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Abstract. In this article, it is shown that geometrical properties such as local
uniform convexity, mid point local uniform convexity, H-property and uniform
convexity in every direction are equivalent in the Besicovitch-Musielak-Orlicz

space of almost periodic functions (B̃ϕa.p.) endowed with the Luxemburg norm.

Keywords: local uniform convexity, uniform convexity in every direction, mid
point locally uniform, H-property, strict convexity, approximation, Besicovitch-
Musielak-Orlicz space, almost periodic function

Classification: 46B20, 42A75

1. Introduction and preliminaries

This article is a continuation of the investigations concerning the geometrical
properties in the space of Besicovitch-Orlicz of almost periodic functions (see [1]).
Here we are interested in such properties as local uniform convexity, Kadec-Klee
property, mid point local uniform convexity and uniform convexity in every di-
rection in the widest class of Besicovitch-Musielak-Orlicz space of almost periodic

functions B̃ϕa.p.. We are finding criteria for these properties. An approximation

property in B̃ϕa.p. is also presented.
Now, we recall the needed definitions and notations.
We say that a Banach space (X, ‖·‖) is locally uniformly convex LUC (see [10])

if for each ε > 0 and each y ∈ S(X) there is a δX(ε, y) > 0 such that if x ∈ S(X)
and ‖x − y‖ ≥ ε, then ‖ 1

2 (x + y)‖ ≤ 1 − δX(ε, y), where as usual, the notations
S(X) and B(X) are used for the unit sphere and unit ball of X respectively.

There are also sequential characterizations of LUC (see [10]): the space (X, ‖·‖)
is LUC if and only if for each x ∈ S(X) and every sequence (yn) in S(X) (or B(X))
for which ‖ 1

2 (x + yn)‖ → 1, we have ‖yn − x‖ → 0.

Let x ∈ S(X). If xn ∈ X , xn → x weakly (xn
w
→ x) and ‖xn‖ → ‖x‖ = 1

imply xn → x in norm, then we call x an H-point of B(X). If every point in
S(X) is an H-point of B(X), then we say that X has the H-property (or satisfy
the Kadec-Klee property also called the Radon Riesz property) (see [5]).
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The space X is called mid point locally uniformly convex (in short MLUC)
when every point x ∈ S(X) is strongly extreme, i.e., for each sequence (xn) in X ,
the conditions ‖x+ xn‖ → 1 and ‖x− xn‖ → 1 implies ‖xn‖ → 0.

Now we present the class of Banach spaces introduced by A.G. Garkari, the
so-called uniformly convex in every direction (see [4], [15]). We mention that
these spaces (among others) are important in approximation theory since they
are exactly those Banach spaces in which every bounded set has at most one
Cebyshev center. If K is a subset of Banach space X then the Cebyshev centers
of K are the elements c in K with the property that

sup
k∈K

‖c− k‖ = inf
s∈X

sup
t∈K

‖s− t‖ .

The Banach space X is said to be uniformly convex in every direction (in short
UCED) if the following property holds: for every nonzero z in X and ε > 0
there exists δ(z, ε) > 0 such that |a| < ε if ‖x‖ = ‖y‖ = 1, x − y = az, and
‖x + y‖ = 2[1 − δ(z, ε)]. We mention the following characterization of UCED
Banach spaces in terms of sequences: for any z ∈ X , and every sequence (xn) in
X , the conditions ‖xn‖ → 1, ‖xn + z‖ → 1 and ‖2xn + z‖ → 2 imply z = 0.

Let us note that the implications LUC ⇒ MLUC ⇒ SC (strict convexity),
LUC ⇒ H-property and UCED ⇒ SC hold in general Banach spaces (see e.g. [10]).

In the case of Musielak-Orlicz spaces, these geometrical properties are well
characterized in [11], [7].

The most important geometrical properties of the space B̃ϕa.p. with respect to
the Luxemburg norm are characterized in [8] and [9]. The authors have obtained
the following results (see Theorem 3.1 of [9] and Theorem 1 of [8] respectively):

Theorem 1. The space B̃ϕa.p. endowed with the Luxemburg norm is uniformly

convex if and only if ϕ is uniformly convex and satisfies the ∆B1

2 -condition.

Theorem 2. The space B̃ϕa.p. endowed with the Luxemburg norm is strictly

convex if and only if ϕ is strictly convex and satisfies the ∆B1

2 -condition.

Now, we introduce some notions joined with Besicovitch-Musielak-Orlicz spaces
of almost periodic functions. In what follows, let us denote by N, R and C the
natural, real and complex numbers respectively.

Let ϕ : R × [0,+∞[−→ [0,+∞[ be a continuous function on R × [0,+∞[
satisfying:

(1) ∀t ∈ R, ϕ(t, u) = 0 iff u = 0,
(2) ∀t ∈ R, ϕ(t, u) is convex with respect to u ∈ [0,+∞[,
(3) ∀u ∈ [0,+∞[, ϕ(t, u) is periodic with respect to t ∈ R, the period τ being

fixed and independent of u ∈ [0,+∞[. Without loss of generality we may
suppose that τ = 1.

As a consequence of these assumptions, we get that the function φ(α) =
inft∈R{ϕ(t, α)} is strictly positive and convex. This fact will be very useful in
our computations.
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We denote by Lϕ
loc(R) the subspace of ϕ-locally integrable functions, i.e. the

subspace of all Lebesgue measurable functions on R such that for each compact
K ⊂ R, there exists λK > 0 for which

∫
K
ϕ(t, λK |f(t)|) dt < +∞. The functional

ρBϕ : Lϕ
loc(R) −→ [0,+∞]

f −→ ρBϕ(f) = lim sup
T−→+∞

1

2T

∫ +T

−T

ϕ(t, |f(t)|) dt,(1.1)

is a convex pseudomodular (see [12]).
We define the Besicovitch-Musielak-Orlicz space associated to this pseudomo-

dular by

Bϕ(R) = {f ∈ L
ϕ
loc(R) : lim

α →0
ρBϕ(αf) = 0},

= {f ∈ L
ϕ
loc(R) : ρBϕ(αf) < 0, for some α > 0}.

The space Bϕ(R) is naturally endowed with the Luxemburg (pseudo)norm

‖f‖Bϕ = inf{k > 0 : ρBϕ(
f

k
) ≤ 1}, f ∈ Bϕ(R).

Under the Luxemburg norm, Bϕ(R) is a Banach space.
Let A be the set of all generalized trigonometric polynomials, i.e.,

A = {Pn(t) =

n∑

j=1

aje
iλj t, aj ∈ C, λj ∈ R, n ∈ N}.

The Besicovitch-Musielak-Orlicz space of almost periodic functions, denoted
Bϕa.p., is the closure of the set A in Bϕ(R) with respect to the (pseudo)norm
‖ · ‖Bϕ :

Bϕa.p. = {f ∈ Bϕ(R) : ∃fn ∈ A, ∀k > 0, lim
n→+∞

ρBϕ(k(fn − f)) = 0},

= {f ∈ Bϕ(R) : ∃fn ∈ A, lim
n→+∞

‖fn − f‖Bϕ = 0}.

We shall also be concerned with the space

B̃ϕa.p. = {f ∈ Bϕ(R) : ∃fn ∈ A, ∃k0 > 0, lim
n→+∞

ρBϕ(k0(fn − f)) = 0},

which is defined as the closure of the set A in Bϕ(R) with respect to the (pseudo)-
modular ρBϕ (·).

Some topological properties (reflexivity and duality properties) of these spaces
are considered in [3]. Clearly, we have the following inclusions

Bϕa.p. ⊆ B̃ϕa.p. ⊆ Bϕ(R).

When ϕ(t, ·) = | · |, we denote by B1(R) and B1a.p. the respective spaces. The
notation ρ1 is used for the associated pseudomodular.
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If in addition the Musielak-Orlicz function satisfies the condition that for every

u0 > 0 there is a c > 0 for which ϕ(t,u)
u

≥ c for u ≥ u0 and t ∈ R (see [12, p. 91,

Theorem 13.18]), we get the inclusion Bϕa.p. ⊆ B1a.p.. So, to every f in Bϕa.p.

we can associate a formal Fourier series. Questions concerning the convergence of
the Fourier series are not considered.

Remark 1. To each function f ∈ Bϕa.p., one can associate a Bochner-Fejèr
polynomial σf as follows:

σf (x) =M(f(x+ ·)KB(·)) = lim
T→∞

∫ +T

−T

f(x+ t)KB(t) dt,

where KB(·) is the Bochner-Fejèr kernel (see e.g. [6]). An important question is
the approximation property of Bochner-Fejèr, that is, for any f ∈ Bϕa.p. and for
each ε > 0, can one find a Bochner-Fejèr polynomial σf

ε such that ‖f−σf
ε ‖Bφ ≤ ε?

It is still an open problem whether this approximation property is true or not for

Besicovitch-Musielak-Orlicz spaces of almost periodic functions B̃ϕa.p.. The only

trouble is that, for f ∈ B̃ϕa.p. and the associated Bochner-Fejèr’s polynomial σf ,
one cannot prove the inequality

ρBϕ

(
σf

)
≤ ρBϕ(f)

for any Musielak-Orlicz function ϕ.

Another fundamental result concerning the functions in Bϕa.p. is the fact that
if f ∈ Bϕa.p. then ϕ(·, |f(·)|) ∈ B1a.p. (see [8]). This property guaranties the
existence of the limit in (1.1).

We say that ϕ satisfies the ∆B1

2 -condition (ϕ ∈ ∆B1

2 ) if there exists k > 1
and a measurable nonnegative function h such that ρ1(h) < +∞ and ϕ(t, 2u) ≤
kϕ(t, u) + h(t) for almost all t ∈ R and all u ≥ 0.

We say that ϕ satisfies the ∇B1

2 -condition (ϕ ∈ ∇B1

2 ) if its conjugate ψ given
by the formula

ψ(t, u) = sup
v≥0

{uv − ϕ(t, v)}, for t ∈ R and u ≥ 0

satisfies the ∆B1

2 -condition.

Let us mention the following important fact (see [8]): ϕ satisfies the ∆B1

2 -

condition if and only if ϕ satisfies the ∆L1

2 -condition, that is, there exist k > 0

and a positive function h with
∫ 1

0 h(t)dt < +∞ such that

ϕ(t, 2u) ≤ kϕ(t, u) + h(t), for almost all t ∈ [0, 1] and u ≥ 0.
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2. Auxiliary results

Let P(R) be the family of subsets of R and Σ(R) the Σ-algebra of its Lebesgue
measurable sets. We define the set function

µ(A) = lim
T→∞

1

2T

∫ +T

−T

χA(t) dt = lim
T→∞

1

2T
µ(A ∩ [−T,+T ])

where χA denotes the characteristic function of A ∈ Σ(R).
It is easily seen that the set function µ is not σ-additive.

A sequence {fn} ⊂ Bϕ(R) is said to be µ-convergent to some f ∈ Bϕ(R) when,
for every α > 0, we have

lim
n→∞

µ{x ∈ R : |fn(x) − f(x)| > α} = 0.

This convergence concept satisfies the following property:
If {fn}n≥1 and {gn}n≥1 are two sequences of Σ-measurable functions µ-convergent
to f and g respectively, then for all real α and β the sequence {αfn + βgn} is
µ-convergent to αf + βg.

Remark 2. We can also see that µ does not satisfy the extraction property.
Indeed, let us consider the sequence (fn)n of Bφ(R) defined by

fn(t) = χ[−n,n](t).

It is not difficult to see that fn is µ-convergent to f ≡ 0 in Bφ(R). Nevertheless,
there is no subsequence which converges µ almost everywhere (µ a.e.) to f ≡ 0.
More exactly, for any bijection θ : N −→ N, the sequence (fθ(n))n converges to 1
with respect to the µ a.e. convergence on R.

We give here some technical results that are the key arguments in proof of the
main theorems. First we need the following results (see [8] and [9]):

Lemma 1 ([8], [9]). Let {fn}n≥1 be a sequence in Bϕ(R). Then:

(i) if {fn}n≥1 is modular convergent to f ∈ Bϕa.p. it is also µ-convergent

to f ;

(ii) if {fn}n≥1 is µ-convergent to f ∈ B1a.p. and there exists g ∈ B1a.p.

satisfying max(|fn|, |f |) ≤ g, then

lim
n→∞

ρ1 (fn) = ρ1(f).

Lemma 2 ([8], [9]). Let f ∈ Bϕa.p.. Then

(1) ‖f‖Bϕ ≤ 1 if and only if ρBϕ(f) ≤ 1,
(2) ‖f‖Bϕ = 1 if and only if ρBϕ(f) = 1.

Lemma 3 ([8]). Let {fn}, {gn} be sequences in Bϕa.p. such that ρBϕ(fn) ≤ 1,
ρBϕ(gn) ≤ 1 and limn→∞ ρBϕ(12 (fn+gn)) = 1. Suppose that ϕ is strictly convex.

Then, the sequence {fn − gn}n is µ-convergent to zero.
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In the following we denote by M(R) the set of Lebesgue measurable functions
on R, and Lϕ([0, 1]) the usual Musielak-Orlicz class

Lϕ([0, 1]) = {f ∈ M(R) : ∃λ > 0,

∫ 1

0

ϕ(t, λ|f(t)|) dt < +∞}.

Proposition 1 ([8], [9]). Let f ∈ Lϕ([0, 1]). Then,

(1) if f̃ is the periodic extension of f to the whole R (with period τ = 1), we

have f̃ ∈ B̃ϕa.p..

(2) The injection map i : Lϕ([0, 1]) →֒ B̃ϕa.p., i(f) = f̃ is an isometry with

respect to the modulars and for the respective Luxemburg norms.

We are ready now to present our results.

Lemma 4. Let f ∈ Bϕ(R). Then limn→+∞ µ{t ∈ R, |f(t)| ≥ n} = 0.

Proof: For f being in Bϕ(R) there exists α > 0 for which ρBϕ(αf) < ∞. For
an integer N , let fN be the truncation of f , i.e.,

fN (t) =

{
f(t) if |f(t)| ≤ N,

N if |f(t)| > N.

Putting EN = {t ∈ R, |f(t)| ≥ N} and taking into account the convexity of φ we
will have for each N ∈ N,

ρBϕ(αf) ≥ ρBϕ(αfN )

≥ ρBϕ(αfNχEN
)

= ρBϕ(αNχEN
)

≥ φ(αN)µ(EN ).

Then, letting N tend to infinity, it follows directly that limN→∞ µ(EN ) = 0. �

Lemma 5. Let f ∈ Bϕa.p.. Then the following equivalence holds:

ρBϕ(f) = 0 iff f = 0 µ a.e.

Proof: The assertion that ρBϕ(f) = 0 implies f = 0 µ a.e. is a direct conse-
quence of (i) in Lemma 1.

Let us show that if ρBϕ(f) > 0 then there exist real numbers α, θ > 0 such
that

µ {t ∈ R, |f(t)| ≥ α} > θ.

In the contrary case, we will have for all n ≥ 1

µ {Gn} ≤
1

n

with Gn = {t ∈ R, |f(t)| ≥ 1
n
}. We will denote by Gc

n its complement.
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Since limn→∞ µ{Gn} = 0, by using Lemma 4 in [8], we get

lim
n→∞

ρBϕ (fχGn
) = 0.

On the other hand,

(2.1) ρBϕ

(
fχGc

n

)
≤ sup

t∈R

ϕ

(
t,
1

n

)
µ (Gc

n) ≤ sup
t∈R

ϕ

(
t,
1

n

)
.

Letting n tend to infinity in (2.1), it follows

lim
n→+∞

ρBϕ

(
fχGc

n

)
= 0.

Otherwise, we have for all n ≥ 1

(2.2) ρBϕ(f) ≤ ρBϕ (fχGn
) + ρBϕ

(
fχGc

n

)
.

Finally, by choosing n sufficiently large, the last term of inequality (2.2) can be
made smaller than any ε > 0 from which we get ρBϕ(f) = 0. This is a contradic-
tion, which finishes the proof. �

Lemma 6. Let {fn} and f be in Bϕ(R) such that fn is µ-convergent to f , then

the sequence (ϕ(·, |fn(·)|))n is µ-convergent to ϕ(·, |f(·)|) in B1(R).

Proof: Let us mention that the continuity of ϕ is sufficient to show the desired
result. The method developed here is influenced by the proof of Proposition 1
in [8]. In view of Lemma 4, for each θ ∈]0, 1[ there is an M > 0 such that

µ{t ∈ R, |f(t)| ≥M} < θ.

Let now ε > 0. We define the set

Gn = {t ∈ R, |f(t)| ≥M} ∪ {t ∈ R, |fn(t)− f(t)| ≥ ε}.

The function ϕ being continuous on R× [0,+∞[ is also uniformly continuous on
[0, 1]× [0,M +ε]. Moreover, using the periodicity of ϕ(t, u) with respect to t ∈ R,
it follows that ϕ is uniformly continuous on R× [0,M + ε].
Then, there exists η > 0 for which the following implication holds:

|ϕ (t, |fn(t)|)− ϕ (t, |f(t)|)| > ε⇒ |fn(t)− f(t)| > η, ∀t ∈ Gc
n.

On the other hand, since {fn} is µ-convergent to f , we have

(2.3) lim
n→+∞

µ {t ∈ Gc
n, |ϕ (t, |fn(t)|)− ϕ (t, |f(t)|)| > ε} = 0
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and then

µ {t ∈ R, |ϕ (t, |fn (t)|)− ϕ (t, |f (t)|)| ≥ ε}

≤ µ {t ∈ Gn, |ϕ (t, |fn (t)|)− ϕ (t, |f (t)|)| ≥ ε}

+µ {t ∈ Gc
n, |ϕ (t, |fn (t)|)− ϕ (t, |f (t)|)| ≥ ε}

≤ µ (Gn) + µ {t ∈ Gc
n, |ϕ (t, |fn (t)|)− ϕ (t, |f (t)|)| ≥ ε}

≤ µ {t ∈ R, |f (t)| ≥M}+ µ {t ∈ R, |fn (t)− f (t)| ≥ ε}

+µ {t ∈ Gc
n, |ϕ (t, |fn (t)|)− ϕ (t, |f (t)|)| ≥ ε} .

Now, letting n tend to infinity and in view of (2.3) we get:

lim
n→+∞

µ {t ∈ R, |ϕ (t, |fn(t)|)− ϕ (t, |f(t)|)| ≥ ε} ≤ θ.

Since θ is arbitrary, it follows that the sequence {ϕ(·, |fn|)}n is µ-convergent to
ϕ(·, |f |). �

Corollary 1. If {fn}n≥1 ⊂ Bϕ(R) is µ-convergent to f ∈ Bϕa.p. and there exists

g ∈ Bϕa.p. satisfying max(|fn|, |f |) ≤ g, then

lim
n→∞

ρBϕ(fn) = ρBϕ(f).

Proof: First, remark that in the proof of (ii) of Lemma 1 (see Lemma 4 of [8]
and Lemma 2.6. of [9]) we can assume that {fn}n≥1 and f are in B1(R) instead
of B1a.p..

Now, let us show the corollary. Let {fn}n≥1 be a sequence in Bϕ(R) convergent
to f in the sense of µ-convergence. Then in view of Lemma 6, we get that the
sequence ϕ(·, fn(·)) is µ-convergent to ϕ(., f(·)) ∈ B1(R) and satisfies the following
fact:

max (ϕ (., |fn(·)|) , ϕ (., |f(·)|)) ≤ ϕ (., |g(·)|) ∈ B1a.p.

Consequently, using Lemma 1, we deduce that

lim
n→∞

ρ1(ϕ(·, |fn(·)|)) = ρ1(ϕ (·, |f(·)|)),

which means that

lim
n→∞

ρBϕ (fn) = ρBϕ(f). �

We now give an adapted version of Fatou’s Lemma in Bϕa.p..

Lemma 7. Let {fn}n≥1 be a sequence in Bϕ(R) µ-convergent to f ∈ Bϕa.p.,

then we have

lim
n→+∞

ρBϕ (fn) ≥ ρBϕ(f).
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Proof: Consider the following sequence

gn(t) = f(t)χEn
(t) + fn(t)χEc

n
(t), t ∈ R

where En = {t ∈ R, |fn(t)| > |f(t)|} and Ec
n is its complement. It is clear that

for each n ∈ N, gn belongs to Bϕ(R) and satisfies

|gn(t)− f(t)| =

{
0 if |fn(t)| > |f(t)|,

|fn(t)− f(t)| if |fn(t)| ≤ |f(t)|.

It follows that |gn(t)− f(t)| ≤ |fn(t)− f(t)| and consequently the sequence {gn}n
is µ-convergent to f .

Now, since |gn(t)| ≤ |f(t)| and f ∈ Bϕa.p., using Corollary 1 we deduce that
limn→+∞ ρBϕ(gn) = ρBϕ(f). Hence,

ρBϕ(f) = lim
n→+∞

ρ
Bϕ (gn) ≤ lim

n→+∞
ρBϕ(fn). �

Lemma 8. Let {fn}n≥1 be a sequence in Bϕa.p.. Suppose that {fn} is µ-

convergent to f ∈ Bϕ(R) and limn→+∞ ρBϕ(fn) = ρBϕ(f). Then,

lim
n−→+∞

ρBϕ

(
fn − f

2

)
= 0.

If in addition, ϕ ∈ ∆B1

2 then limn−→+∞ ‖fn − f‖Bϕ = 0.

Proof: In view of Lemma 6, we deduce that {ϕ(·, |fn−f |
2 )}n is µ-convergent to

0 and consequently the sequence gn = ϕ(·,|fn|)+ϕ(·,|f |)
2 − ϕ(·, |fn−f |

2 ) is also µ-
convergent to g = ϕ(·, |f |). Then, by using Lemma 7, we get that

lim
n→+∞

ρ1(gn) ≥ ρ1(g).

Consequently, in virtue of the existence of the limit in the expression of ρ1(·), we
obtain

ρϕ (f) = ρ1(g)

≤ lim
n→+∞

ρ1

(
ϕ (|fn|) + ϕ (|f |)

2
− ϕ

(
|fn − f |

2

))

≤ lim
n→+∞

{
1

2
ρBϕ (fn) +

1

2
ρBϕ(f)− ρBϕ

(
fn − f

2

)}

≤ ρBϕ (f)− lim
n→+∞

ρBϕ

(
fn − f

2

)
.

Finally, we get limn→+∞ ρBϕ( fn−f
2 ) = 0. �
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3. Main results

Theorem 3. The following properties are equivalent to each other:

(1) B̃ϕa.p. is LUC,

(2) B̃ϕa.p. has the H-property,

(3) ϕ is strictly convex and ϕ satisfies the ∆B1

2 -condition.

Proof: We will show the following implications: (3) =⇒ (1) =⇒ (2) =⇒ (3).
Observe that the implication (1) =⇒ (2) holds in general Banach spaces.

To prove (3) =⇒ (1), let fn, f be in B̃ϕa.p. such that

‖fn‖Bϕ = ‖f‖Bϕ = 1 and

∥∥∥∥
f + fn

2

∥∥∥∥
Bϕ

→ 1 as n→ +∞.

Recall that since ϕ satisfies the ∆B1

2 -condition, we have Bϕa.p. = B̃ϕa.p. and
from Lemma 2, we have ρBϕ(fn) = ρBϕ(f) = 1. Following analogous arguments
to those of [14, Lemma 2], it is possible to show the following assertion:

ρBϕ

(
f + fn

2

)
→ 1 as n→ +∞

whenever
∥∥∥∥
f + fn

2

∥∥∥∥
Bϕ

→ 1 as n→ +∞.

Indeed, suppose the assertion is false. Then, there exists ε > 0 such that the
following inequalities hold for all n ≥ 1: ρBϕ( f+fn

2 ) ≤ 1−ε or ρBϕ( f+fn
2 ) ≥ 1+ε.

In both cases, we will obtain a contradiction. In the first case, by using the

∆B1

2 -condition, we get supn ρBϕ(f + fn) <∞, and consequently

1 = ρBϕ

(
f + fn

‖f + fn‖Bϕ

)
= ρBϕ

((
2

‖f + fn‖Bϕ

− 1

)
(f + fn)

+

(
2−

2

‖f + fn‖Bϕ

)(
f + fn

2

))

≤

(
2

‖f + fn‖Bϕ

− 1

)
ρBϕ (f + fn) +

(
2−

2

‖f + fn‖Bϕ

)
ρBϕ

(
f + fn

2

)

≤

(
2

‖f + fn‖Bϕ

− 1

)
sup
n
ρBϕ (f + fn) +

(
2−

2

‖f + fn‖Bϕ

)
(1− ε) .

Passing to the limit for n→ +∞, we obtain 1 ≤ 1− ε, that is, a contradiction.
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If ρBϕ( f+fn
2 ) ≥ 1 + ε, the ∆B1

2 -condition implies that supn ρBϕ(2 f+fn
‖f+fn‖Bϕ

) <

∞, and then

1 + ε ≤ ρBϕ

(
f + fn

2

)
= ρBϕ

((
2−

∥∥∥∥
f + fn

2

∥∥∥∥
Bϕ

)(
f + fn

‖f + fn‖Bϕ

)

+

(∥∥∥∥
f + fn

2

∥∥∥∥
Bϕ

− 1

)(
2

f + fn

‖f + fn‖Bϕ

))

≤

(
2−

∥∥∥∥
f + fn

2

∥∥∥∥
Bϕ

)
ρBϕ

(
f + fn

‖f + fn‖Bϕ

)

+

(∥∥∥∥
f + fn

2

∥∥∥∥
Bϕ

− 1

)
ρBϕ

(
2

f + fn

‖f + fn‖Bϕ

)

≤

(
2−

∥∥∥∥
f + fn

2

∥∥∥∥
Bϕ

)
+

(∥∥∥∥
f + fn

2

∥∥∥∥
Bϕ

− 1

)
sup
n
ρBϕ

(
2

f + fn

‖f + fn‖Bϕ

)
.

Letting n tend to infinity, we get 1 + ε ≤ 1, a contradiction. This completes the
proof of the previous assertion.

Hence, in view of Lemma 3, it follows that the sequence {fn}n is µ-convergent

to f . Then using Lemma 8 and the ∆B1

2 -condition on ϕ, we conclude that

‖fn − f‖Bϕ → 0 as n→ +∞.

(2) =⇒ (3): Suppose that B̃ϕa.p. has the H-property. Using Proposition 1
and the same techniques as in [1] (see the proof of Theorem 1) we will show
that the Musielak-Orlicz space Lϕ([0, 1]) has also the H-property. We repeat this
justification for the clarity of the proof. Let {fn} be a sequence in Lϕ([0, 1]) such
that:

• {fn} converge weakly to some f in Lϕ([0, 1]),
• ‖fn‖ϕ −→ ‖f‖ϕ (here, the notation ‖ · ‖ϕ is used to designate the Lux-
emburg norm associated to the Musielak-Orlicz space Lϕ([0, 1])).

Then, for each G in the dual space (B̃ϕa.p.)∗, we have G ◦ i ∈ (Lϕ([0, 1]))∗.
Moreover, since fn −→ f weakly in Lϕ([0, 1]), we get

G ◦ i (fn) −→ G ◦ i(f)

or equivalently G(f̃n) −→ G(f̃). Thus f̃n −→ f̃ weakly in B̃ϕa.p..

It is clear that ‖f̃n‖Bϕ −→ ‖f̃‖Bϕ and since B̃ϕa.p. has the H-property, we

can write ‖f̃n − f̃‖Bϕ −→ 0 and finally ‖fn − f‖ϕ −→ 0. This means that the
Musielak-Orlicz space Lϕ([0, 1]) has the H-property.

It follows from [11] that ϕ is strictly convex and satisfies the ∆L1

2 -condition.

Since it satisfies also the ∆B1

2 -condition, the proof is finished. �

Theorem 4. The following properties are equivalent to each other:

(1) B̃ϕa.p. is UCED;
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(2) ϕ is strictly convex and ϕ satisfies the ∆B1

2 -condition.

Proof: Since B̃ϕa.p. is a pseudonormed space, we will adapt the definition of

UCED property to this space as follows: for any g ∈ B̃ϕa.p., and every sequence

(fn) in B̃
ϕa.p., the conditions ‖fn‖ → 1, ‖fn + g‖ → 1 and ‖2fn + g‖ → 2 imply

‖g‖ = 0. Remark that this definition is equivalent to that of UCED property of
a normed space.

(2) =⇒ (1): Let ‖fn‖Bϕ → 1, ‖fn + g‖Bϕ → 1 and ‖2fn + g‖Bϕ → 2. Assume

that ϕ is strictly convex and ϕ satisfies the ∆B1

2 -condition. Then, we have also

ρ
Bϕ (fn) → 1, ρ

Bϕ (fn + g) → 1 and ρ
Bϕ (

2fn+g
2 ) → 1. Now, applying Lemma 3

to the sequences (fn)n and (fn + g)n, we get that g = 0 µ a.e. and in view of

Lemma 5 we deduce that ρBϕ(g) = 0 and using again the ∆B1

2 -condition it follows
that ‖g‖Bϕ = 0.

(1) =⇒ (2): Using Proposition 1, and since the UCED property of B̃ϕa.p.

implies the UCED property of Lϕ([0, 1]), we get the necessity of the strict con-

vexity of ϕ and the ∆L1

2 -condition (see [7]) and then the necessity of the ∆B1

2 -
condition. �

Corollary 2. The following properties are equivalent to each other:

(1) B̃ϕa.p. is LUC;

(2) B̃ϕa.p. is MLUC;

(3) B̃ϕa.p. has the H-property;

(4) B̃ϕa.p. is UCED;

(5) B̃ϕa.p. is SC;

(6) ϕ is strictly convex and ϕ satisfies the ∆B1

2 -condition.

Now, we apply the previous results to give an application in best approxima-
tion.

Let (X, ‖ · ‖X) be a Banach space, C be a subset of X and x ∈ X . Let us
consider the metric projection

PC : x→ d(x,C) = inf {‖x− y‖X , y ∈ C} .

In the paper [3], the authors have shown that, under the additional conditions
on ϕ:

(3.1) ∀t ∈ R, lim
u→∞

ϕ(t, u)

u
= +∞, lim

u→0

ϕ(t, u)

u
= 0,

the space B̃ϕa.p. is reflexive if and only if ϕ ∈ ∆B1

2 ∩ ∇B1

2 .
Since reflexive strictly convex Besicovitch-Musielak-Orlicz spaces of almost pe-

riodic functions are LUC, and so they have the H-property, we get the following
corollary which is a generalization of Doob Theorem:

Corollary 3. Assume that ϕ is strictly convex, ϕ ∈ ∆B1

2 ∩ ∇B1

2 and ϕ satisfies

the conditions (3.1), then for any closed convex sets C1 ⊃ C2 ⊃ · · · ⊃ C∞ = ∩nCn
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in B̃ϕa.p. and any x ∈ B̃ϕa.p.,

‖PCn
(x)− PC∞

(x)‖ → ∞, as n→ ∞.
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