ∈ FOp by the corresponding symbols of con-
stants c1, . . . , cp, so that it holds, for every graph G, for every φ ∈ FOp and every
v1, . . . , vp ∈ G:

G |= φ(v1, . . . , vp) ⇐⇒ (G, v1, . . . , vp) |= νp(φ).

The Stone space associated to the Boolean algebra FO0(Lp) is the space T(Lp)
of all complete theories in the language Lp. Also, we denote by Tω the Stone space
representing the Boolean algebra T(FO0(Lω)) ≈ FO. One of the specific prop-
erties of the spaces T(Lp) is that they are endowed with an ultrametric derived
from the quantifier-rank:

dist(T1, T2) =

{
0 if T1 = T2

2−min{qrank(θ): θ∈T1\T2} otherwise.

This ultrametric defines the same topology as the Stone representation theorem.
As a compact metric space, T(Lp) is (with the Borel sets defined by the metric
topology) a standard Borel space.

For each p ≥ 0, there is a natural projection πp : Tp+1 → Tp, which maps a
complete theory T ∈ Tp+1 to the subset of T containing the sentences where only
the p first constant symbols c1, . . . , cp are used. Of course we have to check that
πp(T ) is a complete theory in the language Lp but this is indeed so.

According to the ultrametrics defined above, the projections πp are contractions
(hence are continuous). Also, there is a natural isometric embedding ηp : Tp →
Tp+1 defined as follows: for T ∈ Tp, the theory ηp(T ) is the deductive closure
of T ∪ {cp = cp+1}. Notice that ηp(T ) is indeed complete: for every sentence

φ ∈ FO(Lp+1), let φ̃ be the sentence obtained from φ by replacing each symbol
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cp+1 by cp. It is clear that cp = cp+1 ⊢ φ ↔ φ̃. As either φ̃ or ¬φ̃ belongs to T ,

either φ or ¬φ belongs to ηp(T ). Moreover, we deduce easily from the fact that φ̃
and φ have the same quantifier rank that ηp is an isometry. Finally, let us note
that πp ◦ ηp is the identity of Tp.

For these fragments we shall show a particular nice construction, well non-
standard construction, of limiting measure.

4. A non-standard approach

The natural question that arises from the result of the previous section is
whether one can always find a representation of the FO-limit of an FO-converging
sequence by a “nice” measurable L-structure.

It appears that a general notion of limit object for FO-convergence can be ob-
tained by a non-standard approach. In this we follow closely Elek and Szegedy [7].

We first recall the ultraproduct construction. Let (Gn)n∈N be a finite sequence

of finite L-structures and let U be a non-principal ultrafilter. Let G̃ =
∏
i∈N

Gi

and let ∼ be the equivalence relation on Ṽ defined by (xn) ∼ (yn) if {n : xn =

yn} ∈ U . Then the ultraproduct of the L-structures Gn is the quotient of G̃
by ∼, and it is denoted

∏
U Gi. For each relational symbol R with arity p, the

interpretation RG̃ of R in the ultraproduct is defined by

([v1], . . . , [vp]) ∈ RG̃ ⇐⇒ {n : (v1n, . . . , v
p
n) ∈ RGn} ∈ U.

The fundamental theorem of ultraproducts proved by  Loś makes ultraproducts
particularly useful in model theory. We express it now in the particular case of
L-structures indexed by N but its general statement concerns structures indexed
by a set I and the ultraproduct constructed by considering an ultrafilter U over I.

Theorem 3 ([14]). For each formula φ(x1, . . . , xp) and each v1, . . . , vp ∈
∏
iGi

we have
∏

U

Gi |= φ([v1], . . . , [vp]) iff {i : Gi |= φ(v1i , . . . , v
p
i )} ∈ U.

Note that if (Gi) is elementary-convergent, then
∏
U Gi is an elementary limit

of the sequence: for every sentence φ, according to Theorem 3, we have
∏

U

Gi |= φ ⇐⇒ {i : Gi |= φ} ∈ U.

A measure ν extending the normalised counting measures νi of Gi is then
obtained via the Loeb measure construction. We denote by P(Gi) the Boolean

algebra of the subsets of vertices of Gi, with the normalized measure νi(A) = |A|
|Gi|

.

We define P =
∏
i P(Gi)/I, where I is the ideal of the elements {Ai}i∈N such

that {i : Ai = ∅} ∈ U . We have

[x] ∈ [A] iff {i : xi ∈ Ai} ∈ U.
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These sets form a Boolean algebra over
∏
U Gi. Recall that the ultralimit limU an

defined for every (an)n∈N ∈ ℓ∞(N) is such that for every ǫ > 0 we have

{i : ai ∈ [lim
U
an − ǫ ; lim

U
an + ǫ]} ∈ U.

Define

ν([A]) = lim
U
νi(Ai).

Then ν : P → R is a finitely additive measure. Remark that, according
to Hahn-Kolmogorov theorem, proving that ν extends to a countably additive
measure amounts to prove that for every sequence ([An]) of disjoint elements of
P such that

⋃
n[An] ∈ P it holds ν(

⋃
n[An]) =

∑
n ν([An]).

A subset N ⊆
∏
U Gi is a nullset if for every ǫ > 0 there exists [Aǫ] ∈ P

such that N ⊆ [Aǫ] and ν([Aǫ]) < ǫ. The set of nullsets is denoted by N . A set

B ⊆
∏
U Gi is measurable if there exists B̃ ∈ P such that B∆B̃ ∈ N .

The following theorem is proved in [7]:

Theorem 4. The measurable sets form a σ-algebra BU and ν(B) = ν(B̃) defines
a probability measure on BU .

Notice that this construction extends to the case where to each Gi is associated
a probability measure νi. Then the limit measure ν is non-atomic if and only if the
following technical condition holds: for every ǫ > 0 and for every (An) ∈

∏
Gn, if

for U -almost all n it holds νn(An) ≥ ǫ then there exists δ > 0 and (Bn) ∈
∏
Gn

such that for U -almost all n it holds Bn ⊆ An and min(νn(Bn), νn(An \Bn)) ≥ δ.
This obviously holds if νn is a normalized counting measure and limU |Gn| = ∞.

Let fi : Gi → [−d; d] be real functions, where d > 0. One can define f :∏
U Gi → [−d; d] by

f([x]) = lim
U
fi(xi).

We say that f is the ultralimit of the functions {fi}i∈N and that f is an ultralimit

function.

Let φ(x) be a first order formula with a single free variable, and let fφi : Gi →
{0, 1} be defined by

fφi (x) =

{
1 if Gi |= φ(x);

0 otherwise

and let fφ :
∏
U Gi → {0, 1} be defined similarly on the L-structure

∏
U Gi. Then

fφ is the ultralimit of the functions {fφi } according to Theorem 3.
The following lemma is proved in [7].

Lemma 3. The ultralimit functions are measurable on
∏
U Gi and

∫
∏

U
Gi

f dν = lim
U

∑
x∈Gi

fi(x)

|Gi|
.
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In particular, for every formula φ(x) with a single free variable, we have:

ν
({

[x] :
∏

U

Gi |= φ([x])
})

= lim
U

〈φ,Gi〉.

Let ψ(x, y) be a formula with two free variables. Define fi : Gi → [0; 1] by

fi(x) =
|{y ∈ Gi : Gi |= ψ(x, y)}|

|Gi|

and let

f([x]) = µ
({

[y] :
∏

U

Gi |= ψ([x], [y]
})
.

Let us check that f([x]) is indeed the ultralimit of fi(xi). Fix [x]. Let gi : Gi →
{0, 1} be defined by

gi(y) =

{
1 if Gi |= ψ(xi, y)

0 otherwise

and let g :
∏
U Gi → {0, 1} be defined similarly by

g([y]) =

{
1 if

∏
U Gi |= ψ([x], [y])

0 otherwise.

According to Theorem 3 we have

∏

U

Gi |= ψ([x], [y]) ⇐⇒ {i : Gi |= ψ(xi, yi)} ∈ U.

It follows that g is the ultralimit of the functions {gi}i∈N. Thus, according to
Lemma 3 we have

ν
({

[y] :
∏

U

GI |= ψ([x], [y])
})

= lim
U

|{y ∈ Gi : Gi |= ψ(xi, yi)}|

|Gi|
,

that is:

f([x]) = lim
U
fi(xi).

Hence f is the ultralimit of the functions {fi}i∈N and, according to Lemma 3, we
have

∫∫
1ψ([x], [y]) dν([x]) dν([y]) = lim

U
〈ψ,Gi〉.

This property extends to any number of free variables. We formulate this as a
summary of the results of this section.
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Proposition 4. Let (Gn)n∈N be a sequence of finite L-structures and let U be a

non-principal ultrafilter on N. Then there exists a measure ν on the ultraproduct

G̃ =
∏
U Gn such that for every first-order formula φ with p free variables it holds:

∫
· · ·

∫

G̃p

1φ([x1], . . . , [xp]) dν([x1]) . . . dν([xp]) = lim
U

〈ψ,Gi〉.

Moreover, the above integral is invariant by any permutation on the order of the

integrations: for every permutation σ of [p] it holds

lim
U
〈ψ,Gi〉 =

∫
· · ·

∫

G̃p

1φ([x1], . . . , [xp]) dν([xσ(1)]) . . . dν([xσ(p)]).

However, the above constructed measure algebra is non-separable (see [7], [5]
for discussion).

5. A particular case

Instead of restricting convergence to a fragment of FO(L), it is also interest-
ing to consider restricted classes of structures. For instance, the class of graphs
with maximum degree at most D (for some integer D) received much attention.
Specifically, the notion of local weak convergence of bounded degree graphs was
introduced in [3]:

A rooted graph is a pair (G, o), where o ∈ V (G). An isomorphism of rooted
graph φ : (G, o) → (G′, o′) is an isomorphism of the underlying graphs which satis-
fies φ(o) = o′. Let D ∈ N. Let GD denote the collection of all isomorphism classes
of connected rooted graphs with maximal degree at most D. For simplicity’s
sake, we denote elements of GD simply as graphs. For (G, o) ∈ GD and r ≥ 0 let
BG(o, r) denote the subgraph of G spanned by the vertices at distance at most r
from o. If (G, o), (G′, o′) ∈ GD and r is the largest integer such that (BG(o, r), o)
is rooted-graph isomorphic to (BG′(o′, r), o′), then set ρ((G, o), (G′, o′)) = 1/r,
say. Also take ρ((G, o), (G, o)) = 0. Then ρ is metric on GD. Let MD denote the
space of all probability measures on GD that are measurable with respect to the
Borel σ-field of ρ. Then MD is endowed with the topology of weak convergence,
and is compact in this topology.

A sequence (Gn)n∈N of finite connected graphs with maximum degree at most
D is BS-convergent if, for every integer r and every rooted connected graph (F, o)
with maximum degree at most D the following limit exists:

lim
n→∞

|{v : BGn
(v, r) ∼= (F, o)}|

|Gn|
.

This notion of limits leads to the definition of a limit object as a probability
measure on GD [3].
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However, as we shall see below, a nice representation of the limit structure
can be given. To relate BS-convergence to X-convergence, we shall consider the
fragment FOlocal

1 of those formulas with at most 1 free variable that are local.

Formally, let FOlocal
1 = FOlocal ∩ FO1.

Proposition 5. Let (Gn) be a sequence of finite graphs with maximum degree d,
with limn→∞ |Gn| = ∞.

Then the following properties are equivalent:

1. the sequence (Gn)n∈N is BS-convergent;

2. the sequence (Gn)n∈N is FOlocal
1 -convergent;

3. the sequence (Gn)n∈N is FOlocal-convergent.

Proof: If (Gn)n∈N is FOlocal-convergent, it is FOlocal
1 -convergent;

If (Gn)n∈N is FOlocal
1 -convergent then it is BS-convergent as for any finite rooted

graph (F, o), testing whether the ball of radius r centered at a vertex x is isomor-
phic to (F, o) can be formulated by a local first order formula.

Assume (Gn)n∈N is BS-convergent. As we consider graphs with maximum
degree d, there are only finitely many isomorphism types for the balls of radius r
centered at a vertex. It follows that any local formula ξ(x) with a single variable
can be expressed as the conjunction of a finite number of (mutually exclusive)
formulas ξ(F,o)(x), which in turn correspond to subgraph testing. It follows that

BS-convergence implies FOlocal
1 -convergence.

Assume (Gn)n∈N is FOlocal
1 -convergent and let φ(x1, . . . , xp) be an r-local for-

mula. Let Fφ be the set of all p-tuples ((F1, f1), . . . , (Fp, fp)) of rooted connected
graphs with maximum degree at most d and radius (from the root) at most r such
that

⋃
i Fi |= φ(f1, . . . , fp).

Then, for every graph G the sets

{(v1, . . . , vp) : G |= φ(v1, . . . , vp)}

and

⊎

((F1,f1),...,(Fp,fp))∈Fφ

p∏

i=1

{v : G |= θ(Fi,fi)(v)}

differ by at most O(|G|p−1) elements. Indeed, according to the definition of an
r-local formula, the p-tuples (x1, . . . , xp) belonging to exactly one of these sets
are such that there exists 1 ≤ i < j ≤ p such that dist(xi, xj) ≤ 2r.

It follows that

〈φ,G〉 =
( ∑

((Fi,fi))1≤i≤p∈Fφ

p∏

i=1

〈θ(Fi,fi), G〉
)

+ O(|G|−1).

It follows that FOlocal
1 -convergence (hence BS-convergence) implies full FOlocal-

convergence. �
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According to this proposition, the BS-limit of a sequence of graphs with max-
imum degree at most D corresponds to a probability measure on S(FOlocal

1 (L))
(where L is the language of graphs) whose support is included in the clopen
set K(ζD), where ζD is the sentence expressing that the maximum degree is at

most D. As above, the Boolean algebra FOlocal
1 (L) is isomorphic to the Boolean

algebra defined by the fragment X ⊂ FO0(L1) of sentences in the language of
rooted graphs that are local with respect to the root. According to this loca-
lity, for any two countable rooted graphs (G1, r1) and (G2, r2), the trace of the
complete theories of (G1, r1) and (G2, r2) on X are the same if and only if the
(rooted) connected component (G′

1, r1) of (G1, r1) containing the root r1 is el-
ementary equivalent to the (rooted) connected component (G′

2, r2) of (G2, r2)
containing the root r2. As isomorphism and elementary equivalence are equiv-
alent for countable connected graphs with bounded degrees it is easily checked
that KX(ζD) is homeomorphic to GD. Hence our setting leads essentially to the
same limit object as [3] for BS-convergent sequences.

We now consider how full FO-convergence differs to BS-convergence for se-
quence of graphs with maximum degree at most D. This shows a remarkable
stability of BS-convergence.

Corollary 1. A sequence (Gn) of finite graphs with maximum degree at most

d such that limn→∞ |Gn| = ∞ is FO-convergent if and only if it is both BS-

convergent and elementarily convergent.

Proof: This is a direct consequence of Propositions 2 and 5. �

Explicit limit objects are known for sequence of bounded degree graphs, both
for BS-convergence (graphing) and for elementary convergence (countable graphs).
It is natural to ask whether a nice limit object could exist for full FO-convergence.
We shall now answer this question by the positive.

Let V be a standard Borel space with a measure µ. Suppose that T1, T2, . . . , Tk
are measure preserving Borel involutions of X . Then the system

G = (V, T1, T2, . . . , Tk, µ)

is called a measurable graphing [1]. Here x is adjacent to y, if x 6= y and Tj(x) = y
for some 1 ≤ j ≤ k. Now if V is a compact metric space with a Borel measure
µ and T1, T2, . . . , Tk are continuous measure preserving involutions of V , then
G = (V, T1, T2, . . . , Tk, µ) is a topological graphing. It is a consequence of [3] and
[8] that every local weak limit of finite connected graphs with maximum degree
at most D can be represented as a measurable graphing. Elek [6] further proved
the representation can be required to be a topological graphing.

For an integer r, a graphing G = (V, T1, . . . , Tk, µ) and a finite rooted graph
(F, o) we define the set

Dr(G, (F, o)) = {x ∈ G, Br(G, x) ≃ (F, o)}.
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We shall make use of the following lemma which reduces a graphing to its
essential support.

Lemma 4 (Cleaning Lemma). Let G = (V, T1, . . . , Td, µ) be a graphing.

Then there exists a subset X ⊂ V with 0 measure such that X is globally

invariant by each of the Ti and G′ = (V − X,T1, . . . , Td, µ) is a graphing such

that for every finite rooted graph (F, o) and integer r it holds

µ(Dr(G
′, (F, o))) = µ(Dr(G, (F, o)))

(which means that G′ is equivalent to G) and

Dr(G
′, (F, o)) 6= ∅ ⇐⇒ µ(Dr(G

′, (F, o))) > 0.

Proof: For a fixed r, define Fr as the set of all (isomorphism types of) finite
rooted graphs (F, o) with radius at most r such that µ(Dr(G, (F, o))) = 0. Define

X =
⋃

r∈N

⋃

(F,o)∈Fr

Dr(G, (F, o)).

Then µ(X) = 0, as it is a countable union of 0-measure sets.
We shall now prove that X is a union of connected components of G, that is

that X is globally invariant by each of the Ti. Namely, if x ∈ X and y is adjacent
to x, then y ∈ X . Indeed: if x ∈ X then there exists an integer r such that
µ(D(G, Br(G, x))) = 0. But it is easily checked that

µ(D(G, Br+1(G, y))) ≤ d · µ(D(G, Br(G, x))).

Hence y ∈ X . It follows that for every 1 ≤ i ≤ d we have Ti(X) = X . So we can
define the graphing G′ = (V −X,T1, . . . , Td, µ).

Let (F, o) be a rooted finite graph. Assume there exists x ∈ G′ such that
Br(G

′, r) ≃ (F, o). As X is a union of connected components, we also have
Br(G, r) ≃ (F, o) and x /∈ X .

It follows that µ(D(G, (F, o))) > 0 hence µ(Dr(G
′, (F, o))) > 0. �

The cleaning lemma allows us a clean description of FO-limits in the bounded
degree case:

Theorem 5. Let (Gn)n∈N be a FO-convergent sequence of finite graphs with

maximum degree d, with limn→∞ |Gn| = ∞. Then there exists a graphing G and

a countable graph Ĝ such that

– G is a BS-limit of the sequence,

– Ĝ is an elementary limit of the sequence,

– G ∪ Ĝ is an FO-limit of the sequence.

Proof: Let G be a BS-limit, which has been “cleaned” using the previous lemma,

and let Ĝ be an elementary limit of G. It is clear that G ∪ Ĝ is also a BS-limit



600 J. Nešeťril, P. Ossona de Mendez

of the sequence, so the lemma amounts in proving that G ∪ Ĝ is elementarily
equivalent to Ĝ.

According to Hanf’s theorem [11], it is sufficient to prove that for every integers
r, t and for every rooted finite graph (F, o) (with maximum degree d) the following
equality holds:

min(t, |Dr(G ∪ Ĝ, (F, o))|) = min(t, |Dr(Ĝ, (F, o))|).

Assume for contradiction that this is not the case. Then |Dr(Ĝ, (F, o))| < t and
Dr(G, (F, o)) is not empty. However, as G is clean, this implies µ(Dr(G, (F, o))) =
α > 0. It follows that for every sufficiently large n it holds |Dr(Gn, (F, o))| >

α/2 |Gn| > t. Hence |Dr(Ĝ, (F, o))| > t, contradicting our hypothesis.
Note that the reduction of the satisfaction problem of a general first-order

formula φ with p free variables to a case analysis based on the isomorphism
type of a bounded neighborhood of the free variables shows that every first-order
definable subset of (G ∪ Ĝ)p is indeed measurable (we extend µ to G ∪ Ĝ in the

obvious way, considering Ĝ as zero measure). �

The cleaning lemma sometimes applies in a non-trivial way:

Example 5. Consider the graph Gn obtained from a De Bruijn sequence (see
e.g. [17]) of length 2n as shown in Figure 2.

0
0

0

0

1

1

1

11

1

1

1

0

0

0

0

Figure 2. The graph Gn is constructed from a De Bruijn se-
quence of length 2n.

It is easy to define a graphing G, which is the limit of the sequence (Gn)n∈N: as
vertex set, we consider the rectangle [0; 1)× [0; 3). We define a measure preserving
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function f and two measure preserving involutions T1, T2 as follows:

f(x, y) =






(2x, y/2) if x < 1/2 and y < 1

(2x− 1, (y + 1)/2) if 1/2 ≤ x and y < 1

(x, y) otherwise

T1(x, y) =






(x, y + 1) if y < 1

(x, y − 1) if 1 ≤ y < 2

(x, y) otherwise

T2(x, y) =





(x, y + 1) if x < 1/2 and 1 ≤ y < 2

(x, y + 2) if 1/2 ≤ x and y < 1

(x, y − 1) if x < 1/2 and 2 ≤ y

(x, y − 2) if 1/2 ≤ x and 2 ≤ y

(x, y) otherwise

Then the edges of G are the pairs {(x, y), (x′, y′)} such that (x, y) 6= (x′, y′) and
either (x′, y′) = f(x, y), or (x, y) = f(x′, y′), or (x′, y′) = T1(x, y), or (x′, y′) =
T2(x, y).

If one considers a random root (x, y) in G, then the connected component of
(x, y) will almost surely be a rooted line with some decoration, as expected from
what is seen from a random root in a sufficiently large Gn. However, special
behaviour may happen when x and y are rational. Namely, it is possible that the
connected component of (x, y) becomes finite. For instance, if x = 1/(2n− 1) and
y = 2n−1x then the orbit of (x, y) under the action of f has length n thus the
connected component of (x, y) in G has order 3n. Of course, such finite connected
components do not appear in Gn. Hence, in order to clean G, infinitely many
components have to be removed.

6. Conclusion and further works

In a forthcoming paper [22], we apply the theory developed here to the con-
text of classes of graphs with bounded diameter connected components, and in
particular to classes with bounded tree-depth [19]. Specifically, we prove that
if a uniform bound is fixed on the diameter of the connected components, FO-
convergence may be considered component-wise (up to some residue for which
FO1-convergence is sufficient).

The prototype of convenient limit objects for sequences of finite graphs is a
quadruple G = (V,E,Σ, µ), where (V,E) is a graph, (V,Σ, µ) is a standard prob-
ability space, and E is a measurable subset of V 2. In such a context, modulo
the axiom of projective determinacy (which would follow from the existence of
infinitely many Woodin cardinals [16]), every first-order definable subset of V p is
measurable in (V p,Σ⊗p) [18]. Then, for every first-order formula φ with p free
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variables, it is natural to define

〈ψ,G〉 =

∫

V p

1φ dµ⊗p.

In this setting, G = (V,E,Σ, µ) is a limit — we do not pretend to have uniqueness
— of an FO-convergent sequence (Gn)n∈N of finite graphs if for every first-order
formula ψ it holds

〈ψ,G〉 = lim
n→∞

〈ψ,Gn〉.

We obtain in [22] an explicit construction of such limits for FO-convergent se-
quences of finite graphs bound to a class of graphs with bounded tree-depth. It is
also there where we develop in a greater detail the general theory explained in the
Sections 2 and 3. Notice that in some special cases, one does not need a standard
probability space and a Borel measurable space is sufficient. This is for instance
the case when we consider limits of finite connected graphs with bounded degrees
(as we can use a quantifier elimination scheme to prove that definable sets are
measurable) or quantifier-free convergence of graphs (definable sets form indeed
a sub-algebra of the σ-algebra).

Acknowledgments. The authors would like to thanks the referee for his most
valuable comments.
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in Mathematical Interpretation of Formal Systems, Studies in Logic and the Foundations
of Mathematics, North-Holland, Amsterdam, 1955.

[15] Lovász L., Szegedy B., Limits of dense graph sequences, J. Combin. Theory Ser. B 96

(2006), 933–957.
[16] Martin D., Steel J., A proof of projective determinacy , J. Amer. Math. Soc. 2 (1989), no. 1,

71–125.
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