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A HAVEL-HAKIMI TYPE PROCEDURE AND

A SUFFICIENT CONDITION FOR A SEQUENCE

TO BE POTENTIALLY Sr,s-GRAPHIC

Jian-Hua Yin, Haikou

(Received August 17, 2011)

Abstract. The split graph Kr +Ks on r+ s vertices is denoted by Sr,s. A non-increasing
sequence π = (d1, d2, . . . , dn) of nonnegative integers is said to be potentially Sr,s-graphic
if there exists a realization of π containing Sr,s as a subgraph. In this paper, we obtain
a Havel-Hakimi type procedure and a simple sufficient condition for π to be potentially
Sr,s-graphic. They are extensions of two theorems due to A.R.Rao (The clique number of
a graph with given degree sequence, Graph Theory, Proc. Symp., Calcutta 1976, ISI Lect.
Notes Series 4 (1979), 251–267 and An Erdős-Gallai type result on the clique number of a
realization of a degree sequence, unpublished).
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1. Introduction

A sequence π = (d1, d2, . . . , dn) of nonnegative integers is said to be graphic if

it is the degree sequence of a simple graph G on n vertices, and such a graph G is

referred to as a realization of π. The following well-known result due to Hakimi [1]

and Havel [2] gives a necessary and sufficient condition for π to be graphic.

Let π = (d1, d2, . . . , dn) be a non-increasing sequence of nonnegative integers.

Let d′1 > d′2 > . . . > d′n−1 be the rearrangement in non-increasing order of d2 − 1,

d3−1, . . . , dd1+1−1, dd1+2, . . . , dn. Then π′ = (d′1, d
′
2, . . . , d

′
n−1) is called the residual

sequence of π.
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Theorem 1.1 (Hakimi [1] and Havel [2]). π is graphic if and only if π′ is graphic.

A sequence π = (d1, d2, . . . , dn) is said to be potentially Kr+1-graphic if there is

a realization G of π containing Kr+1 as a subgraph.

Definition. If π has a realization G containing Kr+1 on those vertices having

degree d1, . . . , dr+1, then π is potentially Ar+1-graphic.

In [4], Rao showed that a non-increasing sequence π = (d1, d2, . . . , dn) is poten-

tially Ar+1-graphic if and only if it is potentially Kr+1-graphic. In [4], Rao consid-

ered the problem of characterizing potentiallyKr+1-graphic sequences and developed

a Havel-Hakimi type procedure to determine the maximum clique number of a graph

with a given degree sequence π. This procedure can also be used to construct a graph

with the degree sequence π and containing Kr+1 on the first r + 1 vertices.

Let n > r + 1 and let π = (d1, d2, . . . , dn) be a non-increasing sequence of nonneg-

ative integers with dr+1 > r. We construct sequences π1, . . . , πr as follows. We first

construct the sequence

π1 = (d2 − 1, . . . , dr+1 − 1, d
(1)
r+2, . . . , d

(1)
n )

from π by deleting d1, reducing the first d1 remaining terms of π by one, and then

reordering the last n− r− 1 terms to be non-increasing. For 2 6 i 6 r, we construct

πi = (di+1 − i, . . . , dr+1 − i, d
(i)
r+2, . . . , d

(i)
n )

from

πi−1 = (di − i + 1, . . . , dr+1 − i + 1, d
(i−1)
r+2 , . . . , d(i−1)

n )

by deleting di − i + 1, reducing the first di − i + 1 remaining terms of πi−1 by one,

and then reordering the last n − r − 1 terms to be non-increasing.

Theorem 1.2 (Rao [4]). π is potentially Ar+1-graphic if and only if πr is graphic.

In [5], Rao gave a simple sufficient condition for a graphic sequence to be poten-

tially Ar+1-graphic.

Theorem 1.3 (Rao [5]). Let n > r + 1 and let π = (d1, d2, . . . , dn) be a non-

increasing graphic sequence. If dr+1 > 2r − 1, then π is potentially Ar+1-graphic.

Let Sr,s = Kr +Ks, the split graph on r + s vertices, where Ks is the complement

of Ks and + denotes the standard join operation. Clearly, Sr,1 = Kr+1. Therefore,

the graph Sr,s is an extension of the graph Kr+1. A sequence π = (d1, d2, . . . , dn) is

said to be potentially Sr,s-graphic if there is a realization G of π containing Sr,s as
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a subgraph. If π has a realization G containing Sr,s on those vertices having degrees

d1, d2, . . . , dr+s such that the vertices of Kr have degrees d1, . . . , dr and the vertices

of Ks have degrees dr+1, . . . , dr+s, then π is potentially Ar,s-graphic. Yin [6] showed

that a non-increasing sequence π = (d1, d2, . . . , dn) is potentially Ar,s-graphic if and

only if it is potentially Sr,s-graphic. Related research has been done by Lai et al

(see [3]). In the present paper, we develop a Havel-Hakimi type procedure (Theorem

1.4) to determine whether a non-increasing sequence π is potentially Ar,s-graphic.

This is an extension of Theorem 1.2 (which corresponds to s = 1). This procedure

can also be used to construct a graph with the degree sequence π and containing Sr,s

on the first r + s vertices.

Let n > r + s and let π = (d1, d2, . . . , dn) be a non-increasing sequence of nonneg-

ative integers with dr > r + s − 1 and dr+s > r. We construct sequences π1, . . . , πr

as follows. We first construct the sequence

π1 = (d2 − 1, . . . , dr − 1, dr+1 − 1, . . . , dr+s − 1, d
(1)
r+s+1, . . . , d

(1)
n )

from π by deleting d1, reducing the first d1 remaining terms of π by one, and then

reordering the last n− r− s terms to be non-increasing. For 2 6 i 6 r, we construct

πi = (di+1 − i, . . . , dr − i, dr+1 − i, . . . , dr+s − i, d
(i)
r+s+1, . . . , d

(i)
n )

from

πi−1 = (di − i + 1, . . . , dr − i + 1, dr+1 − i + 1, . . . , dr+s − i + 1, d
(i−1)
r+s+1, . . . , d

(i−1)
n )

by deleting di − i + 1, reducing the first di − i + 1 remaining terms of πi−1 by one,

and then reordering the last n − r − s terms to be non-increasing.

Theorem 1.4. π is potentially Ar,s-graphic if and only if πr is graphic.

Moreover, we also give a simple sufficient condition for a graphic sequence to be

potentially Ar,s-graphic. This is an extension of Theorem 1.3 (which corresponds to

s = 1).

Theorem 1.5. Let n > r + s and let π = (d1, d2, . . . , dn) be a non-increasing

graphic sequence. If dr+s > 2r + s − 2, then π is potentially Ar,s-graphic.
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2. Proofs of Theorems 1.4 and 1.5

P r o o f of Theorem 1.4. Assume that π is potentially Ar,s-graphic. Then π has

a realization G with a vertex set V (G) = {v1, v2, . . . , vn} such that dG(vi) = di for

1 6 i 6 n andG contains Sr,s on v1, v2, . . . , vr+s so that V (Kr) = {v1, v2, . . . , vr} and

V (Ks) = {vr+1, . . . , vr+s}. We now show that π has a realization G such that v1 is

adjacent to vertices vr+s+1, . . . , vd1+1. If otherwise, we may choose such a realization

H of π such that the number of vertices adjacent to v1 in {vr+s+1, . . . , vd1+1} is max-

imum. Let vi ∈ {vr+s+1, . . . , vd1+1} and v1vi /∈ E(H), and let vj ∈ {vd1+2, . . . , vn}

and v1vj ∈ E(H). We may assume di > dj since the order of i and j can be in-

terchanged if di = dj . Hence there is a vertex vt, t 6= i, j such that vivt ∈ E(H)

and vjvt /∈ E(H). Clearly, G = (H \ {v1vj , vivt}) ∪ {v1vi, vjvt} is a realization of

π such that dG(vi) = di for 1 6 i 6 n, G contains Sr,s on v1, v2, . . . , vr+s with

V (Kr) = {v1, v2, . . . , vr} and V (Ks) = {vr+1, . . . , vr+s}, and G has the number of

vertices adjacent to v1 in {vr+s+1, . . . , vd1+1} larger than that of H . This contradicts

the choice ofH . Clearly, π1 is the degree sequence of G−v1 and is potentially Ar−1,s-

graphic. Repeating this procedure, we can see that πi is potentially Ar−i,s-graphic

successively for i = 2, . . . , r. In particular, πr is -graphic.

Suppose that πr is graphic and is realized by a graph Gr with a vertex set V (Gr) =

{vr+1, . . . , vn} such that dGr
(vi) = di for r + 1 6 i 6 n. For i = r, . . . , 1, form Gi−1

from Gi by adding a new vertex vi that is adjacent to each of vi+1, . . . , vr+s and also

to the vertices of Gi with degrees d
(i−1)
r+s+1 −1, . . . , d

(i−1)
di+1 −1. Then, for each i, Gi has

degrees given by πi, and Gi contains Sr−i,s on r + s− i vertices vi+1, . . . , vr+s whose

degrees are di+1 − i, . . . , dr+s − i so that V (Kr−i) = {vi+1, . . . , vr} and V (Ks) =

{vr+1, . . . , vr+s}. In particular, G0 has degrees given by π and contains Sr,s on r + s

vertices v1, . . . , vr+s whose degrees are d1, . . . , dr+s so that V (Kr) = {v1, . . . , vr} and

V (Ks) = {vr+1, . . . , vr+s}. �

P r o o f of Theorem 1.5. Let n > r + s and let π = (d1, d2, . . . , dn) be a non-

increasing graphic sequence with dr+s > 2r+s−2. By Theorem 1.3, π is potentially

Ar-graphic. Therefore, we may assume that G is a realization of π with a vertex

set V (G) = {v1, v2, . . . , vn} such that dG(vi) = di for 1 6 i 6 n, G contains Kr on

v1, . . . , vr and M = eG({v1, . . . , vr}, {vr+1, . . . , vr+s}) (that is the number of edges

between {v1, . . . , vr} and {vr+1, . . . , vr+s}) is maximum. IfM = rs, then G contains

Sr,s on v1, v2, . . . , vr+s with V (Kr) = {v1, v2, . . . , vr} and V (Ks) = {vr+1, . . . , vr+s}.

In other words, π is potentially Ar,s-graphic. Assume thatM < rs. Then there exist

a vk ∈ {v1, v2, . . . , vr} and a vm ∈ {vr+1, . . . , vr+s} such that vkvm /∈ E(G). Let

A = NG\{v1,...,vr+s}(vk) \ NG\{v1,...,vr}(vm),

B = NG\{v1,...,vr+s}(vk) ∩ NG\{v1,...,vr}(vm).
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Then xy ∈ E(G) for x ∈ NG\{v1,...,vr}(vm) and y ∈ NG\{v1,...,vr+s}(vk). Otherwise, if

xy /∈ E(G), then G′ = (G\{vky, vmx})∪{vkvm, xy} is a realization of π and contains

Sr,s on v1, v2, . . . , vr+s with V (Kr) = {v1, v2, . . . , vr} and V (Ks) = {vr+1, . . . , vr+s}

such that

eG′({v1, . . . , vr}, {vr+1, . . . , vr+s}) > M,

which contradicts the choice of G. Thus, B is complete. We consider the following

two cases.

Case 1. A = ∅. Then 2r + s − 2 6 dk = dG(vk) 6 r + s − 2 + |B|, and so

|B| > r. Since each vertex in NG\{v1,...,vr}(vm) is adjacent to each vertex in B and

|NG\{v1,...,vr}(vm)| > 2r+s−2− (r−1) = r+s−1, it is easy to see that the induced

subgraph of NG\{v1,...,vr}(vm) ∪ {vm} in G contains Sr,s as a subgraph. Thus, π is

potentially Ar,s-graphic.

Case 2. A 6= ∅. Let a ∈ A. If there are x, y ∈ NG\{v1,...,vr}(vm) such that

xy /∈ E(G), then

G′ = (G \ {vmx, vmy, vka}) ∪ {vkvm, avm, xy}

is a realization of π and contains Sr,s on v1, v2, . . . , vr+s with V (Kr) = {v1, v2, . . . , vr}

and V (Ks) = {vr+1, . . . , vr+s} such that

eG′({v1, . . . , vr}, {vr+1, . . . , vr+s}) > M,

which contradicts the choice of G. Thus, NG\{v1,...,vr}(vm) is complete. Since

|NG\{v1,...,vr}(vm)| > r + s − 1 and vmz ∈ E(G) for any z ∈ NG\{v1,...,vr}(vm),

it is easy to see that the induced subgraph of NG\{v1,...,vr}(vm) ∪ {vm} in G is com-

plete, and so contains Sr,s as a subgraph. Thus, π is potentially Ar,s-graphic. �
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