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Abstract. The cross-covariance matrix of observation vectors in two linear statistical
models need not be zero matrix. In such a case the problem is to find explicit expressions
for the best linear unbiased estimators of both model parameters and estimators of variance
components in the simplest structure of the covariance matrix. Univariate and multivariate
forms of linear models are dealt with.
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INTRODUCTION

Suppose a medicament must be tested on a group of animals. The aim of the
experiment is to recognize whether the medicament influences the relationship be-
tween a value of a physiological parameter and characteristics (weight, age, etc.) of
animals.

The measured values of physiological parameter on n animals are given by an n-
dimensional vector u, the characteristics of animals are given by an n x k matrix X.
The dependence of g on X is assumed to be of the form u = X3, where 3 is a
k-dimensional unknown vector parameter. The observation vector Y; before the
experiment is Yy ~ (XB1,31,1), where the mean value E(Y;) of the observation
vector Yy is E(Y1) = X8; and the covariance matrix Var(Y;) is Var(Yy) = ¥ 1.
The observation vector Yo after using the medicament is Yo ~ (X382, 39 2).

Since the same animals are investigated before and after the experiment, it must
be assumed that cov(Y1,Y2) =3;2#0
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Thus the whole experiment can be described as

()~ 15 %) (&) Gy 5]
Y, 0, X Ba) \Baq1 o))’

To be a little more general, let the model be

® ()~ [0 <) () (5 5]
Y, 0, X, B2) \ a1, a2/
The problem is to estimate the vector parameters 31, 32 and, in the case X; = Xo,
to test the hypothesis Hy: 31 = B2 against Hy: (31 # Bo.

Some partial solutions are given in the following text. It is assumed that the rank

of the matrix X; is 7(X1) = k < n and the same is valid for the matrix X5. The
i1, X2

o1, X2
The seemingly unrelated regression model was introduced by A. Zellner in the

matrix ( ) is assumed to be positive definite, i.e. the model (1) is regular.

year 1962. There are relatively many papers and also chapters in monographs on
econometrics treating the model, e.g. among others see [1], [2], [3], [7], [10].

1. UNIVARIATE MODELS

The best linear unbiased estimator (BLUE) of the vector ('61
2

B\ _ [(X5, O sl wL2Y /X, 0\ !
By ) 0, X,/ \x21 x22 0, X,
y X', 0 L1 w2\ /Y,
0, X,)\x2 x22)\vY,)’

bl »t2 _ i1, Zia\
2 322 Y91, X232 '

In order to express the estimators ,5'1 and ,5'2 separately, the following lemma will

) in the model (1)

is

where

be used.
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Lemma 1.1. In the regular model
()~ (50 ) (5)- (s x)
2 D, X5 B2) '\ 0, Toy
the BLUE of (3 is
By = {X5[Ta o + D(X|T7 X)) ' D] 7 Xp} X5 [Ty 0 + D(X) T X)) ' D]

x [ — D(X{T71X0) ' X T o).

Proof. Proofis given in [4], p. 326. O
Theorem 1.2. The BLUEs of 31 and (32 in the model (1) are

Br = {X{[Sr12 + 21285 1 X (X555 1X0) T X525 180 171X )
X X][B11.2 + 21,2855 X (X585 1X0) ' X585 555 4]
x {Y1 = 2128551 — Xo(X5355X,) ' X535 3] Yo |,

Bo = {X)[Son1 + B 71X (X S11X0) XSS 71X}
X X5 (a1 + T B X (X2 1X) XD 8 0] 7!
x {Yy — 3o 1 B I - Xa (X271 X)) ' X8 1] Y1

where
—1 —1
Y12 =311 — E238;55301, oo = oo — Mo 13X 1My,

Proof. Let the model (1) be transformed in the following way

(oot (W) (osisv)
313571, I)\Y, Y, — 25131 Y)

N, %) (22) (o s
—2271217})(1, X B2) \ 0, o1/

Let in Lemma, 1.1
m=Yy, mM2=Yy— 22,12177%3[1, T =311, To2=321.
Then

Bo = {Xh[Sao1 + T DU X (X S0IX) T IXI B IS ) X
X X5[Ba01 + T B X (X2 1X) T XD 8 0] 7!
x {Yy — 3o 1 B 1 - Xy (X271 X)) ' X8 1] Y4 )
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Because of the structure of the model (1), the expression for the BLUE ,5'1 can be
written as
_ _ _ _ _ -1
= {X/[B11.2 + 212355 X0 (X535 3X0) ' X535 530, ' Xy }
X X [B11.2 + 21,285 5 X (X538, 5 X0) ' X585 5504
x {Y1 = 2128551 — Xo(X538;5X0) ' X535 5] Yo ).

Lemma 1.3. The covariance matrices of Bl and ,5'2 from Theorem 1.2 are

Var(81) = {X)[Si12 + 21255 4 Xo (X555 5 X) 7 X455 180 1] 71X},

Var(B2) = {X5[Sa01 + o 371X (X, D7 1K) X SIS )X,
COV(ﬂl,ﬁz) Var(ﬁl)X1211.2217222,2X2(X/2222.1X2)
{Var(82)X5 35, B2 1 571 X0 (X 27, X)) Y
= Var(B1)[X| 271, 312%;, 5 X — X 25219555 Xo

X (X,222_21.1X2)71X,222_21.1227121_&)(1(X/121_11.2X1)71

x X4 311,31 235 3 Xo] Var(Bs).

Proof. The expressmns for Var(3;) and Var(B;) can be obtained directly from
the expressions for ,6'1 and ﬁg The expression for cov(,@l, ﬁg) can be obtained as

L0) XiEUIX, X(EM2X,\ 7 /0
AXEERIX, X,E22X, 1)

A, B _1_ aa, of
() = )

aa=(A-B'C'B),
af= —(A-B'C'B)"'BC™! = (Ba),
pB=(C-B'A'B)™"

The identity

with

A B
which is valid for any positive definite matrix <B ) C)’ is used in what follows.
Thus 7

cov(By, B2) = — [X[| VX, — X[ B12X, (X, E22X,) X, 821!
x X) B2 X, (X525 X))
= Var(3) X} 212X, (X, 232X,) 7!
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= Var(B1) X[ 371,31 235 5 X [ X585, Xo] !
= Var(81)X| 21,51 235 3 X2 (X535, Xo) ! (Var(8,)) ! Var(B,).

Since
(Var(Bs)) ™! = X4232X, — XH321X (X 2 X)) 71X B2 X,
we have

X/121_11.2217222_,5X2(X/222_21.1X2)_1(Var(/é2))_l
= X)37, 21355 Xo
— X3, 285 5 X (X5 200, Xo) T XG0, 801 B 1 X0
X (X/121_11.2X1)71X,121_11.221,222_,§X2~

O
To test the hypothesis (in the case of normality) Hy: £1 = B2 on the base of
311, 2
the BLUEs of B; and 39 is simple if the covariance matrix <21’17 21’2> is given.
2,1, 242,2

It is possible to base the test on the estimators

Bi= (X3, /X)'X'S; Y, i=1,2,

(ﬂ:l) ~ N [(ﬁh) 7 ( Var(B1), COV(611B2)>:| 7

B2 B2 cov(B2,81), Var(Bs)

Var(8y) = (X' 1X) 7,

Var(Bz) = (X'255X) 7!

cov(Bi, B2) = (X'E11X)~ 1X2 131225 ) X(X/ 25 5X) !
= [cov(B2, B1)]'-

as well. Here

Since the matrices 3; 1, 31 2, X2 2 are usually unknown, a way out is to assume a
simple structure with a few unknown estimable parameters. The simplest structure
seems to be

Sii=0il, Zia=cl, Zy5=031

Thus the model (1) in the case X; = X5 can be written as
Yl ;61 U%a c
~ N- I X L.
<Y2> Qn{u@ )<52)’(Ca o3 @ n
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Lemma 1.4. Let 9 = (0},03,¢c) = (91,92,93)". Then the 9o-MINQUE

(minimum norm quadratic unbiased estimator) of ¥ is 9 = S™1'4, where ¥y =

(0’%0, o%}o, ¢o)" is an approximate value of the vector 9,

n—k Ug,oa 6(2)7 _QCOU%,O
_ 2 4 2
S = (02 02 9 — C2)2 Co> 01,00 —2co07
poTRo 0 —20005,0; _2000%,(» 2(0%,005,0 +cf)
(it is assumed to be regular), ¥ = (41, %2,%3)’,
. 1
=T e (03,0YIMx Y1 —2c005 Y1 Mx Y2 + g Y5Mx Ys),
1,092,0 — %
. 1
LRl o (@Y1 MxY1 — 2¢007 ) YIMxYs + 01 ( YoMxY3),
1,092,0 ~
. 1
Rl P e B (—2¢003 YIMx Y1 +2(07 005 g + ¢§) Y Mx Y
1,092,0 ~

— 2c007 ) Y4Mx Y3).

Y
In the case of normality of (Yl ) it is valid that
2

Var(d) = 2871,
)

2
o7, ¢
. . 1 .
Proof. The covariance matrix ( ’ 9 ) I,, can be rewritten as
¢, 05

2
C
(”1’ 2> @1, = 02V, + 02V, + ¢V,

C, g5

1. 0 0, 0 0, 1
v, = (> L, Vo= [ L, Vi—=[ L.
! <0, 0>® v <0, 1)® ’ <1, 0>®

Now the procedure for estimation of 9 in the model

p
n -~ Nn (A@, Z 191-Vi>

i=1

where

can be used (in more detail see in [9]). Here
7' (MaXoMA) TV (M4aZoM4)tn
5 et .
9= S(MAZOMA)+ : ’
N (MAZoMA)TV,(MAZM4) Ty

p
o= vioVi and Varg,(9) =28 v e

i=1
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If the relationships (X; = X3)

J%Oa €o
o = ’ ®L,, M/x oy =1I®Mry,
€o, 020 ( X)

X{MX 0 [(U%’m o >®In M x, o }+
(0; %) co, 03 (0, %)

1 ok —Ccoo

2,05 0030

=732 2 22 2 » 7 | @ Mx = A; ® My,
(01,0‘72,0 - c3) —C002,0, €o

2 +
01,05 Co 07 0> :|
M ’ L,| M, x I,
{ ()0(, )0() [< Co, U%,O) ¥ :| ()0(, )0()} |:(07 1 ®
U%.O7 Co
M ’ I,
. { (%(7 )(2') [( o, U%,O) ¢

1 c? —cpo?

0 0010

=55 a2g3 9 4 QMx = Ay ® My,
(01,002,0 - Co) —C0071,0s 01,0

Pree (0 2) ox g} [ 0)en]

Do (2 3) o+ o)
BN\ e o) MY

_20002 0 01005 0 +C(2)>
- 092, @My = Az ® My,
(030030 — ¢ )2 (01 0030+ 5, —2c907 * ’ *
1 o3
m{ml@mx) ( )®1 }:$<n_m
0, 0 | (070030 — ¢§)?
0, 0 T c2
(A; ® Mx) ( ’ )@In}— . (n — k),
{ 0, 1 (o1 0‘75,0 c5)?
0, 1 | —2c003 9
(A; ® M) ( )®In }_ : (n —k),
{ L, 0 i (‘71,0‘75,0 cg)?
0, 0 | O10
Tr4 (A ® Mx) ( )®I }: (n—k),
{ 0, 1 n_ (07 0‘75,0 cg)?
0, 1 ] —2¢007 9
(A ® Mx) ( >®In}_—(n_k)7
{ 1, 0 i (U%OU%O _0(2))2
1 1 2(07 9030 + ¢f)
(A3 ® Mx) ( >®I }—’—’(n—k),
{ \1, 0 ] (070030 — c5)?

are used, then the proof can be easily finished.
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In practice the iteration procedure for the determination of the estimators 67, 63, ¢
is used.

If the separate estimators of 07, 03, ¢ are not interesting for a statistician and the
test of the hypothesis 81 = B2 is important only, then the following procedure (see
the following lemma) can be used.

Y 2 Y
Lemma 1.5. If Var (Y1> = (Ul7 02> ® I, and (Y1> is normally dis-

2 C, 05 2
tributed, then

1
(O’% + O'% — 20) = —(YllMxYl — 2Y’1MxY2 + Y,2MXY2)

n—=k

ngfk(o)
n—=k
and the test statistic for the hypothesis 31 = (32 is

n—=k Y/1PXY1 — 2Y/1P)(Y2 4 Y/QPXYQ "
E Y/ MxY: —2YMxY:+Y,MxY, kn—k-

~ (0% + 02 —2c)

Proof. The statement is a direct consequence of the assumption
Y1 — Yo ~ Ni[X(B1 — Ba), (0} + 03 — 20)1,].
O

The treated problem has quite different features in the multivariate case; see the
following section.

2. MULTIVARIATE CASE

If an experimental animal is characterized by the measurement of m physiological
parameters, then the model of the experiment is (X; = X»)

(2)  vec(Y,,Y,)
|:(Im®X7 0 ) (VGC(BI)) (21,1®In7 z:1,2®In):|
07 Im (9 X VGC(BQ) ’ 2271 (9 In7 2272 ® In ’
where Y, Y, are n x m observation matrices, By, By are k x m parameter matrices

and

Var[vec(Y;)] =311 ®1I,, covvec(Y1),vec(Ysa)] =212®1,,
covlvec(Ya),vec(Y1)] =321 ®1L,, Var[vec(Y,)] =3222®1,

(more details on structures of multivariate models see in [5]).
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Lemma 2.1. The BLUEs of B; and By in the model (2) are

and

Proof. Since
Y > >

() (B B oy,
vec(Y,) o1, o2

Y1, B2

o1, o2
be obtained directly from Theorem 1.2 as well. Thus, e.g. the estimator of B is

the estimator is obviously independent of ( ) However the BLUEs can

vee(B1) = ((In @ X){(B112 @ L) + [(£12553) @ L] (L, @ X)
[( X’)(EQ L@ L)Ly X)) (L © X)[(355821) @ L}
)) XN {(Z11.2 9 1) + [(Z1,2253) © L] (L, @ X)
[( ’)(22 L@ L)Ly X)) (L © X)[(375821) @ L]}

X {Vec Xl) — [(212253) ® L] vec(Yy) + [(21,2353) @ L) (I, © X)
* [(In © X) (S35 9 L) (L ©X)] 7 (I © X') (B34 @ L)vee(Y,) }
= (L @X){S1120L, + (2125;,3801) @ Py} (L, © X)) (I, @ X)
X {Z11.20 1L, + (21,225522,1) ® PX}71
X vec(Y1 — Y, %1 + PxY,5; 35, )
{ 2112®Mx+(2112+21 23, 222 1)~ 1®PX](Im,®X)}
(Im @ X))ty @ Mx + (Z110 + 21,2227222,1)_1 ® Px]
x vec(Y; — Mx Y3555, )
=[E e XX)] (S @ X ) vee(Y; - MxY2X;350,)
= vec[(X'X)'X'Y,].

—1

_ B
The expressions for By and Var (vec(ﬁlg ) are obvious. O

vec(Ba
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Lemma 2.2. Let T be an n X n p.s.d. matrix, 3 be an m X m p.d. matrix,
r(T) > m and
vec(§) ~ Num(0, 2@ T).

Then
ETE ~ Wy [r(T), X]

(the Wishart distribution with r(T) degrees of freedom and with the covariance

matrix X).

r(T)
Proof. Let T= > M\fif] be the spectral decomposition of the matrix T. Let

=1
VAL, .. 0
J:(fl,...,f,«(T)) : -
0, ..., Ar(T)
and .
im0
K=(fi,....f, (1) : . :
0 L
) ) /)\r(T)

Then J is an n x 7(T) matrix with the property T = JJ’' and K is an n x r(T)
matrix with the property KK’ = T, i.e. JK = I, (1). Then

(I, @ K') vec(§) ~ Nopr(1) (0,2 @ 1 (7)) = §’KK'§ = §’T+§ ~ W [r(T), Z].

Since

V{ii=1,...,m} P{{&.ie M(T)} =1

it is valid that §'T+§ = §/T_ £ for any g-inverse T~ of T (more details on g-inverses
see in [8]). O

Lemma 2.3. Let Xy =X and (Y,,Y,) be normally distributed. Then

Y'MxY,, Y'MxY, W I — & Y1, X2
Y,MxY,, Y,MxY, m "\ D1, Zop /]

Proof. Since
by by
VeC(XhXQ) ~ Nopm, |:(12m ® X) VeC(Bla BQ); ( b 172) ® In:| 5
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it is valid that

2., =
(Izm ® Mx) vec(Y,Y,) ~ Nopm [07 ( b 1’2) ® Mx} -
o1, 22

With respect to Lemma 2.2

Y, Y S
- Mx(Y,,Y,) ~ Wy, — k, - ’ .
(Xlz) (X, Xo) m [n (22,17 32,2 ﬂ

In the following lemma the test statistics for the hypotheses
(i) (By —B3y) =0,
(ii)) (B; —B2)1 =0, and
(iii) By —B2=0

are given in the case of normality of the matrix (Y,,Y,).

Lemma 2.4.

(i) Let h € R* and the hypothesis be h'(B; — Ba) = 0. Then

h'(B; — By)(Y,MxY, - Y,MxY, - Y,MxY, + Y,MxY,) }(B; - By)'h
h'(X’X)~'h

n—k—m-+1
X ———————————— ~ Py n—k—m+1-
m

(if) Let 1 € R™ and the hypothesis be (B; — B3)l = 0. Then

n—k l/(]/_)\)l — EQ)IX/X(ﬁl — ]/_)\)2)1
k- V(Y MxY, - Y/ MyY, - Y,MxY, + Y,MyY,)l

~ Fk’,n—k-
(iii) Let the hypothesis be By — By = 0. Let U = Y/MxY, - Y/MxY, —
Y,MxY, + Y,MxY,. Then

det(U)
det[U + (B; — B,)'X'X(B; — By)]

1
—[n—§(k+m+1)}log — X3

Proof. The matrix ]§1 — ]§2 and the matrix W = Xllszl -Y MxY, —
X'QMXXI + X'QMXXQ are independent.
(i) Under the null hypothesis

Vec[h’(ﬁl — ]§2)]
W(X'X) 'h

~ Np(0,211 — 12— 321 + X22)
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and

W =Y MyY, - Y/MxY, - Y)MxY, + Y;MyY,
~Wy(n—k, 11— 12— o1 + o 9).

With respect to the Hotelling theorem [6] it is valid that

h'(B; — B)W (B, —By)h (n—k—m+1)
h/(X/X)—lh m ~ L'mn—k—m+1-

(if) It is valid that

(B — By)l ~ Ni[(By — Bo)LT (211 — By — Sog + Bao)I(X'X) 1,
Wi~ x2 1V (B11 — 12— o + Jao)l.
Thus R R R R
(B, — By)X'X(B; — By)l/k
VW1/(n — k)

~ Fyn—k.
(iii) The relationships

Vec(ﬁl — ﬁz) ~ N[0, (B11 — Z12 — o1 + Ba0) ® (X'X) 7]
= (ﬁl — ]§2)’X’X(]§1 — ]§2) ~ Wi (k, 311 — 312 — 3o 1 + Za9)

and
Y MxY, - Y{MxY, - YoMxY, + YoMyY,
~Wh(n—k, 311 — %12 — a1+ Xa9)
imply, with respect to the Wilks-Bartlett theorem [6], the statement. (]

¥, 2 ?
If < L1 1’2) = (Ul’ 62) ® I,,, then the hypothesis By = By can be tested
o1, oo

¢, 03
with the help of the following lemma.

Y1, B2

Lemma 2.5. If
(22,17 32

o2, ¢
= 5 | ® L, then the test statistic is
¢, 05
Tr[(B; — By)'X'X(B; — By)] m(n — k)
Tr(Y MxY, - Y MyY, - YoMyY, + YoMyY,) km

~ ka,m(nfk) .

Proof. The expression
[vec(B; — By)]'[(0? + 02 — 20)L,, @ (X'X) "] ' vee(B;y — By) ~ x3,,
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can be transwritten as

Tr[(B; — B2)X'X(B1 — By)|
02 +03 —2c

Since

Tr(Y MxY, - YiMxY, - YoMxY, + YoMy Y,) ~ (07 + 03 = 26)X;np):

the statement is obvious. O
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