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RARITA-SCHWINGER TYPE OPERATORS ON SPHERES
AND REAL PROJECTIVE SPACE

Junxia Li, John Ryan, and Carmen J. Vanegas

Abstract. In this paper we deal with Rarita-Schwinger type operators on
spheres and real projective space. First we define the spherical Rarita-Schwinger
type operators and construct their fundamental solutions. Then we establish
that the projection operators appearing in the spherical Rarita-Schwinger type
operators and the spherical Rarita-Schwinger type equations are conformally
invariant under the Cayley transformation. Further, we obtain some basic
integral formulas related to the spherical Rarita-Schwinger type operators.
Second, we define the Rarita-Schwinger type operators on the real projective
space and construct their kernels and Cauchy integral formulas.

1. Introduction

Rarita-Schwinger operators are generalizations of the Dirac operator and arise in
representation theory for the Spin and Pin groups. See [3, 4, 6, 14, 15]. We denote
a Rarita-Schwinger operator by Rk, where k = 0, 1, . . . ,m, . . . . When k = 0 we
have the Dirac operator. The Rarita-Schwinger operators Rk in Euclidean space
have been studied in [3, 4, 6, 14, 15]. Here we construct similar Rarita-Schwinger
operators together with their fundamental solutions and study their representation
theory on the sphere and real projective space.

First J. Ryan [12, 11] in 1997 and P. Van Lancker [13] in 1998 studied the
Dirac operators on the sphere. Later, H. Liu and J. Ryan [8] studied the spherical
Dirac type operators on the sphere by using Cayley transformations. See also
[1]. Using similar methods to define the Rarita-Schwinger operators in Rn, we
can define the spherical Rarita-Schwinger type operator on the sphere based
on the spherical Dirac operator. We also use similar arguments as in Euclidean
space to establish the conformal invariance for the projection operators and the
spherical Rarita-Schwinger type equations under the Cayley transformations. See [6].
Further the fundamental solutions to the spherical Rarita-Schwinger type operators
are achieved by applying the Cayley transformation. In turn, Stokes’ Theorem,
Cauchy’s Theorem, Borel-Pompeiu Formula, Cauchy Integral Formula and a Cauchy
Transform are proved for the sphere. Furthermore, we show that Stokes’ theorem is

2010 Mathematics Subject Classification: primary 30G35; secondary 53C27.
Key words and phrases: spherical Rarita-Schwinger type operators, Cayley transformation,

real projective space, Almansi-Fischer decomposition, Iwasawa decomposition.
Received June 6, 2012. Editor J. Slovák.
DOI: 10.5817/AM2012-4-271

http://www.emis.de/journals/AM/
http://dx.doi.org/10.5817/AM2012-4-271


272 JUNXIA LI, J. RYAN AND C. J. VANEGAS

conformally invariant under Cayley transformation, and with minor modification, is
equivalent to the Rarita-Schwinger version of Stokes’ Theorem in Euclidean space
appearing in [3, 6] and elsewhere.

By factoring out Sn by the group Z2 = {±1} we obtain real projective space,
RPn. On this space, we define the Rarita-Schwinger type operators and construct
their kernels over two different bundles over RPn. Further, we obtain some basic
integral formulas from Clifford analysis associated with these operators for the two
different bundles. This extends results from [7].

2. Preliminaries

A Clifford algebra, Cln+1, can be generated from Rn+1 by considering the
relationship

x2 = −‖x‖2

for each x ∈ Rn+1. We have Rn+1 ⊆ Cln+1. If e1, . . . , en+1 is an orthonormal basis
for Rn+1, then x2 = −‖x‖2 tells us that eiej+ejei = −2δij . Let A = {j1, . . . , jr} ⊂
{1, 2, . . . , n + 1} and 1 ≤ j1 < j2 < · · · < jr ≤ n + 1. An arbitrary element of
the basis of the Clifford algebra can be written as eA = ej1 . . . ejr . Hence for any
element a ∈ Cln+1, we have a =

∑
A aAeA, where aA ∈ R.

The reversion is given by

ã =
∑
A

(−1)|A|(|A|−1)/2aAeA ,

where |A| is the cardinality of A. In particular, ˜ej1 . . . ejr = ejr . . . ej1 . Also ãb = b̃ã
for a, b ∈ Cln+1. The Clifford conjugation is defined by

ā =
∑
A

(−1)|A|(|A|+1)/2aAeA

and satisfies ej1 . . . ejr = (−1)rejr . . . ej1 and ab = b̄ā for a, b ∈ Cln+1.
For each a = a0 + a1e1 + · · ·+ a1...n+1e1 . . . en+1 ∈ Cln+1 the scalar part of āa

gives the square of the norm of a, namely a2
0 + a2

1 + · · · + a2
1...n+1. For more on

Clifford algebras and their properties, see [9].
The Pin and Spin groups play an important role in Clifford analysis. The Pin

group can be defined as

Pin(n+ 1) := {a ∈ Cln+1 : a = y1 . . . yp : y1, . . . , yp ∈ Sn, p ∈ N}

and it is clearly a group under multiplication in Cln+1.
Now suppose that y ∈ Sn ⊆ Rn+1. Look at yxy = yx‖yy+ yx⊥yy = −x‖y + x⊥y

where x‖y is the projection of x onto y and x⊥y is perpendicular to y. So yxy
gives a reflection of x in the y direction. By the Cartan–Dieudonné Theorem each
O ∈ O(n+ 1) is the composition of a finite number of reflections. If a = y1 . . . yp ∈
Pin(n+ 1), then ã := yp . . . y1 and axã = Oa(x) for some Oa ∈ O(n+ 1). Choosing
y1, . . . , yp arbitrarily in Sn, we see that the group homomorphism

θ : Pin(n+ 1) −→ O(n+ 1): a 7−→ Oa ,
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with a = y1 . . . yp and Oa(x) = axã, is surjective. Further −ax(−ã) = axã, so 1,
−1 ∈ ker(θ). In fact ker(θ) = {±1}. See [9]. The Spin group is defined as

Spin(n+ 1) := {a ∈ Pin(n+ 1) : a = y1 . . . yp and p even}
and it is a subgroup of Pin(n+ 1). There is a group homomorphism

θ : Spin(n+ 1) −→ SO(n+ 1)
which is surjective with kernel {1,−1}. See [9] for details.

The Dirac Operator in Rn is defined to be

D :=
n∑
j=1

ej
∂

∂xj
.

Note D2 = −∆n, where ∆n is the Laplacian in Rn.
If pk is a homogeneous polynomial with degree k such that Dpk = 0, we call

such a polynomial a left monogenic polynomial homogeneous of degree k.
Let Hk be the space of Cln+1-valued harmonic polynomials homogeneous of

degree k and Mk the space of Cln+1-valued monogenic polynomials homogeneous
of degree k. Note if hk ∈ Hk, then Dhk ∈ Mk−1. But Dupk−1(u) = (−n − 2k +
2)pk−1(u), so

Hk =Mk

⊕
uMk−1 , hk = pk + upk−1 .

This is the so-called Almansi-Fischer decomposition of Hk. See [2, 10].
Note that if p(u) ∈ Mk then it trivially extends to P (v) = p(u + un+1en+1)

with un+1 ∈ R and P (v) = p(u) for all un+1 ∈ R. Consequently Dn+1P (v) = 0

where Dn+1 =
n+1∑
j=1

ej
∂

∂uj
.

If p(u) ∈ Mk then for any boundary of a piecewise smooth bounded domain
U ⊆ Rn by Cauchy’s Theorem

(1)
∫
∂U

n(u)p(u)dσ(u) = 0 .

Suppose now a ∈ Pin(n+ 1) and u = awã then although u ∈ Rn in general w
belongs to the hyperplane a−1Rnã−1 in Rn+1.

By applying a change of variable, up to a sign the integral (1) becomes

(2)
∫
a−1∂Uã−1

an(w)ãP (awã)dσ(w) = 0.

As ∂U is arbitrary then on applying Stokes’ Theorem to (2) we see that
(3) DaãP (awã) = 0 , quadwhere Da := Dn+1

∣∣
a−1Rnã−1 .

Suppose U is a domain in Rn. Consider a function of two variables
f : U × Rn −→ Cln+1

such that for each x ∈ U , f(x, u) is a left monogenic polynomial homogeneous of
degree k in u. Let Pk be the left projection map

Pk : Hk →Mk,
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then Rkf(x, u) is defined to be PkDxf(x, u). The left Rarita-Schwinger equation
is defined to be

Rkf(x, u) = 0 .

We also have a right projection Pk,r : Hk → Mk, and a right Rarita-Schwinger
equation f(x, u)DxPk,r = f(x, u)Rk = 0, where Mk stands for the space of right
monogenic polynomials homogeneous of degree k. See [6].

3. Rarita-Schwinger type operators on spheres

Let Rn be the span of e1, . . . , en. Consider the Cayley transformation C : Rn →
Sn, where Sn is the unit sphere in Rn+1, defined by C(x) = (en+1x+1)(x+en+1)−1,
where x = x1e1 + · · · + xnen ∈ Rn, and en+1 is a unit vector in Rn+1 which is
orthogonal to Rn. Now C(Rn) = Sn \ {en+1}. Suppose xs ∈ Sn and xs = xs1e1 +
· · ·+xsnen +xsn+1en+1, then we have x = C−1(xs) = (−en+1xs + 1)(xs− en+1)−1.

The Dirac operator over the n-sphere Sn has the form Ds = w(Λ + n
2 ), where

w ∈ Sn and Λ =
n∑

i<j,i=1
eiej(wi

∂

∂wj
− wj

∂

∂wi
), see for instance [5, 8, 13].

Let U be a domain in Rn. Consider a function f? : U × Rn → Cln+1 such that
for each x ∈ U , f?(x, u) is a left monogenic polynomial homogeneous of degree
k in u. This function reduces to f(xs, u) on C(U) × Rn and f(xs, u) takes its
values in Cln+1 where x = C−1(xs) and xs ∈ C(U) ⊂ Sn. Further f(xs, u) is a left
monogenic polynomial homogeneous of degree k in u.

Since ∆uDs,xs = Ds,xs∆u, then Ds,xsf(xs, u) is harmonic in u. Hence by the
Almansi-Fischer decomposition:

Ds,xsf(xs, u) = f1,k(xs, u) + uf2,k−1(xs, u) ,

where f1,k(xs, u) is a left monogenic polynomial homogeneous of degree k in u and
f2,k−1(xs, u) is a left monogenic polynomial homogeneous of degree k − 1 in u.

We can also consider a function g? : U × Rn → Cln+1 such that for each x ∈ U ,
g?(x, u) is a right monogenic polynomial homogeneous of degree k in u. This
function also reduces to a right monogenic polynomial homogeneous g(xs, u) on
C(U)× Rn.

Let Pk be the left projection map Pk : Hk = Mk ⊕ uMk−1 → Mk, then the
n-spherical left Rarita-Schwinger type operator RSk is defined to be

RSk f(xs, u) = PkDs,xsf(xs, u) .

On the other hand, the n-spherical right Rarita-Schwinger type operator RSk,r is
defined to be

g(xs, u)RSk,r = g(xs, u)Ds,xsPk,r ,

where Pk,r is the right projection Pk,r : Hk → M̄k. Consequently, the left and the
right n-spherical Rarita-Schwinger type equations are defined to be

RSk f(xs, u) = 0 and g(xs, u)RSk = 0 respectively.
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4. Conformal invariance of Pk under the Cayley transformation
and its inverse

Consider the Cayley transformation C(x) = (en+1x+1)(x+en+1)−1 = en+1(x−
en+1)(x+ en+1)−1 = en+1(x+ en+1− 2en+1)(x+ en+1)−1 = en+1 + 2(x+ en+1)−1.
This last term is the Iwasawa decomposition for the Cayley transformation, C.
Further, C−1(xs) = (−en+1xs+1)(xs−en+1)−1 = −en+1(xs+en+1)(x−en+1)−1 =
−en+1(xs−en+1+2en+1)(xs−en+1)−1 = −en+1+2(xs−en+1)−1, and this last term
is the Iwasawa decomposition for the inverse, C−1, of the Cayley transformation.

Now let f(xs, u) : Us × Rn → Cln+1 be a monogenic polynomial homogeneous
of degree k in u for each xs ∈ Us, where Us is a domain in Sn.

It is shown in [6] that Pk is conformally invariant under a general Möbius
transformation over Rn. This trivially extends to Möbius transformations on Rn+1.
It follows that if we restrict xs to Sn, then Pk is also conformally invariant under
the Cayley transformation C and its inverse C−1, with x ∈ Rn.

It follows that we have:

Theorem 1.

Pk,wJ(C, x)f
(
C(x), (x+ en+1)w(x+ en+1)

‖x+ en+1‖2

)
= J(C, x)Pk,uf(xs, u) ,

where u = (x+ en+1)w(x+ en+1)
‖x+ en+1‖2 and J(C, x) = x+ en+1

‖x+ en+1‖n
is the conformal

weight for the Cayley transformation.

Also for U a domain in Rn, and g(x, u) defined on U × Rn such that for each
x ∈ U , g is monogenic in u and homogeneous of degree k in u, we have:

Theorem 2.

Pk,wJ(C−1, xs)g
(
C−1(xs),

(xs − en+1)w(xs − en+1)
‖xs − en+1‖2

)
= J(C−1, xs)Pk,ug(x, u) ,

where u = (xs − en+1)w(xs − en+1)
‖xs − en+1‖2 and J(C−1, xs) = xs − en+1

‖xs − en+1‖n
is the confor-

mal weight for the inverse Cayley transformation.

Note that in the previous theorems a1(x) := x+ en+1

‖x+ en+1‖
and

a2(xs) := xs − en+1

‖xs − en+1‖
belong to Pin(n+ 1). So w ∈ Rn+1 and hence Da1(x)f = 0

and Da2(xs)g = 0, where for a ∈ Pin(n+ 1) the operator Da is defined in (3).

5. The intertwining formulas for Rk and RSk and the conformal
invariance of RSk f = 0

We can use the intertwining formulas for Dx and Ds,xs given in [8] to establish
the intertwining formulas for Rk and RSk .
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Theorem 3.

J−1(C−1, xs)Rk,uf(x, u)

= RSk,wJ(C−1, xs)f
(
C−1(xs),

(xs − en+1)w(xs − en+1)
‖xs − en+1‖2

)
,

where Rk,u is the Rarita-Schwinger operator in Euclidean space with respect to
u ∈ Rn, RSk,w is the spherical Rarita-Schwinger type operator on Sn with respect

to w ∈ Rn+1, u = (xs − en+1)w(xs − en+1)
‖xs − en+1‖2 , J(C−1, xs) = xs − en+1

‖xs − en+1‖n
and

J−1(C−1, xs) = xs − en+1

‖xs − en+1‖n+2 .

Proof. In [8] it is shown that Dx = J−1(C−1, xs)−1Ds,xsJ(C−1, xs). Consequently,

Rk,uf(x, u) = Pk,uDxf(x, u) = Pk,uJ−1(C−1, xs)−1Ds,xsJ(C−1, xs)f(C−1(xs), u) .
Now applying Theorem 2, the previous equation becomes

Rk,uf(x, u) = J−1(C−1, xs)−1Pk,wDs,xsJ(C−1, xs)

× f
(
C−1(xs),

(xs − en+1)w(xs − en+1)
‖xs − en+1‖2

)
= J−1(C−1, xs)−1RSk,wJ(C−1, xs)

× f
(
C−1(xs),

(xs − en+1)w(xs − en+1)
‖xs − en+1‖2

)
.

�

We have the similar result for the Rarita-Schwinger operator under the Cayley
transformation.

Theorem 4.

J−1(C, x)RSk,ug(xs, u) = Rk,wJ(C, x)g
(
C(x), (x+ en+1)w(x+ en+1)

‖x+ en+1‖2

)
,

where RSk,u is the Rarita-Schwinger type operator on the sphere with respect to u
and Rk,w is the Rarita-Schwinger operator in Euclidean space with respect to w,

u = (x+ en+1)w(x+ en+1)
‖x+ en+1‖2 , J(C, x) = x+ en+1

‖x+ en+1‖n
and

J−1(C, x) = x+ en+1

‖x+ en+1‖n+2 .

In other words we have the following intertwining relations for Rk and RSk :

J−1(C−1, xs)Rk = RSkJ(C−1, xs)(4)

J−1(C, x)RSk = RkJ(C, x)(5)
As a corollary to Theorems 3 and 4 we have the conformal invariance of equation

RSk,wf = 0:



RARITA-SCHWINGER OPERATORS ON SPHERES 277

Theorem 5. RSk,ug(xs, u) = 0 if and only if

Rk,wJ(C, x)g
(
C(x), (x+ en+1)w(x+ en+1)

‖x+ en+1‖2

)
= 0

and Rk,uf(x, u) = 0 if and only if

RSk,wJ(C−1, xs)f
(
C−1(xs),

(xs − en+1)w(xs − en+1)
‖xs − en+1‖2

)
= 0 .

6. The fundamental solutions of RSk and some basic integral
formulas

The reproducing kernel of Mk with respect to integration over Sn−1 is given by
(see [2], [6])

Zk(u, v) :=
∑
σ

Pσ(u)Vσ(v)v ,

where

Pσ(u) = 1
k!Σ(ui1 − u1e

−1
1 ei1) . . . (uik − u1e

−1
1 eik), Vσ(v) = ∂kG(v)

∂vj2
2 . . . ∂vjnn

,

j2 + · · · + jn = k, ik ∈ {2, . . . , n}, G(v) = −1
ωn

v

‖v‖n
, and ωn is the surface area

of the unit sphere in Rn. Here summation is taken over all permutations of the
monomials without repetition. This function is left monogenic in u and it is a right
monogenic polynomial in v. It is homogeneous of degree k in both u and v. See [2]
and elsewhere.

Consider the kernel of the Rarita-Schwinger operator in Euclidean n-space

Ek(x− y, u, v) = 1
ωnck

x− y
‖x− y‖n

Zk

( (x− y)u(x− y)
‖x− y‖2 , v

)
(6)

= 1
ωnck

J(C−1, xs)−1 xs − ys
‖xs − ys‖n

J(C−1, ys)−1Zk

( (x− y)u(x− y)
‖x− y‖2 , v

)
,(7)

where ck = n− 2
n− 2 + 2k . See for instance [6]. Note that (x− y)u(x− y) ∈ Rn as u,

x and y ∈ Rn.
Now applying the Cayley transformation to the above kernel, we obtain

ESk (xs, ys, u, v) : = 1
ωnck

J(C−1, xs)J(C−1, xs)−1 xs − ys
‖xs − ys‖n

× J(C−1, ys)−1Zk(auã, v)

= 1
ωnck

xs − ys
‖xs − ys‖n

J(C−1, ys)−1Zk(auã, v) ,(8)

where a = a(xs, ys) = J(C−1, xs)−1(xs − ys)J(C−1, ys)−1

‖J(C−1, xs)−1‖ ‖(xs − ys)‖ ‖J(C−1, ys)−1‖
.

ESk (xs, ys, u, v) is the fundamental solution to RSk f(xs, u) = 0 on Sn. This
function is left monogenic in u and it is also right monogenic in v.
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In the same way we obtain that

(9) 1
ωnck

Zk(u, ãva)J(C−1, ys)−1 xs − ys
‖xs − ys‖n

is a non trivial solution to g(xs, v)RSk,r = 0. In fact, this function is ESk (xs, ys, u, v).
Applying the same arguments in [6] to prove the representations (8) and (9) are

the same up to a reflection, we have
1

ωnck
Zk(u, ãva)J(C−1, ys)−1 xs − ys

‖xs − ys‖n

= − 1
ωnck

ãZk(auã, v)aJ(C−1, ys)−1 xs − ys
‖xs − ys‖n

= − 1
ωnck

J(C−1, ys)−1 xs − ys
‖xs − ys‖n

J(C−1, xs)−1

‖J(C−1, xs)−1‖
Zk(auã, v) J(C−1, xs)−1

‖J(C−1, xs)−1‖

= − J(C−1, xs)−1

‖J(C−1, xs)−1‖
1

ωnck

xs − ys
‖xs − ys‖n

J(C−1, ys)−1Zk(auã, v) J(C−1, xs)−1

‖J(C−1, xs)−1‖
.

Theorem 6 (Stokes’ Theorem for the n-spherical Dirac operator Ds [8]). Suppose
Us is a domain on Sn and f, g : Us×Rn → Cln+1 are C1, then for ∂Vs a sufficiently
smooth hypersurface in Us bounding a subdomain Vs of Us, we have∫

∂Vs

g(xs, u)n(xs)f(xs, u)dΣ(xs)

=
∫
Vs

(
g(xs, u)Ds,xs

)
f(xs, u) + g(xs, u)

(
Ds,xsf(xs, u)

)
dS(xs) ,

where dS(xs) is the n-dimensional area measure on Vs, dΣ(xs) is the n− 1-dimen-
sional scalar Lebesgue measure on ∂Vs and n(xs) is the normal vector tangent to
the sphere at xs, orthogonal to ∂Vs and pointing outward.

Definition 1 ([6]). For any Cln+1-valued polynomials P (u), Q(u), the inner
product (P (u), Q(u))u with respect to u ∈ Rn is given by

(P (u), Q(u))u =
∫

Sn−1
P (u)Q(u)ds(u) ,

where Sn−1 is the unit sphere in Rn.

For any pk ∈Mk, one obtains

pk(u) = (Zk(u, v), pk(v))v =
∫

Sn−1
Zk(u, v)pk(v)ds(v) .

See [2].
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Theorem 7 (Stokes’ Theorem for the n-spherical Rarita-Schwinger type operator
RSk ). Let Us, Vs, ∂Vs be as in Theorem 6. Then for f , g ∈ C1(Us × Rn,Mk), we
have ∫

Vs

((
g(xs, u)RSk , f(xs, u)

)
u

+
(
g(xs, u), RSk f(xs, u)

)
u

)
dS(xs)

=
∫
∂Vs

(
g(xs, u), Pkn(xs)f(xs, u)

)
u
dΣ(xs)

=
∫
∂Vs

(
g(xs, u)n(xs)Pk,r, f(xs, u)

)
u
dΣ(xs)

=
∫
∂Vs

(
g(xs, u)n(xs)f(xs, u)

)
u
dΣ(xs)

where dS(xs) is the n-dimensional area measure on Vs, n(xs) and dΣ(xs) are as
in Theorem 6.

Proof. The proof follows similar lines to the proof of Theorem 6 in [6]. First, by
the traditional Clifford version of Stokes’ Theorem∫

∂Vs

(g(xs, u)n(xs)f(xs, u))udΣ(xs)

=
∫
Vs

(
(g(xs, u)Ds,xs , f(xs, u))u + (g(xs, u), Ds,xsf(xs, u))u

)
dS(xs) .

By applying the Almansi-Fischer decomposition to g(xs, u)Ds,xs and Ds,xsf(xs, u)
and Definition 1 the right side of the previous equation becomes∫

Vs

((
g(xs, u)RSk , f(xs, u)

)
u

+
(
g(xs, u), RSk f(xs, u)

)
u

)
dS(xs) .

The other identities follow from arguments given in the proof of Theorem 6 in
[6]. �

Corollary 1 (Cauchy’s Theorem). If RSk f(xs, u) = 0 and g(xs, u)RSk = 0 for f ,
g ∈ C1(Us × Rn,Mk), then we have∫

∂Vs

(g(xs, u), Pkn(xs)f(xs, u))udΣ(xs) = 0 ,

where ∂Vs is a sufficiently smooth hypersurface in Us bounding a subdomain Vs of
Us.

Now let us look at Stokes’ Theorem for Rarita-Schwinger operators Rk in Rn.
Suppose U is a domain on Rn and f?, g? : U × Rn → Cln+1 are C1, then for ∂V a
sufficiently smooth hypersurface in U bounding a relatively compact subdomain V
of U , we have∫

V

[(g?(x, u)Rk, f?(x, u))u + (g?(x, u), Rkf?(x, u))u]dxn

=
∫
∂V

(g?(x, u), Pkn(x)f?(x, u))u dσ(x) ,
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where dσ(x) is the scalar Lebesgue measure on ∂V . Now consider the integral on
the right hand side∫

∂V

(g?(x, u), Pkn(x)f?(x, u))u dσ(x)

=
∫
∂V

∫
Sn−1

g?(x, u)Pkn(x)f?(x, u)ds(u)dσ(x)

=
∫
C(∂V )

∫
Sn−1

g?(C−1(xs), u)Pk,uJ(C−1, xs)n(xs)

× J(C−1, xs)f?(C−1(xs), u)ds(u)dΣ(xs) ,

where xs = C(x), C(∂V ) bounds a domain C(V ) in Sn, dΣ(xs) is the scalar
Lebesgue measure on C(∂V ) and J(C−1, xs) = xs − en+1

‖xs − en+1‖n
. Since Pk,u inter-

changes with J(C−1, xs), the previous integral becomes∫
C(∂V )

∫
Sn−1

g?(C−1(xs),
(xs − en+1)w(xs − en+1)

‖xs − en+1‖2 )J(C−1, xs)Pk,wn(xs)J(C−1, xs)

× f?(C−1(xs),
(xs − en+1)w(xs − en+1)

‖xs − en+1‖2 )ds(w)dΣ(xs)(10)

where u = (xs − en+1)w(xs − en+1)
‖xs − en+1‖2 .

Consider the integral on the left hand side

(11)
∫
V

[(
g?(x, u)Rk, f?(x, u)

)
u

+
(
g?(x, u), Rkf?(x, u)

)
u

]
dxn

=
∫
V

∫
Sn−1

[g?(x, u)Rk,r,uf?(x, u) + g?(x, u)Rk,uf?(x, u)]ds(u)dxn

Applying Theorem 3, the integral now is equal to∫
C(V )

∫
Sn−1

[
g?

(
C−1(xs),

(xs − en+1)w(xs − en+1)
‖xs − en+1‖2

)
J(C−1, xs)RSk,r,wJ(C−1, xs)

× f?
(
C−1(xs),

(xs − en+1)w(xs − en+1)
‖xs − en+1‖2

)
+ g?

(
C−1(xs),

(xs − en+1)w(xs − en+1)
‖xs − en+1‖2

)
J(C−1, xs)RSk,wJ(C−1, xs)

× f?
(
C−1(xs),

(xs − en+1)w(xs − en+1)
‖xs − en+1‖2

)]
ds(w) dS(xs)(12)

where C(V ) = Vs is a domain in Sn.
Stokes’ Theorem for Rarita-Schwinger operators Rk in Rn tells us that (10) is

equal to (12). Therefore Stokes’ Theorem for Rarita-Schwinger type operators is
conformally invariant under the Cayley transformation.
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Now let us consider Stokes’ Theorem for RSk in Sn.∫
Vs

((
g(xs, u)RSk , f(xs, u)

)
u

+
(
g(xs, u), RSk f(xs, u)

)
u

)
dS(xs)

=
∫
∂Vs

(
g(xs, u), Pkn(xs)f(xs, u)

)
u
dΣ(xs) ,

where Vs, ∂Vs, dS(xs) and dΣ(xs) are stated as in Theorem 7.
First look at∫

∂Vs

(
g(xs, u), Pkn(xs)f(xs, u)

)
u
dΣ(xs)

=
∫
∂Vs

∫
Sn−1

g(xs, u), Pkn(xs)f(xs, u)ds(u)Σ(xs)

=
∫
C−1(∂Vs)

∫
Sn−1

g
(
C(x), u

)
Pk,uJ

(
C(x)n(x)

)
J(C, x)f

(
C(x), u

)
ds(u) dσ(x) ,

where J(C, x) = x+ en+1

‖x+ en+1‖n
, x = C−1(xs) and C−1(∂Vs) bounds a domain

C−1(Vs) in Rn. Since we can interchange Pk,u with J(C, x), the previous integral
is equal to

(13)
∫
C−1(∂Vs)

∫
Sn−1

g
(
C(x), (x+ en+1)w(x+ en+1)

‖x+ en+1‖2

)
J
(
C(x)Pk,wn(x)

)
J(C, x)

× f
(
C(x), (x+ en+1)w(x+ en+1)

‖x+ en+1‖2

)
ds(w)dσ(x) ,

where u = (x+ en+1)w(x+ en+1)
‖x+ en+1‖2 .

Second we look at∫
Vs

((
g(xs, u)RSk , f(xs, u)

)
u

+
(
g(xs, u), RSk f(xs, u))u

)
dS(xs)

=
∫
Vs

∫
Sn−1

(
g(xs, u)RSk,r,u

)
f(xs, u) + g(xs, u)

(
RSk,uf(xs, u)

)
ds(u) dS(xs) .

Applying Theorem 4, the integral becomes∫
C−1(Vs)

∫
Sn−1

g
(
C(x), (x+ en+1)w(x+ en+1)

‖x+ en+1‖2

)
J(C, x)RSk,r,w

× J(C, x)f
(
C(x), (x+ en+1)w(x+ en+1)

‖x+ en+1‖2

)
+ g
(
C(x), (x+ en+1)w(x+ en+1)

‖x+ en+1‖2

)
J(C, x)

×RSk,wJ(C, x)f
(
C(x), (x+ en+1)w(x+ en+1)

‖x+ en+1‖2

)
ds(w) dS(xs) .(14)
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Stokes’ Theorem for RSk on the sphere shows that (13) is equal to (14). Thus Stokes’
Theorem for Rarita-Schwinger operators is also conformally invariant under the
inverse of the Cayley transformation.

Theorem 8 (Borel-Pompeiu Theorem). Suppose Us, Vs and ∂Vs are as in Theo-
rem 6 and ys ∈ Vs. Then for f ∈ C1(Us × Rn,Mk) we have

f(ys, u′) = J(C−1, ys)
∫
∂Vs

(
ESk (xs, ys, u, v), Pkn(xs)f(xs, v)

)
v
dΣ(xs)

− J(C−1, ys)
∫
Vs

(
ESk (xs, ys, u, v), RSk f(xs, v)

)
v
dS(xs)

where u′ = J(C−1, ys)−1uJ(C−1, ys)−1

‖J(C−1, ys)−1‖2 , dS(xs) is the n-dimensional area measure

on Vs ⊂ Sn, n(xs) and dΣ(xs) are as in Theorem 6.

Proof. In this proof we will use the representation of ESk (xs, ys, u, v) given by (9).
Let Bs(ys, ε) be the ball centered at ys ∈ Sn with radius ε.

We denote C−1(Bs(ys, ε)) by B(y, r), and C−1(∂Bs(ys, ε)) by ∂B(y, r), where
y = C−1(ys) ∈ Rn and r is the radius of B(y, r) in Rn. Consider Bs(ys, ε) ⊂ Vs,
then we have∫

Vs

(
ESk (xs, ys, u, v), RSk f(xs, v)

)
v
dS(xs)

=
∫
Vs\Bs(ys,ε)

(
ESk (xs, ys, u, v), RSk f(xs, v)

)
v
dS(xs)

+
∫
Bs(ys,ε)

(
ESk (xs, ys, u, v), RSk f(xs, v)

)
v
dS(xs) .

Because of the degree of homogeneity of xs − ys in ESk , the second integral on the
right hand goes to zero as ε goes to zero. Applying Theorem 7 to the first integral
on the right hand we obtain∫

Vs\Bs(ys,ε)

(
ESk (xs, ys, u, v), RSk f(xs, v)

)
v
dS(xs)

=
∫
∂Vs

(
ESk (xs, ys, u, v), Pkn(xs)f(xs, v)

)
v
dΣ(xs)

−
∫
∂Bs(ys,ε)

(
ESk (xs, ys, u, v), Pkn(xs)f(xs, v)

)
v
dΣ(xs) .

Since f(xs, v) = (f(xs, v)− f(ys, v)) + f(ys, v) and taking into account the degree
of homogeneity of xs− ys in ESk and the continuity of f , we can replace the second
integral on the right hand by∫

∂Bs(ys,ε)

(
ESk (xs, ys, u, v), Pkn(xs)f(ys, v)

)
v
dΣ(xs) .
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Applying Theorem 7, this integral is equal to∫
∂Bs(ys,ε)

(
ESk (xs, ys, u, v), n(xs)f(ys, v)

)
v
dΣ(xs)

=
∫
∂Bs(ys,ε)

∫
Sn−1

ESk (xs, ys, u, v)n(xs)f(ys, v) dΣ(xs) ds(v)

=
∫
∂Bs(ys,ε)

∫
Sn−1

1
ωnck

Zk(u, ãva)

× J(C−1, ys)−1 xs − ys
‖xs − ys‖n

n(xs)f(ys, v)ds(v) dΣ(xs).

Now applying the inverse of the Cayley transformation to the last integral, we have∫
∂B(y,r)

∫
Sn−1

1
ωnck

Zk

(
u,

(x− y)w(x− y)
‖x− y‖2

)
J(C−1, ys)−1J(C, y)−1 x− y

‖x− y‖n

× J(C, x)−1J(C, x)n(x)J(C, x)f
(
C(y), J(C, y)wJ(C, y)

‖J(C, y)‖2

)
ds(w)dσ(x) ,

where dσ(x) is the n− 1-dimensional scalar Lebesgue measure on ∂B(y, r) in Rn

and v = J(C, y)wJ(C, y)
‖J(C, y)‖2 , w ∈ Rn+1. In fact, v is a vector in Rn which is obtained

by reflecting w in Rn+1 and its last component is a constant.
Place J(C, x) = (J(C, x) − J(C, y)) + J(C, y), but J(C, x) − J(C, y) tends to

zero as x approaches y. Thus the previous integral can be replaced by∫
∂B(y,r)

∫
Sn−1

1
ωnck

Zk(u, (x− y)w(x− y)
‖x− y‖2 ) x− y

‖x− y‖n
n(x)

× J(C, y)f
(
C(y), J(C, y)wJ(C, y)

‖J(C, y)‖2

)
ds(w) dσ(x) .

Here n(x) = y − x
‖x− y‖

is the unit out normal vector. Now the last integral

becomes∫
∂B(y,r)

∫
Sn−1

1
ωnck

Zk

(
u,

(x− y)w(x− y)
‖x− y‖2

) 1
‖x− y‖n−1

× J(C, y)f
(
C(y), J(C, y)wJ(C, y)

‖J(C, y)‖2

)
ds(w) dσ(x) ,

Using Lemma 5 in [6], the integral is now∫
Sn−1

Zk(u,w)J(C, y)f
(
C(y), J(C, y)wJ(C, y)

‖J(C, y)‖2

)
ds(w)

= J(C, y)f
(
C(y), J(C, y)uJ(C, y)

‖J(C, y)‖2

)
= J(C−1, ys)−1f

(
ys,

J(C−1, ys)−1uJ(C−1, ys)−1

‖J(C−1, ys)−1‖2

)
,
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since J(C, y) = J(C−1, ys)−1.

Now by setting u′ = J(C−1, ys)−1uJ(C−1, ys)−1

‖J(C−1, ys)−1‖2 and multiplying both sides of

the above equation by J(C−1, ys), we obtain

f(ys, u′) = J(C−1, ys)
∫

Sn−1
Zk(u,w)J(C, y)f

(
C(y), J(C, y)wJ(C, y)

‖J(C, y)‖2

)
ds(w) .

Therefore when ε tends to zero we get the desired result. �

Corollary 2. Let Ψ be a function in C∞(Vs × Rn,Mk) and supp(Ψ) ⊂ Vs. Then

Ψ(ys, u′) = −J(C−1, ys)
∫
Vs

(
ESk (xs, ys, u, v), RSkΨ(xs, v)

)
v
dS(xs) ,

where u′ = J(C−1, ys)−1uJ(C−1, ys)−1

‖J(C−1, ys)−1‖2 .

Corollary 3 (Cauchy Integral Formula for RSk ). If RSk f(xs, u) = 0, then for
ys ∈ Vs we have

f(ys, u′) = J(C−1, ys)
∫
∂Vs

(
ESk (xs, ys, u, v), Pkn(xs)f(xs, v)

)
v
dΣ(xs)

= J(C−1, ys)
∫
∂Vs

(
ESk (xs, ys, u, v)n(xs)Pk,r, f(xs, v)

)
v
dΣ(xs),

where u′ = J(C−1, ys)−1uJ(C−1, ys)−1

‖J(C−1, ys)−1‖2 .

Definition 2 (Cauchy Transform for RSk ). For a domain Vs ⊂ Sn and a function
f(xs, u) : Vs × Rn → Cln+1, which is monogenic in u, the Tk-transform of f is
defined to be

(Tkf)(ys, v) = −
∫
Vs

(
ESk (xs, ys, u, v), f(xs, u)

)
u
dS(xs) , for ys ∈ Vs .

Theorem 9. For a function ψ in C∞(Sn × Rn,Mk) we have

PkJ(C−1, ys)Ds,ys

∫
Sn
−
(
ESk (xs, ys, u, v), ψ(xs, u)

)
u
dS(xs) = ψ(ys, v) .

Proof. By [8], the integral

PkJ(C−1, ys)Ds,ys

∫
Sn
−
(
ESk (xs, ys, u, v), ψ(xs, u)

)
u
dS(xs)

can be replaced by

PkJ(C−1, ys)
∫
∂Bs(ys,ε)

−n(xs)
(
ESk (xs, ys, u, v), ψ(xs, u)

)
u
dS(xs) ,



RARITA-SCHWINGER OPERATORS ON SPHERES 285

which in turn is equal to

PkJ(C−1, ys)
∫
∂Bs(ys,ε)

∫
Sn−1
−n(xs)

1
ωnck

xs − ys
‖xs − ys‖n

× J(C−1, ys)−1Zk(auã, v)ψ(xs, u)ds(u) dS(xs) .

Since ψ(xs, u) = ψ(xs, u)− ψ(ys, u) + ψ(ys, u) then using the continuity of ψ, we
can replace the previous integral by

PkJ(C−1, ys)
∫
∂Bs(ys,ε)

∫
Sn−1
−n(xs)

1
ωnck

xs − ys
‖xs − ys‖n

× J(C−1, ys)−1Zk(auã, v)ψ(ys, u) ds(u) dS(xs) .

Now applying the inverse of the Cayley transformation to the previous integral it
becomes

PkJ(C−1, ys)
∫
∂B(y,r)

∫
Sn−1
−J(C, x)n(x)J(C, x) 1

ωnck

× J(C, x)−1 x− y
‖x− y‖n

J(C, y)−1J(C−1, ys)−1

× Zk
( (x− y)u(x− y)

‖x− y‖2 , v
)
ψ
(
C(y), J(C, y)wJ(C, y)

‖J(C, y)‖2

)
ds(u) dσ(x)

= PkJ(C−1, ys)
∫
∂B(y,r)

∫
Sn−1
−J(C, x)n(x) 1

ωnck

x− y
‖x− y‖n

× Zk
( (x− y)u(x− y)

‖x− y‖2 , v
)
ψ
(
C(y), J(C, y)wJ(C, y)

‖J(C, y)‖2

)
ds(u) dσ(x) ,

where u = J(C, y)wJ(C, y)
‖J(C, y)‖2 .

Using the fact J(C, x) = (J(C, x) − J(C, y)) + J(C, y), and J(C, x) − J(C, y)
tends to zero as x approaches y, the integral can be replaced by

PkJ(C−1, ys)
∫
∂B(y,r)

∫
Sn−1
− 1
ωnck

J(C, y)n(x) x− y
‖x− y‖n

× Zk
( (x− y)u(x− y)

‖x− y‖2 , v
)
ψ
(
C(y), J(C, y)wJ(C, y)

‖J(C, y)‖2

)
ds(u) dσ(x)

= Pk

∫
∂B(y,r)

∫
Sn−1

1
ωnckrn−1Zk

( (x− y)u(x− y)
‖x− y‖2 , v

)
× ψ

(
C(y), J(C, y)wJ(C, y)

‖J(C, y)‖2

)
ds(u) dσ(x)
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Applying Lemma 5 in [6], the integral becomes

= Pk

∫
Sn−1

Zk(u, v)ψ
(
C(y), J(C, y)wJ(C, y)

‖J(C, y)‖2

)
ds(u)

= Pk

∫
Sn−1

Zk(u, v)ψ(C(y), u) ds(u) = Pkψ
(
C(y), v

)
= ψ(ys, v) .

�

7. Rarita-Schwinger type operators on real projective space

We consider Sn and Γ = {±1}, then Sn/Γ is RPn, the real projective space.
In all that follows Sn will be a universal covering space of the conformally flat
manifold RPn. So there is a projection map p : Sn → RPn. Further for each x ∈ Sn
we shall denote p(x) by x′. Furthermore if Q is a subset of U then we denote p(Q)
by Q′.

Consider the trivial bundle Sn × Cln+1, then we set up a spinor bundle E1
over RPn by making the identification of (x,X) with (−x,X), where x ∈ Sn and
X ∈ Cln+1.

Now we change the spherical Cauchy kernel GS(x−y) = −1
ωn

x− y
‖x− y‖n

, x, y ∈ Sn,

for the spherical Dirac operator into a kernel which is invariant with respect to
{±1} in the variable x ∈ Sn. Hence we consider GS(x− y) +GS(−x− y). See [7].

Suppose V is a domain lying in the open northern hemisphere. We assume
f(x, u) : V × Rn → Cln+1

is a C1 function in x and monogenic in u. We observe that the projection map
p : Sn → RPn induces a well defined function

f ′(x′, u) : V ′ × Rn → E1

such that f ′(x′, u) = f(p−1(x′), u), where V ′ is a well defined domain in RPn and
x′ = p(x).

We define the Rarita-Schwinger type operators on RPn, which we will call the
real projective Rarita-Schwinger type operators, in the following form

RRP
n

k f ′(x′, u) = PkDRPn,x′f
′(x′, u) ,

where DRPn,x′ is the Dirac operator in RPn with respect to the variable x′.
See [7].

Now we introduce the spherical Rarita-Schwinger kernel which is also invariant
with respect to {±1} in the variable x ∈ Sn:

ES,1k (x, y, u, v) := ESk (x, y, u, v) + ESk (−x, y, u, v) .
Through the projection map p (over x, y ∈ Sn) we obtain a kernel

ERP
n,1

k (x′, y′, u, v) for RPn defined by

ERP
n,1

k (x′, y′, u, v) = ES,1k

(
p−1(x′), p−1(y′), u, v

)
.

Now suppose that S is a suitably smooth hypersurface lying in the open northern
hemisphere of Sn bounding a subdomain W of V with closure of W in V .
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Theorem 10. If RSk f(x, u) = 0 then for y ∈W

f(y, w) = J(C−1, y)
∫
S

(
ES,1k (x, y, u, v), Pkn(x)f(x, u)

)
u
dΣ(x),

where w = J(C−1, y)−1vJ(C−1, y)−1

‖J(C−1, y)−1‖2 , n(x) is the unit outer normal vector to S

at x lying in the tangent space of Sn at x and Σ is the usual Lebesgue measure on
S.

Due to the projection map we have also

Theorem 11.

f ′(y′, v̂) = J(C−1, y′)
∫
S′

(
ERP

n,1
k (x′, y′, u, v), Pkdp(n(x))f ′(x′, u)

)
u
dΣ′(x′),

where v̂ = J(C−1, y′)−1vJ(C−1, y′)−1

‖J(C−1, y′)−1‖2 , x′ = p(x), y′ = p(y) and S′ is the projection

of S. Further Σ′ is a induced measure on S′ from the measure Σ on S and dp is
the derivative of p.

Now we will assume that the domain V is such that −x ∈ V for each x ∈ V
and the function f is two fold periodic, so that f(x) = f(−x). Now the projection
map p gives rise to a well defined domain V ′ on RPn and a well defined func-
tion f ′(x′, u) : V ′ → E1 such that f ′(x′, u) = f(±x, u) for p(±x) = x′. Then if
RRP

n

k f ′(x′, u) = 0, we also have

f ′(y′, v̂) = J(C−1, y′)
∫
S′

(
ERP

n,1
k (x′, y′, u, v), Pkdp(n(x))f ′(x′, u)

)
u
dΣ′(x′) ,

where v̂ is stated as in Theorem 11.

If now we suppose that the hypersurface S satisfies −S = S then both y and
−y belong to the subdomain V and in this case

J(C−1, y′)
∫
S′

(
ERP

n,1
k (x′, y′, u, v), Pkdp(n(x))f ′(x′, u)

)
u
dΣ′(x′) = 2f ′(y′, v̂) .

We can also construct a second spinor bundle E2 over RPn by making the
identification of (x,X) with (−x,−X), where x ∈ Sn and X ∈ Cln+1, we introduce
the kernel:

ES,2k (x, y, u, v) := ESk (x, y, u, v)− ESk (−x, y, u, v) .
This kernel induces through the projection map on the variable x, y ∈ Sn, the
kernel on RPn

ERP
n,2

k (x′, y′, u, v) = ES,2k

(
p−1(x′), p−1(y′), u, v

)
.

In this case a solution of Rarita-Schwinger type equation on RPn

f ′(x′, u) : V ′ × Rn → E2

will lift to a solution of spherical-Rarita-Schwinger type equation: f(x, u) : V ×Rn →
Cln+1 such that f(x, u) = −f(−x, u).
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Suppose that V as before is a domain on Sn and S is a hypersurface in V bounding
a subdomain W of V . Suppose further that f(x, u) : V ×Rn → Cln+1 is a solution
of the spherical Rarita-Schwinger type equation such that f(x, u) = −f(−x, u). If
S lies entirely in one open hemisphere then

f(y, w) = J(C−1, y)
∫
S

(
ES,2k (x, y, u, v), Pkn(x)f(x, u)

)
u
dΣ(x) ,

for each y ∈W , where w = J(C−1, y)−1vJ(C−1, y)−1

‖J(C−1, y)−1‖2 .

Via the projection p this integral formula induces the following

f ′(y′, v̂) = J(C−1, y′)
∫
S′

(
ERP

n,2
k (x′, y′, u, v), Pkdp(n(x))f ′(x′, u)

)
u
dΣ′(x′) ,

where v̂ is stated as in Theorem 11.
On the other hand if S is such that S = −S then∫

S

(
ES,2k (x, y, u, v), Pkn(x)f(x, u)

)
u
dΣ(x) = 0 .
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