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Do Barbero-Immirzi connections exist in different
dimensions and signatures?

L. Fatibene, M. Francaviglia, S. Garruto

Abstract. We shall show that no reductive splitting of the spin group exists
in dimension 3 ≤ m ≤ 20 other than in dimension m = 4. In dimension 4
there are reductive splittings in any signature. Euclidean and Lorentzian
signatures are reviewed in particular and signature (2, 2) is investigated
explicitly in detail.

Reductive splittings allow to define a global SU(2)-connection over space-
time which encodes in an weird way the holonomy of the standard spin
connection. The standard Barbero-Immirzi (BI) connection used in LQG is
then obtained by restriction to a spacelike slice. This mechanism provides
a good control on globality and covariance of BI connection showing that
in dimension other than 4 one needs to provide some other mechanism to
define the analogous of BI connection and control its globality.

1 Introduction
Barbero-Immirzi (BI) connection is used in LQG to describe gravitational field on
a spacelike slice of spacetime; see [1], [2]. In standard literature it is obtained by
a canonical transformation on the phase space of the spatial Hamiltonian system
describing classical GR; see [3].

The discussion about the possibility of defining a BI counterpart at the level
of spacetime has been longly discussed in literature (see [4], [5]). The discussion
mainly focused on the possibility of obtaining the BI space connection by restricting
a suitable BI spin connection defined globally over spacetime as a spacetime object.

We recently showed that the standard spatial BI connection can be in fact ob-
tained by restriction on space of a spacetime SU(2)-connection (see [6]) in spite
of controversial opinions about such a possibility. Such a SU(2)-connection is not
though simply related to the spacetime spin connection; it is obtained by a mech-
anism called reduction and its global properties can be controlled in view of an
algebraic group-theoretical structure called a reductive group splitting (see [7]).
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When one defines connections by restriction then constraints on the holonomy
group of the restricted connection apply (see [8], [9]) showing that standard spatial
BI connection cannot be obtained directly by restriction from the spacetime spin
connection. However, such holonomic constraints disappear when the connection is
defined by reduction; as a matter of fact any Spin(η)-connection can be reduced to a
SU(2)-connection. Unfortunately, reduction produces an encoding of the holonomy
of the original spin connection into the holonomy of the reduced connection; such
an encoding is far from being trivial and it needs to be further investigated.

The standard BI connection defined in LQG exists because of a number of
coincidences; first of all there exist group embeddings ι : SU(2) → Spin(4) and
ι : SU(2) → Spin(3, 1) which are reductive. Second, in dimension 4 a number of
topological coincidences guarantee that any spin bundle over spacetime can be
reduced to a SU(2)-bundle under the mild hypotheses which are equivalent to the
existence of global Lorentzian metrics and global spin structures (see [10], [11], [7]).
Finally, the dynamics can be written in terms of the BI connection by adding to
the Hilbert action a term which is vanishing on-shell and not compromizing the
classical sector; the modified action is called the Holst action ([12], [13], [14]) and
it provides a dynamically equivalent formulation of standard GR.

Of course, standard BI approach is not the only way to work out LQG. Different
frameworks have been proposed (see [15] and [16] just to mention some of them).
Nor one can exclude other frameworks to control global properties of BI connection
(see [17]). Still we have to stress that, to the best of our knowledge, the one based
on reductions is the only general framework known (with the exception of some ad
hoc method) to control global properties of standard BI connection at the full level
of spacetime.

In this paper we shall consider possible extensions of BI construction by reduc-
tion to different signatures and dimensions. We shall show that the construction
basically works only in dimension m = 4 in all signatures (at least for dimension
3 ≤ m ≤ 20).

In Section 2 we shall briefly review the reduction framework. In Section 3 we
shall briefly extend the framework to general dimensions. In Section 4 we shall
report some result about non-existence of reductive splitting with groups relevant
in dimension m for m ≤ 20. In Section 5 we shall check directly reductive splittings
in all signatures in dimension 4. The Euclidean and Lorentzian signature are well
known. Relatively new is the case of Kleinian signature η = (2, 2). BI connection
has been proposed and used in signature (2, 2) (see [18]); however, to the best of
our knowledge the global properties of BI connections for signature (2,2) and its
relation to a reductive splitting is new.

2 Reductive splittings

In this Section we shall briefly consider the algebraic structure that enable us to
reduce the connections. Let us consider a principal bundle P with group G and a
subgroup i : H → G. Let us then assume and fix any H-reduction (Q, ι) of P given
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The existence of such a reduction usually imposes topological conditions on space-
time. In the standard situation of G = Spin(3, 1) and H = SU(2) the bundle
reduction is automatically ensured by standard physical requirements (essentially
by existence of global spinors).

The group embedding i : H → G induces an algebra embedding Tei : h → g.
Let us define the vector space V = g/h so to have the short sequence of vector
spaces

0 h g V 0............................................................... ............ ........................................................................................ ............
Tei

........................................................................................ ............
p

............................................................... ............

.................................................................
.............
...............
............

Φ

(2)

where Φ: V → g is a sequence splitting (i.e. p ◦ Φ = idV ) which always exists for
sequences of vector spaces. Accordingly, one has g ' h⊕ Φ(V ).

We say that H is reductive in G if there is an action λ : H × V → V such that
ad(h)(Φ(v)) ≡ Φ ◦ λ(h, v) where ad(h) : g→ g is the restriction to the subgroup H
of the adjoint action of G onto its algebra g; see [10], [19], [20]. In other words, the
subspace Φ(V ) ⊂ g is invariant with respect to the adjoint action of H ⊂ G on the
algebra g.

Let us stress that the vector subspace Φ(V ) ⊂ g is not required to be (and often
it is not) a subalgebra; one just needs the group embedding i : H → G. A bundle
H-reduction ι : Q → P with respect to a subgroup H reductive in G is enough to
allow that each G-connection ω on P induces an H-connection on Q, which will be
called the reduced connection (see [6] and [7]).

3 Connections in Dimension m > 2
To fix notation let us consider here spacetimes with dimension m ≡ n+ 1 > 2 and
signature η = (n, 1); the relevant spin groups are Spin(n) for space and Spin(n, 1)
for spacetime. Accordingly, we are using signature diag(−1, 1, 1, . . . , 1) on M so
that the first coordinate x0 corresponds to time.

Here both the groups are thought as embedded within their relevant Clifford
algebra; see [21]. The even Clifford algebras (where the groups’ Lie algebras
are embedded) are spanned by even products of Dirac matrices, here denoted by
I, Eαβ , Eαβγδ, . . . with α, β, · · · = 0..n. The Clifford algebras are suitably embed-
ded one into the other by

i0 : C(n)→ C(n, 1) : Ei1...i2l 7→ Ei1...i2l (3)

with i1, i2 · · · = 1..n. In other words, the lower dimensional Clifford algebra C(n)
is realized within the higher dimensional one C(n, 1) by means of even products
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of Dirac matrices, except E0. Such an algebra embedding restricts to a group
embedding

i : Spin(n)→ Spin(n, 1) (4)

The corresponding covering maps allow to define the embedding of j : SO(n)→
SO(n, 1) which corresponds to rotations that fix the first axis, i.e.

j : SO(n)→ SO(n, 1) : λ 7→
(

1 0
0 λ

)
(5)

We have to show that the embedding (4) is reductive. Let us consider the
sequence

0 spin(n) spin(n, 1) V 0........................................... ............ ..................................................................................... ............
Tei ................................................................................ ............

p
...................................... ............

...........................................................................................
.......
............
............

Φ

(6)

The complement vector space V is spanned by E0i and we fix the splitting by
setting

Φ: V → spin(n, 1) : E0i 7→ E0i +
1

2
βi
jkEjk (7)

One can write down the condition for which such a splitting is reductive, i.e.

λliβl
jk = βi

lmλjlλ
k
m (8)

which must hold true for any λ ∈ SO(n). Then one can consider a 1-parameter
subgroup λ(t) based at the identity (i.e. λ(0) = I) and the corresponding Lie algebra
element λ̇ = λ̇(0); the infinitesimal form of (8) is then

λ̇liβl
jk = βi

lkλ̇jl + βi
jmλ̇km (9)

which must hold for any λ̇ ∈ so(n) ' spin(n), i.e. for any skew–symmetric matrix.
Then one should try to look for solutions of condition (9) that correspond to

reductive splittings, besides the trivial case βi
jk = 0 which corresponds to no

Immirzi parameter. Before searching for explicit solutions for 2 ≤ n ≤ 19 (i.e.
spacetime dimension 3 ≤ m ≤ 20) let us consider few simple examples.

For n = 2, Latin indices range in i, j, · · · = 1, 2. The condition (9) specifies to{
β1

12 = β2
12

β2
12 = −β1

12
(10)

Hence one has β1
12 = β2

12 = 0, so that there is no reductive splitting other then
βi
jk = 0.

For n = 3 (i.e. m = 4), Latin indices range in i, j, · · · = 1, 2, 3. The condition
(9) has the only solution is βi

jk = βεi
jk which spans reductive splittings (see [6]

and [7]). The constant parameter β is related to the standard Immirzi parameter.
One can immediately generalize that constructions in two classes of embeddings.

In both cases let us fix on M signature η = (r, s) (with r+s = m). In the first case
we take signature ηab = diag(−1, . . . ,−1︸ ︷︷ ︸

s times

, 1, . . . , 1︸ ︷︷ ︸
r times

) and consider the embedding

i : Spin(r, s− 1)→ Spin(r, s) (11)
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Accordingly, one is left with a signature η̂ = (r, s − 1) = (k, l) on the “spatial”
leaf of dimension n = m − 1 = k + l. The standard canonical form of signature
η̂ = (k, l) is fixed to be η̂ij = diag(−1, . . . ,−1︸ ︷︷ ︸

l=s−1 times

, 1, . . . , 1︸ ︷︷ ︸
k=r times

). For notation convenience,

in the second case we take signature ηab = diag(1, . . . , 1︸ ︷︷ ︸
r times

,−1, . . . ,−1︸ ︷︷ ︸
s times

) and consider

the embedding
i : Spin(r − 1, s)→ Spin(r, s) (12)

Accordingly, one is left with a signature η̂ = (r − 1, s) = (k, l) on the “spatial”
leaf of dimension n = m − 1 = k + l. The standard canonical form of signature
η̂ = (k, l) is fixed to be η̂ij = diag( 1, . . . , 1︸ ︷︷ ︸

k=r−1 times

,−1, . . . ,−1︸ ︷︷ ︸
l=s times

).

In both cases we select the first axis as a fixed rotational axis and denote by
ηij the standard canonical form of signature η̂ = (k, l).

4 Non-existence of reductive splittings in dimension different
from m = 4

In order to verify whether a reductive splitting occurs in an arbitrary dimension
we must solve equations (9), or better said the system obtained from (9) fixing and
arbitrary λ̇ ∈ spin(n). Since the number of equations increases with the dimension
of the space, it is difficult to find solutions by direct calculations. However, one can
use Maple tensor package (see [22]) to easily compute the solution of linear system
(9) for any arbitrary (but fixed) dimension and signature.

First of all, one should look for the general expression of the generators λ̇li of
the Lie algebra spin(k, l) ' so(k, l). Let us fix the standard bilinear form η̂ij =
diag(1, . . . , 1︸ ︷︷ ︸

k times

,−1, . . . ,−1︸ ︷︷ ︸
l times

) of signature η̂ = (k, l); then the corresponding orthogonal

group SO(η̂) is the set of matrices defined by the relation:

λikη̂ijλ
j
l = η̂kl (13)

The relation above can be read in the algebra as:

λ̇ikη̂ij + η̂kiλ̇
i
j = 0 (14)

It is easy to see that conditions (14) tell us that λ̇li is a block matrix:

λ̇ =

(
A1 B
tB A2

)
(15)

where A1 and A2 are skew-symmetric matrices, of dimension k × k and l × l re-
spectively, while B is an arbitrary k× l matrix. One can set generators of so(η̂) to
be matrices with all zero entries but two where ±1 is set according to (15).

Then equation (9) can be expanded along this basis of so(η) obtaining a system

of n3

4 (n − 1)2 equations. The unknowns βk
ij are n2

2 (n − 1). For any n > 2 one
has more equations than unknowns and has to compute the rank of the system to
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discuss solutions. Of course computing the rank of the system obtained from (9)
is rather difficult in general thus we shall analyze each case separately.

Of course, since the system is homogeneous, it cannot be inconsistent but it must
have at least the trivial solution. We aim to discuss whether, in some dimension,
there are solutions other than the trivial one.

As we have seen above, in a fixed dimension m and signature η = (r, s) there
are two ways of defining group embeddings, one fixing a time axis and one fixing a
space axis. So we have to check both of them.

We have obtained a computer-aided solution for the system in all spacetime
dimensions from m = 3 up to m = 20 ; in each dimension we considered any
signature of spacetime η = (r, s) with 0 ≤ r ≤ m and s = m − r; in each such
dimension and signature we consider both cases, i.e. fixing a time axis or a space
axis.

[Of course, if r = 0 one can only fix a time axis. Analogously, if r = m (and
s = 0) one can only fix a space case.]

In all these cases (except for case m = 4 which will be analyzed in the next
section) none of the group splitting considered is reductive, besides the trivial case
βk
ij = 0. Regardless the existence of bundle reductions, in these cases there is no

canonical way of defining BI connections and one has to find out different mech-
anism (e.g. resorting to embeddings involving different groups) to control global
properties and covariance of BI connections (possibly changing the groups involved)
and to proceed to quantize á la loop.

5 Reductive splittings in dimension m = 4
Among the considered dimensions (3 ≤ m ≤ 20), we found that only in m = 4 there
are non-trivial reductive splittings. In dimension m = 4 one has five signatures,
three of them with 2 embeddings to be analyzed and two with one embedding only,
for a total of 8 embeddings to be considered. In all these cases, it turns out to be
that the splitting coefficients βl

jk are proportional to the Levi-Civita symbol:

βl
jk = βε.jkl := βη̂lmε

mjk (γ ∈ R) (16)

each using the relevant standard form η̂lm according to the notation explained
above.

Once βl
jk are calculated we can directly verify from the definition that splittings

in dimension four are all reductive.
First of all we shall define some useful notation: let us set τi = 1

2εi
j
·
k
· Ejk and

σi = E0i. Since we shall have to compute products of τi it is convenient to write
them in a closed form. One can verify that:

τiτj = −η00ηηijI− εijk· τk (17)

where, by an abuse of language, we denote by η the determinant of ηab.
Furthermore we can write the splitting ek = (−α3E + β̂)τk, where β̂ = βη̂

is a constant simply related to β and we set α :=
√
η (possibly imaginary) and

E := αE0123. Let us remark also that if S ∈ Spin(k, l), than it can be written as a
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linear combination of Spin(k, l) generators, namely

S = a0I + aiτi (18)

with inverse:

S−1 = a0I− aiτi (19)

under the constraint:

(a0)2 + η00η |~a|2 = 1 (20)

which is the condition that defines spin group in C+(η).
With this notation we are ready to verify the splitting by applying directly the

definition. We have then to compute the adjoint action, restricted to Spin(k, l), on
the bases ek of Φ(V ) ⊂ spin(r, s). One has:

SekS
−1 = (a0I + aiτi)(αηE + β̂)τk(a0I− ajτj) =

= (αηE + β̂)(a0I + aiτi)(a
0τk − ajτkτj) =

= (αηE + β̂)(a0I + aiτi)
(
a0τk − aj(−η00ηη̂kjI− εkjl·τl)

)
=

= (αηE + β̂)
(
(a0)2τk + η00ηa

.
ka

0I + a0ajεkj
l
·τl+

+ a0aiτiτk + aia.kη00ητi + aiajεkj
l
·τiτl

)
=

= (αηE + β̂)((a0)2τk + η00ηa
.
ka

0I + a0ajεkj
l
·τl+

+ a0a.k(−η00ηI)− a0aiεik
l
·τl + aia.kη00ητi+

+ aiajεkji(−η00η)− aiajεkjl·εilm· τm) =

= (αηE + β̂)
(
(a0)2τk − 2a0ajεjk

l
·τl+

+ ama.kη00ητm − aiajεkjl·εilm· τm
)

(21)

By using the contraction formula εkjlε
·
i
ml = η̂kiη̂

m
j − η̂mk η̂ji we can re-write

SekS
−1 as:

SekS
−1 = lmk em (22)

where

lmk =
(
(a0)2 − ηη00|~a|2

)
δmk + 2ηη00a

ma.k − 2a0aiεik
m
. (23)

If one uses (20) it is easy to see that (23) is an orthogonal transformation for η̂ab,
namely, lmi η̂mnl

m
j = η̂ij . In this way we have been able to show that in dimension

m = 4 the splittings are reductive in all signatures.

6 Conclusions and Perspectives
We showed that for any dimension 3 ≤ m = r + s ≤ 20 all the embeddings

i : Spin(r − 1, s)→ Spin(r, s)

i : Spin(r, s− 1)→ Spin(r, s)
(24)

are not reductive except when m = 4.
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Inm = 4 they are all reductive for any choice of the signature, i.e. for 0 ≤ r ≤ m.
In Euclidean signature the reductive splitting i : Spin(3)→ Spin(4) reproduces the
standard BI connection used in the Euclidean sector. In Lorentzian signature the
reductive splitting i : Spin(3) → Spin(3, 1) reproduces the standard BI connection
used in the Lorentzian sector.

The other signatures in dimension m = 4 allow us to define a BI SU(2)-
connection on spacetime which produces the BI in Hamiltonian formalism by re-
striction. By this mechanism the global properties of the BI are under control
and the holonomy encoding of the spin connection into the holonomy of the BI
connection is manifest, though it surely deserves further investigations.

In dimension other than 4 this mechanism cannot be used in order to guarantee
the existence of global BI connections (or fields which behaves as connections under
gauge transformations enforcing covariance of holonomic variables) and one needs
to rely on some other construction to quantize gravity as in LQG, possibly relying
on some other group as suggested e.g. in [17].
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