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Abstract. We deal with decomposition theorems for modular measures µ : L → G de-
fined on a D-lattice with values in a Dedekind complete ℓ-group. Using the celebrated band
decomposition theorem of Riesz in Dedekind complete ℓ-groups, several decomposition the-
orems including the Lebesgue decomposition theorem, the Hewitt-Yosida decomposition
theorem and the Alexandroff decomposition theorem are derived. Our main result—also
based on the band decomposition theorem of Riesz—is the Hammer-Sobczyk decomposition
for ℓ-group-valued modular measures on D-lattices. Recall that D-lattices (or equivalently
lattice ordered effect algebras) are a common generalization of orthomodular lattices and of
MV-algebras, and therefore of Boolean algebras. If L is an MV-algebra, in particular if L is
a Boolean algebra, then the modular measures on L are exactly the finitely additive mea-
sures in the usual sense, and thus our results contain results for finitely additive G-valued
measures defined on Boolean algebras.

Keywords: D-lattice, measure, lattice ordered group, decomposition, Hammer-Sobczyk
decomposition
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1. Introduction

In this article we deal with decomposition theorems for modular measures µ : L →

G (see Definition 2.9) defined on a D-lattice with values in a Dedekind complete ℓ-

group.

D-lattices (or equivalently lattice ordered effect algebras) are a common generaliza-

tion of orthomodular lattices and of MV-algebras, and therefore of Boolean algebras.

As for the significance of this structure we refer to [8]. If L is an MV-algebra, then

every measure is modular. In particular, if L is a Boolean algebra, then the modular

measures on L according to Definition 2.9 are exactly the finitely additive measures

in the usual sense.
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To obtain decomposition theorems, we first observe that the space b(L, G) of all

bounded G-valued modular measures on L is a Dedekind complete ℓ-group. There-

fore, by the band decomposition Theorem 2.3, for every band A in b(L, G), any

µ ∈ b(L, G) has a unique decomposition µ = λ+ν with λ ∈ A and ν ∈ A⊥. Different

bands lead to different decomposition theorems. This method to obtain decomposi-

tion theorems is used e.g. in [5] for real-valued measures and in [7], as far as we know,

the first time for ℓ-group-valued measures on Boolean algebras; see also [13], [14].

The idea of this method goes back to the paper by Riesz, see [12]. Our main result is

the Hammer-Sobczyk decomposition for µ ∈ b(L, G). For ℓ-group-valued measures

on Boolean algebras this theorem is contained in the unpublished Ph.D. thesis of the

second author written under the supervision of the third author. A decomposition

theorem of this type was first proved by Hammer and Sobczyk [11, Theorem 4.2] for

bounded real-valued measures defined on an algebra of sets.

This article is organized as follows. In Section 2.1 we first present some basic facts

on ℓ-groups. We then deduce from the band decomposition theorem 2.3 that, if A is

a solid subset of G, any x ∈ G can be written as x = y +
∑

γ∈Γ

zγ where y ∈ A⊥ and

(zγ)γ∈Γ is an orthogonal family in A (see Theorem 2.7). This becomes a basic tool

in Section 4. In Section 2.2 we recall the definition of D-lattices and some of their

basic properties. In Section 3 we study lattice properties of b(L, G), in particular

we obtain the Jordan decomposition and several decomposition à la Hewitt-Yosida,

Alexandroff and Lebesgue. Section 4 contains our main result, namely the Hammer-

Sobczyk decomposition theorem for measures of b(L, G) (see Theorems 4.1 and 4.8).

All in all, the paper is written in a way that makes it well readable for readers

interested mainly in measures defined on Boolean algebras.

2. Preliminaries

In this section we shall give some basic definitions and preliminary results. The

books by Birkhoff [4], by Glass and Holland [10] and by Dvurečenskij and Pulman-

nová [8] can be used for more information on ℓ-groups and effect algebras.

2.1. ℓ-groups. The triple G = (G, +, 6) will always denote an additively written

ℓ-group; i.e. (G, +) is a group and (G, 6) is a lattice such that the group translations

are isotone.

For x ∈ G, let x+ := x∨ 0, x− := (−x)∨ 0 and |x| = x∨ (−x) denote the positive

part, the negative part and the absolute value of x, respectively. Then |x| = x+ +x−

and x = x+ − x−. Moreover, x+, x− are the unique elements x1, x2 ∈ G+ := {y ∈

G : y > 0} such that x = x1 − x2 and x1 ∧ x2 = 0; this corresponds to the Jordan

decomposition.
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A subset A of G is called solid if x ∈ A, y ∈ G and |y| 6 |x| imply y ∈ A. A solid

subgroup of G is called an ideal of G. An ideal A of G is called a band if for any

M ⊆ A for which sup M exists in G we have supM ∈ A.

Elements x, y ∈ G are called orthogonal (we write x ⊥ y) if |x| ∧ |y| = 0. For

A ⊆ G, the disjoint complement A⊥ := {x ∈ G : x ⊥ a for any a ∈ A} is a band of

G and A⊥⊥ := (A⊥)⊥ is a band containing A. We write y ≪ x if y ∈ {x}⊥⊥. The

disjoint complement of a solid subset can be characterized as follows:

Proposition 2.1. For a solid subset A of G and x ∈ A, the following conditions

are equivalent:

(1) x ∈ A⊥;

(2) y ∈ A and y ≪ x imply y = 0;

(3) y ∈ A and |y| 6 |x| imply y = 0;

(4) y ∈ A and 0 6 y 6 |x| imply y = 0.

Consequently, x 6∈ A⊥ iff there exists an element y ∈ A with 0 < y 6 |x|.

P r o o f. (1) ⇒ (2): If x ∈ A⊥, then A ⊆ {x}⊥, hence A⊥ ⊇ {x}⊥⊥. Thus

A ∩ {x}⊥⊥ ⊆ A ∩ A⊥ = {0}, and A ∩ {x}⊥⊥ = {0} is equivalent to (2).

(2) ⇒ (3) ⇒ (4) are obvious.

(4) ⇒ (1): Let a ∈ A. Then y := |a| ∧ |x| ∈ A and 0 6 y 6 |x|. Thus y = 0 by

(4), i.e. a ⊥ x. Therefore x ∈ A⊥. �

A net (xγ)γ∈Γ ∈ G is said to order converge to x ∈ G (in symbols xγ
o

−→ x) if

there are nets (yγ)γ∈Γ, (zγ)γ∈Γ in G such that yγ 6 xγ 6 zγ and yγ ↑ x, zγ ↓ x;

that is (yγ) is increasing and sup yγ = x, and (zγ) is decreasing and inf zγ = x. One

has xγ
o

−→ x iff there exists a net (pγ) in G such that |x − xγ | 6 pγ and pγ ↓ 0.

Moreover, if xγ
o

−→ x and yγ
o

−→ y, then xγ + yγ , xγ ∨ yγ , xγ ∧ yγ , −xγ , |xγ | order

converge to x + y, x ∨ y, x ∧ y, −x, |x|, respectively.

A family (xγ)γ∈Γ is called summable if the net of finite partial sums
∑

γ∈F

xγ , F is

finite ⊆ Γ, order converges; the order limit is then denoted by
∑

γ∈Γ

xγ . Obviously,

any summable net is order bounded.

G is Dedekind complete if every subset of G which is bounded from above has

a supremum in G.

G is super Dedekind complete if G is Dedekind complete and every set A ⊆ G

having a least upper bound contains a countable subset B with sup B = supA.

If G is Dedekind complete, then G is commutative and Archimedean, i.e. for every

x ∈ G \ {0} the set {nx : n ∈ N} is not bounded.
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Proposition 2.2. Let G be Dedekind complete and (xγ)γ∈Γ an order bounded

orthogonal family in G (i.e. xα ⊥ xβ if α, β ∈ Γ and α 6= β).

Then (xγ), (x+
γ ), (x−

γ ), (|xγ |) are summable and

(

∑

γ∈Γ

xγ

)+

=
∑

γ∈Γ

x+
γ = sup

γ∈Γ
x+

γ ,

(

∑

γ∈Γ

xγ

)−

=
∑

γ∈Γ

x−
γ = sup

γ∈Γ
x−

γ ,

∣

∣

∣

∣

(

∑

γ∈Γ

xγ

)
∣

∣

∣

∣

=
∑

γ∈Γ

|xγ | = sup
γ∈Γ

|xγ |.

P r o o f. Since the family (xγ) is orthogonal, for any finite F ⊆ Γ we have
∑

γ∈F

x+
γ = sup

γ∈F

x+
γ . Hence (x+

γ )γ∈Γ is summable and
∑

γ∈Γ

x+
γ = sup

γ∈F

x+
γ .

Analogously, (x−
γ ) and (|xγ |) are summable and

∑

γ∈Γ

x−
γ = sup

γ∈F

x−
γ and

∑

γ∈Γ

|xγ | =

sup
γ∈F

|xγ |. It follows that (xγ) = (x+
γ ) − (x−

γ ) is summable and
∑

γ∈Γ

xγ =
∑

γ∈Γ

x+
γ −

∑

γ∈Γ

x−
γ . Since

∑

γ∈Γ

x+
γ and

∑

γ∈Γ

x−
γ are positive and orthogonal, it follows that

(

∑

γ∈Γ

xγ

)+

=
∑

γ∈Γ

x+
γ and

(

∑

γ∈Γ

xγ

)−

=
∑

γ∈Γ

x−
γ . �

The most important tool in our approach to measure decomposition theorems is

the following band decomposition theorem.

Theorem 2.3. Let G be Dedekind complete and A a band in G. Then

A ⊕ A⊥ = G.

It follows that for G Dedekind complete A⊥⊥ is the band generated by A for any

A ⊆ G; in particular, for u ∈ G the set {u}⊥⊥ is the smallest band containing u.

Therefore Theorem 2.3 yields the following version of Lebesgue’s decomposition the-

orem.

Corollary 2.4. Let G be Dedekind complete and u ∈ G. Then any x ∈ G can be

written in a unique way as x = y + z where y, z ∈ G, y ⊥ u and z ≪ u.

In Corollary 2.4 an element x ∈ G is decomposed into two orthogonal elements y

and z. Our next aim is to decompose x into an infinite sum of orthogonal elements,

see Corollary 2.6 and Theorem 2.7. Before presenting these results we determine

the band generated by a family (Aγ)γ∈Γ of orthogonal bands, i.e. x ⊥ y whenever

x ∈ Aβ , y ∈ Aγ , β 6= γ and β, γ ∈ Γ.
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Proposition 2.5. Let G be Dedekind complete and (Aγ)γ∈Γ be a family of

orthogonal bands of G.

Then A :=
{

∑

γ∈Γ

xγ : xγ ∈ Aγ for γ ∈ Γ and (xγ)γ∈Γ is order bounded
}

is the

band generated by
⋃

γ∈Γ

Aγ . Moreover, for x ∈ A the representation x =
∑

γ∈Γ

xγ with

xγ ∈ Aγ is unique.

P r o o f. The proof is based on Proposition 2.2. We first prove the uniqueness

statement. Let (xγ), (yγ) be order bounded nets with xγ ∈ Aγ , yγ ∈ Aγ and

∑

γ∈Γ

xγ =
∑

γ∈Γ

yγ .

Then 0 =
∣

∣

∣

∑

γ∈Γ

(xγ − yγ)
∣

∣

∣
=

∑

γ∈Γ

|xγ − yγ |, hence |xγ − yγ | = 0, i.e. xγ = yγ for all

γ ∈ Γ.

Obviously, A is a subgroup of G. To show that A is a band we claim:

(i) x ∈ A implies x+ ∈ A;

(ii) 0 6 y 6 x ∈ A implies y ∈ A;

(iii) 0 6 x(α) ∈ A and x(α) ↑ x imply x ∈ A.

(i) If x ∈ A and x =
∑

xγ with xγ ∈ Aγ , then x+ =
∑

x+
γ ∈ A.

(ii) If 0 6 y 6 x =
∑

xγ with xγ ∈ Aγ , then y = y∧x = y∧ supxγ = sup(y∧xγ) =
∑

(y ∧ xγ) and y ∧ xγ ∈ Aγ , hence y ∈ A.

(iii) Let 0 6 x(α) ↑ x and x(α) =
∑

γ∈Γ

x
(α)
γ with x

(α)
γ ∈ Aγ . Then (x

(α)
γ )α is an

increasing net in [0, x]∩Aγ . Hence xγ := sup
α

x
(α)
γ ∈ Aγ and x = sup

α
sup

γ
x

(α)
γ =

sup
γ

sup
α

x
(α)
γ = sup

γ
xγ =

∑

xγ ∈ A.

We have proved that A is a band. It now clear that A is the band generated by
⋃

γ∈Γ

Aγ . �

Corollary 2.6. Let G be Dedekind complete and (uγ)γ∈Γ an orthogonal net in

G. Then any x ∈ G can be written in a unique way as x = y +
∑

γ∈Γ

zγ where y,

zγ ∈ G, zγ ≪ uγ and y ⊥ uγ for all γ ∈ Γ.

P r o o f. Let A be the band generated by {uγ : γ ∈ Γ}. Then x has a unique

decomposition as x = y + z, y ∈ A⊥, z ∈ A. Applying Theorem 2.3 with Aγ =

{uγ}
⊥⊥ one sees that z has a unique representation as z =

∑

γ∈Γ

zγ with zγ ∈ {uγ}
⊥⊥.

�
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The following theorem is an important tool for the Hammer-Sobczyk decomposi-

tion of Section 4.

Theorem 2.7. Let G be Dedekind complete, let A be a nonempty solid subset of

G and x ∈ G. Then there exist an element y ∈ A⊥ and an order bounded orthogonal

family (zγ)γ∈Γ in A such that x = y +
∑

γ∈Γ

zγ .

P r o o f. We may assume that A 6= (0). Let (uγ)γ∈Γ be a maximal orthogonal

family in A\{0}. In view of Corollary 2.6 we have only to verify that {uγ : γ ∈ Γ}⊥ =

A⊥.

Suppose the equality were false. Then we could find x ∈ {uγ : γ ∈ Γ}⊥ \ A⊥ and

by Proposition 2.1 an element y ∈ A with 0 < y 6 |x|. Then y ⊥ uγ for all γ ∈ Γ,

a contradiction to the maximality of (uγ)γ∈Γ. �

2.2. D-lattices. In this section let (L, 6, 0, 1,⊖) be a D-lattice, i.e. (L, 6) is

a lattice with a smallest element 0 and a greatest element 1, and ⊖ is a partial

operation on L such that b ⊖ a is defined iff a 6 b, and for all a, b, c ∈ L:

If a 6 b then b ⊖ a 6 b and b ⊖ (b ⊖ a) = a.

If a 6 b 6 c then c ⊖ b 6 c ⊖ a and (c ⊖ a) ⊖ (c ⊖ b) = b ⊖ a.

One defines in L a partial operation ⊕ as follows:

a ⊕ b is defined and a ⊕ b = c iff c ⊖ b is defined and c ⊖ b = a.

The operation ⊕ is well-defined by the cancellation law [8, on p. 13] (a 6 b,

a 6 c and b ⊖ a = c ⊖ a imply b = c), and (L,⊕, 0, 1) is an effect algebra (see [8,

Theorem 1.3.4]), i.e. ⊕ is a commutative and associative partial operation, a ⊕ 1 is

only defined for a = 0, and a⊥ := 1 ⊖ a is the unique element such that a ⊕ a⊥ is

defined and a ⊕ a⊥ = 1.

Elements a, b ∈ L are called orthogonal (in symbols a ⊥ b) if a 6 b⊥. Thus

a ⊕ b is defined iff a ⊥ b. A finite family a1, . . . , an of (not necessarily different)

elements is orthogonal if a1 ⊕ . . . ⊕ an exists, where the sum is inductively defined

by a1 ⊕ . . . ⊕ ak = (a1 ⊕ . . . ⊕ ak−1) ⊕ ak.

A D-ideal in L is a nonempty subset N of L such that a, b ∈ N and a ⊥ b imply

a ⊕ b ∈ N , and (a ∨ c) ⊖ c ∈ N for every a ∈ N and c ∈ L.

If N is a D-ideal, then b 6 a ∈ N implies b ∈ N , and a∨ b ∈ N whenever a, b ∈ N .

There is a natural bijection between D-ideals and congruence relations in L

(see [1]). If ≡ is a congruence with respect to ∧,∨ and ⊖, then N := {x ∈ L : x ≡ 0}

is the corresponding D-ideal and a ≡ b iff (a ∨ b) ⊖ (a ∧ b) ∈ N .

The set of equivalence classes L/N := L/ ≡ is then in a natural way a D-lattice.
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Remark 2.8. As observed in the Introduction, any Boolean algebra A is a D-

lattice. The difference ⊖ is the usual difference in A, i.e. b ⊖ a = b \ a if a 6 b. The

sum a⊕ b is defined iff a and b are disjoint, and in this case a⊕ b = a∨ b. A D-ideal

N in A in an ideal in the usual sense, and A/N is a Boolean quotient algebra.

Definition 2.9. A group-valued function µ on L is called a measure if µ(a⊕b) =

µ(a) + µ(b) for every a, b ∈ L with a ⊥ b, or equivalently, if µ(b ⊖ a) = µ(b) − µ(a)

whenever a, b ∈ L with a 6 b ∈ L.

Function µ is called modular if µ(a∨ b)+µ(a∧ b) = µ(a)+µ(b) for every a, b ∈ L.

Proposition 2.10. If µ is a modular measure, then

N(µ) := {a ∈ L : µ(x) = 0 for all x 6 a}

is a D-ideal and the quotient L/N(µ) is a modular D-lattice.

For the modularity in Proposition 2.10, see [9].

For a ∈ L, the height h(a) of a is the supremum of the lengths of the chains

0 = a0 < a1 < . . . < an = a. The lattice L is of finite length if h(1) is finite.

If L is a modular D-lattice of finite length, then h is a modular measure on L

(see [4, on p. 41] and [3, Proposition 2.15]).

Important in Section 4 is the next result, which follows from [3, Proposition 5.4

and 2.14].

Proposition 2.11. Let L be a modular irreducible D-lattice of finite length and

µ : L → G a group-valued modular measure. Then L is atomic and there is an

element t ∈ G such that µ(x) = h(x)t for any x ∈ L.

A D-lattice of finite length is irreducible iff {0} and L are the only D-ideals in L.

Later on we use only the obvious part (⇐) of this fact.

If L is a Boolean algebra, then—in contrast to the general case of D-lattices—

Proposition 2.11 becomes obvious since any irreducible Boolean algebra has at most

two elements.

3. The space b(L, G) of bounded modular measures

In this section, let L be a D-lattice and let G be a Dedekind complete ℓ-group.

A G-valued function is called bounded if its range is (order) bounded.

Our aim is to obtain various decomposition theorems for bounded modular mea-

sures based on the band decomposition theorem 2.3.
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Theorem 3.1. The space b(L, G) of all G-valued bounded modular measures on

L is a Dedekind complete ℓ-group. The positive part of µ ∈ b(L, G) is given by

µ+(a) = sup{µ(b) : b 6 a}.

If G is super Dedekind complete, then b(L, G) is super Dedekind complete, too.

P r o o f. By [2, Corollary 2.4] b(L, G) is an ℓ-group. Moreover, the formula for

µ+ given above is proved there.

To prove the Dedekind completeness of b(L, G), let (µγ)γ∈Γ be an increasing net

in b(L, G) and λ ∈ b(L, G) such that 0 6 µγ 6 λ. Put µ(a) := sup
γ∈Γ

µγ(a), i.e.

µγ(a)
o

−→ µ(a) for a ∈ L. It immediately follows from the continuity of the addition

in G with respect to the order convergence that µ is a modular measure. Since the

pointwise supremum of (µγ) is a modular measure, it is clear that it is the supremum

in b(L, G).

If G is super Dedekind complete, then there is an increasing sequence (γn)n∈N

in Γ such that µγn
(1)

o
−→ µ(1). Thus, for any a ∈ L we have (µ − µγn

)(a) 6

(µ − µγn
)(1)

o
−→ 0, therefore sup

n∈N

µγn
(a) = µ(a). Hence µ = sup

n∈N

µγn
. �

In contrast to Theorem 3.1 the partially ordered group of all G-valued bounded

(not necessarily modular) measures on L is in general not an ℓ-group, even if L is an

orthomodular lattice.

Example 3.2. Let MO2 (sometimes called the Chinese lantern) be the ortho-

modular lattice {0, 1, x, x⊥, y, y⊥} of six elements and height 2. Let µ, ν be the real-

valued measures on MO2 defined by µ(1) = ν(1) = 1, µ(x) = µ(y) = ν(x) = 1/2,

ν(y) = 1/4. Then µ and ν do not have a least upper bound.

Various important bands of b(L, G) can be described in the following way.

Proposition 3.3. Let R be a system of nets in L such that for any (aγ) ∈ R and

a ∈ L the net (aγ ∧ a)γ∈Γ belongs to R. Then

bR(L, G) := {µ ∈ b(L, G) : µ(aγ)
o

−→ 0 for every (aγ) ∈ R}

is a band in b(L, G).

P r o o f. Obviously, bR(L, G) is a subgroup of b(L, G) and 0 6 ν 6 µ ∈ bR(L, G)

implies ν ∈ bR(L, G).

To prove that bR(L, G) is an ideal in b(L, G) it suffices to show that µ ∈ bR(L, G)

implies µ+ ∈ bR(L, G). Let (aγ) ∈ R. Then for any a ∈ L we have

µ+(aγ) = µ+(a ∨ aγ) − µ+((a ∨ aγ) ⊖ aγ)

6 µ+(1) − µ((a ∨ aγ) ⊖ aγ) = µ+(1) − µ(a) + µ(a ∧ aγ).
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Since (a ∧ aγ) ∈ R and µ ∈ bR(L, G), it follows that

lim sup µ+(aγ) 6 µ+(1) − µ(a) + lim supµ(a ∧ aγ) = µ+(1) − µ(a)

and finally lim supµ+(aγ) 6 inf
a∈L

(µ+(1) − µ(a)) = 0. Thus µ+(aγ)
o

−→ 0, i.e. µ+ ∈

bR(L, G).

Let now (µα) be a bounded increasing net in bR(L, G) and µ its supremum in

b(L, G). It remains to show that µ ∈ bR(L, G). For that, let (aγ) ∈ R. Then

(µ−µα)(aγ) 6 (µ−µα)(1), hence µ(aγ) 6 µ(1)−µα(1)+µα(aγ), thus lim sup
γ

µ(aγ) 6

µ(1) − µα(1) + lim sup
γ

µα(aγ) = µ(1) − µα(1) and finally lim sup µ(aγ) 6 inf
α

(µ(1) −

µα(1)) = 0, thus µ(aγ)
o

−→ 0, i.e. µ ∈ bR(L, G). �

Corollary 3.4. Let R be a system of nets in L. Then

{µ ∈ b(L, G) : |µ|(aγ)
o

−→ 0 for every (aγ) ∈ R}

is a band in b(L, G).

P r o o f. Let R0 = {(aγ ∧a) : (aγ) ∈ R, a ∈ L}. By Proposition 3.3, it is enough

to observe that

{µ ∈ b(L, G) : |µ|(aγ)
o

−→ 0 for every (aγ) ∈ R} = bR0
(L, G).

In fact, if µ ∈ bR0
(L, G), then |µ| ∈ bR0

(L, G) by Proposition 3.3, hence

|µ|(aγ)
o

−→ 0 for (aγ) ∈ R. Vice versa, if |µ|(aγ)
o

−→ 0 and a ∈ L, then

|µ|(aγ ∧ a)
o

−→ 0, hence µ(aγ ∧ a)
o

−→ 0. �

Specifying R in Proposition 3.3 and Corollary 3.4, one obtains various bands in

b(L, G) of particular interest; and any of these bands gives rise to a decomposition

theorem. First we explain this with the Hewitt-Yosida decomposition.

A function µ : L → G is called σ-order continuous if µ(an)
o

−→ 0 for any decreasing

sequence (an) in L with inf an = 0. Obviously, a measure µ : L → G is σ-order

continuous iff it is σ-additive, i.e. µ(a) =
∑

n∈N

µ(an) whenever (an) is an orthogonal

sequence in L and a = sup
n

n
⊕

i=1

ai. Taking in Proposition 3.3 for R the system of

all decreasing sequences in L with infimum 0 one sees that the space of all σ-order

continuous functions of b(L, G) is a band.

We say that µ ∈ b(L, G) is purely finitely additive if the zero measure is the only σ-

additive measure ν ∈ b(L, G) such that 0 6 ν 6 |µ| (cf. Proposition 2.1 for equivalent

conditions).

From the band decomposition theorem 2.3 it now follows:
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Theorem 3.5 (Hewitt-Yosida decomposition). Let µ ∈ b(L, G). Then there are

unique measures µ1, µ2 ∈ b(L, G) such that µ = µ1 + µ2, µ1 is σ-additive and µ2 is

purely finitely additive.

We now give further examples for bands in b(L, G).

A function µ : L → G is called order continuous if µ(aγ)
o

−→ 0 for any decreasing

net (aγ) in L with inf aγ = 0. Taking for R the system of all decreasing nets in L

with infimum 0 one sees that the space of all order continuous functions of b(L, G)

is a band.

Let K and H be an upwards directed and, respectively, a downwards directed

subset of L with 0 ∈ K and 1 ∈ H . For a ∈ L put Ka := {k ∈ K : k 6 a}

and Ha := {h ∈ H : a 6 h}. Then Ka × Ha becomes a directed system defining

(k1, h1) 6 (k2, h2) if k1 6 k2 and h1 > h2. We call a function µ : L → G regular

(with respect to (K, H)) if the net

(|µ|(h ⊖ k))h∈Ha,k∈Ka

order converges to 0. By Corollary 3.4 the space of all regular measures of b(L, G)

is a band. Thus the band decomposition theorem 2.3 yields the following decompo-

sition:

Any µ ∈ b(L, G) has a unique decomposition µ = µ1 + µ2 where µ1, µ2 ∈ b(L, G),

µ1 is regular and µ2 is “antiregular”.

Let K be a subset of L with 0 ∈ K. A function µ : L → G is called K-smooth if

|µ|(aγ)
o

−→ 0 whenever (aγ) is a decreasing net in K with inf aγ = 0. The space of all

K-smooth functions of b(L, G) is a band: Take in Corollary 3.4 for R the system of

all decreasing nets (aγ) in K with inf aγ = 0. Thus the band decomposition theorem

2.3 yields a generalization of the Alexandroff decomposition.

At the end of the section we deal with Lebesgue decompositions, i.e. decomposition

of µ ∈ b(L, G) as µ = µ1 + µ2 where µ1 is “λ-continuous” and µ2 is “λ-singular”.

Let λ, µ ∈ b(L, G). We say that µ is order continuous with respect to λ if

|λ|(aγ)
o

−→ 0 implies µ(aγ)
o

−→ 0 for any decreasing net (aγ) in L. We call µ

order singular with respect to λ if the zero measure is the only measure ν ∈ b(L, G)

such that 0 6 ν 6 |µ| and ν is order continuous with respect to λ.

By Proposition 3.3, {µ ∈ b(L, G) : µ is order continuous with respect to λ} is

a band in b(L, G). Thus the band decomposition theorem 2.3 yields the following

version of the Lebesgue decomposition theorem.

Theorem 3.6 (Lebesgue decomposition theorem). Let λ, µ ∈ b(L, G). Then

there are unique measures µ1, µ2 ∈ b(L, G) such that µ = µ1 + µ2, µ1 is order

continuous with respect to λ and µ2 is order singular with respect to λ.
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Another version of Lebesgue’s decomposition theorem was already given in Corol-

lary 2.4: For λ, µ ∈ b(L, G), there are unique measures µ1, µ2 ∈ b(L, G) such that

µ = µ1 + µ2, µ1 ≪ λ and µ2 ⊥ λ.

We now compare several continuity conditions with respect to λ, each of which

yields another version of Lebesgue’s decomposition theorem.

Proposition 3.7. For λ, µ ∈ b(L, G) consider the following conditions

(1) µ ≪ λ;

(2) µ(aγ)
o

−→ 0 whenever (aγ) is a net in L with |λ|(aγ)
o

−→ 0;

(3) µ is order continuous with respect to λ;

(4) N(µ) ⊇ N(λ).

Then (1) ⇒ (2) ⇒ (3) ⇒ (4).

P r o o f. By Corollary 3.4 the set {µ ∈ b(L, G) : µ satisfies (2)} is a band

containing λ and therefore contains {λ}⊥⊥, the band generated by λ. This proves

(1) ⇒ (2).

(2) ⇒ (3) ⇒ (4) is obvious. �

In Proposition 3.8 we give additional assumptions under which conditions (3) and

(4) of Proposition 3.7 are equivalent.

Proposition 3.8. Let G be super Dedekind complete, L σ-complete and let

λ, µ ∈ b(L, G) be σ-additive. Then µ is order continuous with respect to λ iff

N(µ) ⊇ N(λ).

P r o o f. We prove the nontrivial implication ⇐: Let aγ ↓ with |λ|(aγ)
o

−→ 0,

i.e. inf |λ|(aγ) = 0. Since G is super Dedekind complete there exists an increasing

sequence (γn) in Γ such that inf |λ|(aγn
) = 0. Since L is σ-complete there exists a ∈ L

such that a = inf aγn
. By the σ-additivity of |λ| we get inf |λ|(aγn

) = |λ|(a). It follows

that |λ|(a) = 0. Hence a ∈ N(λ), therefore a ∈ N(µ), in other words |µ|(a) = 0.

Since |µ| is σ-additive, we get inf |µ|(aγn
) = |µ|(a) = 0, hence inf |µ|(aγ) = 0 and so

µ(aγ)
o

−→ 0. �

Easy examples show that also under the additional assumptions of Proposition 3.8,

even when L is a Boolean algebra, (3) does not imply (2) and (2) does not imply (1)

in Proposition 3.7:

Example 3.9. Let A be the σ-algebra of Lebesgue measurable subsets of [0, 1]

and m the Lebesgue measure on A.

(a) Then λ(A) := m(A)χ[0,1] and µ(A) := χA define bounded σ-additive measures

λ, µ : A → L1(m). µ is order continuous with respect to λ. On the other hand, if
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An := {x ∈ [0, 1] : ∃y ∈ [sn, sn+1] with x ≡ y mod Z} where sn =
n
∑

i=1

1/i, then

|λ|(An)
o

−→ 0, but the sequence µ(An) does not order converge to 0. Thus the

condition (2) of Proposition 3.7 is not satisfied.

(b) Let λ, µ : P(N) → R
2 be defined by λ := (m, 0) and µ := (0, m). Then µ, λ

satisfy the condition (2) of Proposition 3.7, but µ ≪ λ is not true.

If follows from Proposition 3.3 that, for λ ∈ b(L, G), also the sets {µ ∈ b(L, G) : µ

satisfies (2) of Proposition 3.7} and {µ ∈ b(L, G) : N(µ) ⊇ N(λ)} are bands of

b(L, G). We omit the explicit formulation of the corresponding versions of Lebesgue’s

decomposition theorem.

Corollary 3.4 and Theorem 2.3 will be applied further on in Proposition 4.11 and

Theorem 4.12.

4. The Hammer-Sobczyk decomposition

As in Section 3, we assume that L is a D-lattice and G a Dedekind complete

ℓ-group.

Recall that a finitely additive probability measure µ on a Boolean algebra A is

strongly continuous if for every ε > 0 the maximal element of A has a finite decom-

position a1, . . . , an ∈ A such that µ(ai) < ε (i = 1, . . . , n), see [5]. There are different

natural generalizations of this concept for ℓ-group-valued measures, see Remark 4.10.

We call a measure µ : L → G strongly continuous if for every t ∈ G with t > 0

there is a finite orthogonal family a1, . . . an in L such that
n
⊕

i=1

ai = 1 and |µ|(ai) 6>

t (i = 1, . . . , n).

This definition is justified by the fact that, for a Boolean algebra L, a finitely

additive measure µ : L → G is strongly continuous (according to our definition)

iff it is orthogonal with respect to any two-valued measure from L to G, see also

Proposition 4.7.

We first formulate the Hammer-Sobczyk decomposition theorem for ℓ-group-

valued measures on Boolean algebras.

Theorem 4.1. Let A be a Boolean algebra and µ : A → G a finitely additive

bounded measure. Then there are two-valued finitely additive measures νγ : A → G

(γ ∈ Γ) and a strongly continuous bounded finitely additive measure λ : A → G such

that (νγ(a))γ∈Γ is summable for every a ∈ A and µ = λ +
∑

γ∈Γ

νγ .

To prove the Hammer-Sobczyk decomposition for µ ∈ b(L, G), we introduce the

following notation.
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Notation 4.2. For µ ∈ b(L, G) and t ∈ G+, let N(µ, t) be the set of all elements
n
⊕

i=1

ai where n ∈ N and a1, . . . , an is an orthogonal family in L such that |µ|(ai) 6> t

(i = 1, . . . , n).

Obviously, µ is strongly continuous iff 1 ∈ N(µ, t) for every t > 0. Since N(µ, t) is

a D-ideal as shown in Lemma 4.3, µ is strongly continuous iff N(µ, t) = L for every

t > 0.

Lemma 4.3. Let µ ∈ b(L, G) and t ∈ G, t > 0.

(a) Then N(µ, t) is a D-ideal containing N(µ).

(b) The quotient L/N(µ, t) is a modular D-lattice of finite length.

P r o o f. (a) Obviously, N(µ) ⊆ N(µ, t) and a ⊕ b ∈ N(µ, t) whenever a, b ∈

N(µ, t) and a ⊥ b.

Let now a ∈ N(µ, t) and c ∈ L. It remains to show that (a ∨ c) ⊖ c ∈ N(µ, t).

Since a ∈ N(µ, t), there exists a finite chain 0 = a0 6 a1 6 . . . 6 an = a with

|µ|(ai ⊖ ai−1) 6> t (i = 1, . . . , n). Let bi := (ai ∨ c) ⊖ c. Then 0 = b0 6 b1 . . . 6 bn =

(a∨c)⊖c and |µ|(bi⊖bi−1) = |µ|(ai∨c)−|µ|(ai−1∨c) = (|µ|(ai)+|µ|(c)−|µ|(ai∧c))−

(|µ|(ai−1)+ |µ|(c)−|µ|(ai−1 ∧c)) = |µ|(ai)−|µ|(ai−1)− (|µ|(ai ∧c)−|µ|(ai−1 ∧c)) 6

|µ|(ai) − |µ|(ai−1) 6> t, hence |µ|(bi ⊖ bi−1) 6> t. This proves (a ∨ c) ⊖ c ∈ N(µ, t).

(b) By Proposition 2.10 L/N(µ) is modular. Since N(µ) ⊆ N(µ, t), the quotient

L/N(µ, t) is an epimorphic image of L/N(µ), hence modular, too.

Now suppose that L/N(µ, t) has infinite length. Then, for any n ∈ N, there

is a chain 0 = α0 < α1 < . . . < αn in L/N(µ, t). Choose ai ∈ αi such that

0 = a0 < a1 < . . . < an. Then ai ⊖ ai−1 6∈ N(µ, t), hence |µ|(ai ⊖ ai−1) > t and

|µ|(1) > |µ|
( n

⊕

i=1

(ai ⊖ai−1)
)

=
n
∑

i=1

|µ|(ai ⊖ai−1) > nt. We have seen that nt 6 |µ|(1)

for any n ∈ N. This contradicts the fact that G is Archimedean. �

Notation 4.4. Let m(L, G) be the set of all δ ∈ b(L, G) such that N(δ) is

a maximal D-ideal and L/N(δ) is of finite length.

From Proposition 2.10 and Proposition 2.11 immediately follows:

Proposition 4.5. For δ ∈ m(L, G) the quotient L/N(δ) is a modular irreducible

atomic D-lattice and for some t ∈ G \ {0} one has δ(x) = h(x̂)t for x ∈ x̂ ∈ L/N(δ)

where h denotes the height function on L/N(δ).

If L is a Boolean algebra, the measures belonging to m(L, G) are exactly the

two-valued measures or equivalently the ultrafilter measures.
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Proposition 4.6. Let µ ∈ b(L, G). Then µ is not strongly continuous iff there is

a measure δ ∈ m(L, G) such that 0 < δ 6 |µ|.

P r o o f. (⇒): If µ is not strongly continuous, then N(µ, t) 6= L for some t > 0.

Let M be a maximal D-ideal containing N(µ, t). Since L/M is an epimorphic image

of L/N(µ, t) and L/N(µ, t) has finite length by Lemma 4.3(b), L/M has finite length,

too.

Define δ : L → G by δ(x) = h(x̂)t where x ∈ x̂ ∈ L/M and h is the height function

on L/M . Then δ ∈ b(L, G) and N(δ) = M , hence δ ∈ m(L, G).

We claim that δ 6 |µ|. Let a ∈ L\{0} and ai ∈ L with 0 = a0 < a1 < . . . < an = a

such that 0 = â0 < â1 < . . . < ân = â is a maximal chain in [0, â]. Then h(â) = n,

thus δ(a) = nt. Since bi := ai ⊖ ai−1 /∈ M , hence bi /∈ N(µ, t), we have |µ|(bi) > t.

Therefore |µ|(a) = |µ|
( n

⊕

i=1

bi

)

=
n
∑

i=1

|µ|(bi) > nt = δ(a).

(⇐): Let δ ∈ m(L, G) with 0 < δ 6 |µ|. By Proposition 4.5 there is an element

t ∈ G, t > 0 such that δ(x) = h(x̂)t where x ∈ x̂ ∈ L/N(δ) and h is the height

function on L/N(δ).

Suppose that µ is strongly continuous. Then there is an orthogonal family

a1, . . . , an such that 1 =
n
⊕

i=1

ai and |µ|(ai) 6> t (i = 1, . . . , n). Since N(δ) 6= L, at

least one of the elements a1, . . . , an does not belong to N(δ). If aj 6∈ N(δ), then

|µ|(aj) > δ(aj) = h(âj)t > t, a contradiction. �

Proposition 4.7. (a) m(L, G) ∪ {0} is a solid subset of b(L, G);

(b) µ ∈ b(L, G) is strongly continuous iff µ ∈ m(L, G)⊥.

P r o o f. (a) Let δ ∈ m(L, G) and µ ∈ b(L, G) with |µ| 6 |δ|. If µ 6= 0, then

N(µ) = N(δ), thus µ ∈ m(L, G).

Item (b) now follows from Propositions 4.6 and 2.1. �

Proposition 4.7 and Theorem 2.7 immediately yield:

Theorem 4.8 (Hammer-Sobczyk decomposition). Let µ ∈ b(L, G). Then there

is a strongly continuous λ ∈ b(L, G) and an orthogonal summable family (νγ)γ∈Γ in

m(L, G) such that µ = λ +
∑

γ∈Γ

νγ .

If (νγ)γ∈Γ is a summable family in b(L, G) and ν =
∑

γ∈Γ

νγ , then—as can easily be

verified—for any a ∈ L the family (νγ(a))γ∈Γ is summable and ν(a) =
∑

γ∈Γ

νγ(a).

If L is a Boolean algebra, then, as observed before, m(L, G) is the space of all

two-valued measures on L with values in G. Therefore Theorem 4.1 is a special case

of Theorem 4.8.

1098



Remark 4.9. If G is super Dedekind complete, then every orthogonal summable

family is at most countable. Hence, if G is super Dedekind complete, the set Γ in

Theorems 2.7, 4.1 and 4.8 is at most countable.

We shall compare our version of the Hammer-Sobczyk decomposition (Theo-

rem 4.1) with the version of Boccuto and Candeloro [6, Theorem 4.6].

From now on let A be a Boolean algebra with a maximal element 1. We denote

by D the system of all finite disjoint partitions of 1, and by c(A, G) the space of all

finitely additive bounded measures µ : A → G such that

inf
D∈D

sup
d∈D

|µ|(d) = 0.

The last condition was introduced by Boccuto and Candeloro [6, Section 3]. They

call (positive) measures belonging to c(A, G) “continuous”. Obviously, for real-valued

measures “continuity” and “strong continuity” are equivalent properties, but this is

not true in general for G-valued measures.

Remark 4.10. (a) It immediately follows from the definition that any measure

belonging to c(A, G) is strongly continuous.

(b) Let A be the Borel algebra of [0, 1] and let m be the Lebesgue measure on A.

Then µ : A → L1(m) defined by µ(A) = χA is strongly continuous, but it does not

belong to c(A, L1(m)) (i.e. µ is not continuous in the sense of [6]).

Proposition 4.11. The set c(A, G) is a band in b(A, G).

P r o o f. Define on Γ := {(D, d) : D ∈ D, d ∈ D} a relation by (D1, d1) 6

(D2, d2) iff D2 is a refinement of D1. Then (Γ, 6) is upwards directed. We set

aγ := d if γ = (D, d) ∈ Γ. Then (aγ)γ∈Γ is a net and

c(A, G) = {µ ∈ b(A, G) : |µ|(aγ)
o

−→ 0}.

Therefore c(A, G) is a band by Corollary 3.4. �

Proposition 4.11 and the band decomposition theorem 2.3 (together with Propo-

sition 2.1) immediately yield:

Theorem 4.12. Let µ ∈ b(A, G). Then there are unique measures µ1 ∈ c(A, G)

and µ2 ∈ b(A, G) such that µ = µ1 + µ2 and µ2 has the property that the zero

measure is the unique measure ν ∈ c(A, G) with 0 6 ν 6 |µ2|.

Theorem 4.12 was proved in [6, Theorem 4.6] for positive measures under the

additional assumption that G is super Dedekind complete and weakly σ-distributive.
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The proof of Candeloro and Boccuto is completely different from ours; in particular,

they use a Stone isomorphism technique and a measure extension theorem. This

makes the additional assumptions understandable.
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