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Czechoslovak Mathematical Journal, 62 (137) (2012), 625–635

ON THE Hp-Lq BOUNDEDNESS OF SOME FRACTIONAL

INTEGRAL OPERATORS

P. Rocha, M. Urciuolo, Córdoba

(Received November 1, 2010)

Abstract. Let A1, . . . , Am be n × n real matrices such that for each 1 6 i 6 m, Ai is
invertible and Ai − Aj is invertible for i 6= j. In this paper we study integral operators of
the form

Tf(x) =

∫
k1(x − A1y)k2(x − A2y) . . . km(x − Amy)f(y) dy,

ki(y) =
∑
j∈Z

2jn/qi ϕi,j(2
jy), 1 6 qi < ∞, 1/q1 + 1/q2 + . . .+ 1/qm = 1− r, 0 6 r < 1, and

ϕi,j satisfying suitable regularity conditions. We obtain the boundedness of T : Hp(Rn)→
Lq(Rn) for 0 < p < 1/r and 1/q = 1/p−r.We also show that we can not expect the Hp-Hq

boundedness of this kind of operators.

Keywords: integral operator, Hardy space

MSC 2010 : 42B20, 42B30

1. Introduction

In [4] the authors obtain the Lp boundedness, p > 1, for a class of maximal

operators on the three dimensional Heisenberg group. The operators they consider

have relevance in the analysis on SL(R3). Some of them actually arise in the study of

the boundary behavior of Poisson integrals on the symmetric space SL(R3)/SO(3).

To obtain the principal results, they analyze the L2(R) boundedness of integral

operators of the form

Tf(x) =

∫
|x − y|−α|x + y|α−1f(y) dy,

0 < α < 1.

Partially supported by SECYTUNC, and CONICET.

625



A natural question is if these operators are also bounded from Lp(R) into Lq(R)

for certain 1 < p, q < ∞, and if this kind of results still hold for larger dimensions or
for more general kernels. In this context, in [3] the authors study integral operators

on R
n with kernels of the form

k(x, y) = k1(x − a1y)k2(x − a2y) . . . km(x − amy),

with aj ∈ R \ {0}, ai 6= aj for i 6= j, 1 6 i, j 6 m and

ki(y) =
∑

j∈Z

2jn/qiϕi,j(2
jy),

for certain functions ϕi,j satisfying some regularity properties. They obtain that this

operator is bounded from Lp(Rn) into Lq(Rn) for 1 < p < 1/r and 1/q = 1/p− r.

Now we consider the following natural generalization of these operators. For n, m ∈
N, let A1, . . . , Am be real n×n matrices such that for each 1 6 i 6 m, Ai is invertible

and Ai −Aj is invertible if i 6= j. Let m > 1, q1, . . . , qm be real numbers, 1 < qi < ∞
such that

1

q1
+

1

q2
+ . . . +

1

qm
= 1 − r

for some 0 6 r < 1. If α = (α1, . . . , αn) is a multiindex, we denote |α| = α1+. . .+αn,

and Dα = ∂|α|/∂yα1
1 . . . ∂yαn

n . For 1 6 i 6 m let {ϕi,j}j∈Z be a family of smooth and

non negative real functions defined on R
n, such that

supp(ϕi,j) ⊂ {y ∈ R
n : 2−1

6 |y| 6 2}

and such that for each multiindex α = (α1, . . . , αn) there exists Mα such that

sup
j∈Z

‖Dαϕi,j‖∞ 6 Mα.

Let

(1) k(x, y) = k1(x − A1y)k2(x − A2y) . . . km(x − Amy),

with

ki(y) =
∑

j∈Z

2jn/qiϕi,j(2
jy),

and let T be the integral operator with kernel k(x, y), i.e.

(2) Tf(x) =

∫
k(x, y)f(y) dy.

We observe that if ϕi,j = ϕi,k for all j, k ∈ Z then ki(2
sy) = 2−sn/qiki(y). So ki is

“homogeneous” of degree−n/qi and then the “homogeneity degree” of k is −n(1−r).

626



The Hardy-Littlewood-Sobolev theorem shows that the Riesz potential operator Inr,

with kernel 1/|y|n(1−r), is bounded from Lp(Rn) into Lq(Rn), for 0 < r < 1, 1 < p <

1/r and 1/q = 1/p−r. Also for the endpoint cases, it is known that Inr is not bounded

from L1 into L1/(1−r) and neither from L1/r(Rn) into L∞(Rn) (See [6], p. 119).

In 1960 E. Stein and G.Weiss [8] used the theory of harmonic functions of several

variables to prove that these operators are bounded from H1(Rn) to L1/(1−r)(Rn)

and in 1980 M.Taibleson and G.Weiss, using the molecular characterization of the

real Hardy spaces, obtained the boundedness of these operators from Hp(Rn) into

Hq(Rn), where 0 < p < 1 and 1/q = 1/p− r (see [9]).

Also in [1] the authors obtain the Hp(Rn) − Lq(Rn) boundedness, n/(n + α) 6

p 6 1, 1/q = 1/p− α/n , for the homogeneous fractional convolution operators TΩ,α

given by

TΩ,αf(x) =

∫

Rn

Ω(x − y)

|x − y|n−α
f(y) dy,

where 0 < α < n, Ω is homogeneous of degree zero on Rn with Ω ∈ Ls(Sn−1), s > 1.

In [5] we obtain theHp(Rn)−Lp(Rn) boundedness, 0 < p 6 1, of integral operators

with kernels of the form

(3) k(x, y) = |x − a1y|−α1 . . . |x − amy|−αm ,

where ai 6= aj for i 6= j , m > 1 and α1 + . . . + αm = n and we also show that we

can not expect the Hp(Rn) boundedness of them. These kernels can be expresed as

in (1), with r = 0.

In this paper we obtain the Hp(Rn) − Lq(Rn) boundedness of the operator T

defined by (2), for 0 < p < 1/r and 1/q = 1/p − r. By duality we obtain the

corresponding L1/r(Rn) → BMO(Rn) boundedness. Also, in the last section, for

each 0 < r < 1 we give an example of an operator Tr on Hp(R), having a kernel of

the form (3) with m = 2 and α1 + α2 = 1− r, that is not bounded from Hp(R) into

Hq(R) for 0 < p 6 1/(1 + r) and 1/q = 1/p− r.

Throughout this paper, c will denote a positive constant not necessarily the same

at each occurrence.

2. Preliminary results

We note that the condition 1/q = 1/p− r, 1 < p < 1/r is necessary for the bound-

edness from Lp(Rn) into Lq(Rn) of certain subfamily of operators of the form (2).

Remark 1. A standard homogeneity argument shows that if an operator with

general kernel k with “homogeneity degree” −n(1− r) is bounded from Lp(Rn) into
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Lq(Rn) for some 1 < p, q < ∞, then 1/q = 1/p − r. Now for l ∈ Z, let T l be

the integral operator with kernel kl = kl
1(x − A1y) . . . kl

m(x − Amy), where kl
i(y) =∑

j∈Z

2jn/qiϕi,j−l(2
jy). If for each 1 6 i 6 m, ϕi,j = ϕi,k for all j, k ∈ Z then T l = T.

Also, if all the operators T l are bounded from Lp(Rn) into Lq(Rn) for some 1 <

p, q < ∞, and 0 < sup
l

‖T l‖p,q 6 C < ∞, then 1/q = 1/p − r. Indeed for l ∈ Z we

denote fl(x) = 2−lnf(2−lx) then

T (fl)(x) = 2−ln(1−r)T lf(2−lx),

so

‖Tf‖q = ‖T ((f−l)l)‖q 6 2−ln(1−r)+nl/q‖T l(f−l)‖q

6 C2−ln(1−r)+l n
q ‖f−l‖p = C2−ln(1/q−1/p+r)‖f‖p

and then 1/q − 1/p + r = 0.

With respect to the endpoint (p, q) = (1, 1/(1− r)) and (p, q) = (1/r, 0), as in the

case of the Riesz potentials, we can not expect Lp(Rn) − Lq(Rn) boundedness. For

the first one we take f = χB the characteristic function of the unit ball of R
n and

k(x, y) = 1/|x − A1y|n/q1 . . . 1/|x − Amy|n/qm . A simple computation shows that for

|x| ≫ 1, T f(x) > c/|x|n(1−r) and then Tf /∈ L1/(1−r). The second case follows by

duality.

Lemma 1. If k(x, y) is the kernel defined by (1) and α = (α1, . . . , αn) is a mul-

tiindex then

∣∣∣ ∂|α|

∂yα1
1 . . . ∂yαn

n
k(x, y)

∣∣∣ 6 c

( m∏

i=1

|x − Aiy|−
n
qi

)( m∑

l=1

|x − Aly|−1

)|α|

with c independent of x, y.

P r o o f. We denote Dα
y = ∂|α|/∂yα1

1 . . . ∂yαn
n . By the Leibniz formula,

Dα
y k(x, y) = Dα

y

( ∏

16i6m

ki(x − Aiy)

)

=
∑

Γ1+...+Γm=α

cΓ1,...,ΓmDΓ1
y (k1(x − A1y)) . . . DΓm

y (km(x − Amy)),

now

ki(x − Aiy) =
∑

j∈Z

2jn/qiϕi,j(2
j(x − Aiy)).
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For each fixed x only a finite number of j’s (independent of x) are involved in the

above sum, also 2j 6 2|x−Aiy|−1 for 2j(x−Aiy) ∈ suppϕi,j , also sup
j∈Z

‖Dαϕi,j‖∞ <

∞, so

|DΓi
y (ki(x − Aiy))| =

∣∣∣∣
∑

j∈Z

2jn/qiDΓi
y (ϕi,j(2

j(x − Aiy)))

∣∣∣∣ 6 c|x − Aiy|−n/qi−|Γi|

thus

|Dα
y k(x, y)| 6 c

∑

Γ1+...+Γm=α

cΓ1,...,Γm

∏

16i6m

|x − Aiy|−n/qi−|Γi|

= c

( ∏

16i6m

|x − Aiy|−n/qi

)( ∑

Γ1+...+Γm=α

cΓ1,...,Γm

∏

16i6m

|x − Aiy|−|Γi|

)

6 c

( ∏

16i6m

|x − Aiy|−n/qi

)( ∑

16l6m

|x − Aly|−1

)|α|

.

�

3. The main results

As we have said in the introduction, in the case that Ai is a multiple of the identity,

in [3] the authors obtain that T is well defined on Lp(Rn) and that it is bounded

from Lp(Rn) into Lq(Rn) for 1 < p < 1/r and 1/q = 1/p− r.We will show that with

slight modifications on the proofs, this result still holds for Ai satisfying the above

stated hypothesis.

Proposition 2. Let T be the operator defined by (2). If 1 < p < 1/r, 0 6 r < 1

and 1/q = 1/p− r, then T is a well defined and bounded operator from Lp(Rn) into

Lq(Rn).

P r o o f. As in the proof of Lemma 2.1 in [3] we obtain that for l ∈ Z, 1/(1−r) <

p 6 min
16i6m

pi/qi(1 − r)

∥∥∥∥
∑

s1,...,sm6−l

∏

16i6m

2sin/qiϕi,si(2
si(x − Aiy))

∥∥∥∥
Lp( dy)

6 c2nl/p,

and also as in the proof of Lemma 2.2 in the same paper,

∥∥∥∥
∑

si>−l

2sin/qiϕi,si(2
si(x − Aiy))

∏

j 6=i

2−ln/qj ϕj,−l(2
−l(x − Ajy))

∥∥∥∥
Lp( dy)

6 c,
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with c independent of x and l. Now we follow the proof of Theorem 3.1 in [3] with

the following changes. We take

d = min
16i6m

(
min
|y|=1

|Ai(y)|
2

, min
|y|=1,j 6=i

|Ai(y) − Aj(y)|
2

)

and

D = max
16i6m, |y|=1

|Ai(y)|,

for x ∈ R
n\{0} we define l = l(x) such that 2l 6 |x| 6 2l+1 and we set, for 1 6 i 6 m,

Ri = Ri(x) = {y ∈ R
n : |y − Ai(x)| 6 2ld},

we also set

Rm+1 = {y ∈ R
n : |y| 6 2lD} ∩

( ⋃

16i6m

Ri

)c

and Rm+2 =

( ⋃

16i6m+1

Ri

)c

.

�

Let 0 < p 6 1. We recall that a p-atom is a measurable function a supported on

a ball B of Rn satisfying

a) ‖a‖∞ 6 |B|−1/p,

b)
∫

yβa(y) dy = 0 for every multiindex β with |β| 6 n(p−1 − 1).

It is well known that for 0 < p 6 1 the distributions of Hp(Rn) can be approxi-

mated by adequate linear combinations of p-atoms. (See Theorem 2, p. 107 in [7].)

Theorem 3.1. Let T be the operator defined by (2). If 0 6 r < 1, 0 < p 6 1

and 1/q = 1/p− r, then T is a bounded operator from Hp(Rn) into Lq(Rn).

P r o o f. If 0 6 r < 1, 0 < p 6 1, 1/q = 1/p − r and f ∈ Hp(Rn) we write

f =
∑
j∈N

λjaj , where aj is a p-atom and
∑
j∈N

|λj |p 6 c‖f‖p
Hp . So the theorem will be

proved if we obtain that there exists c > 0 such that ‖Ta‖Lq 6 c with c independent of

the p-atom a, since this estimate and the inequality
( ∑

j∈N

|λj |q
)1/q

6

( ∑
j∈N

|λj |p
)1/p

give ‖Tf‖q 6 c‖f‖Hp . We denote by B(y0, δ) the closed ball centered at y0 with

radius δ. Let a be supported on a ball B = B(y0, δ), and for each 1 6 i 6 m let

B∗
i = B(Aiy0, 4Dδ) with D defined as in the proof of Proposition 2. We decompose

R
n =

⋃
16i6m

B∗
i ∪R, where R =

( ⋃
16i6m

B∗
i

)c

. Proposition 2 gives that T is bounded

630



from Lp0(Rn) into Lq0(Rn) for 1/q0 = 1/p0 − r, 1 < p0 < 1/r. Since q < q0 we use

the Hölder inequality with q0/q and q0/(q0 − q) to obtain

∫
⋃

16i6m

B∗

i

|Ta(x)|q dx 6
∑

16i6m

∫

B∗

i

|Ta(x)|q dx

6 c
∑

16i6m

|B∗
i |1−q/q0‖Ta‖q

q0
6 cδn−nq/q0‖a‖q

p0

6 cδn−nq/q0

( ∫

B

|a|p0

)q/p0

6 cδn−nq/q0δ−nq/pδnq/p0 = c.

To study the integral on

R = {x ∈ R
n : |x − Aiy0| > 4δ, for all 1 6 i 6 m},

we suppose n/(n + N) < p 6 n/(n + N − 1) for some N ∈ N. Let k(x, y) be defined

by (1). The moment condition b) satisfied by the p-atom a allows us to write

(4)

∫

R

∣∣∣∣
∫

B

k(x, y)a(y) dy

∣∣∣∣
q

dx =

∫

R

∣∣∣∣
∫

B

(k(x, y) − qN (x, y))a(y) dy

∣∣∣∣
q

dx

where qN (x, y) is the degree N − 1 Taylor polynomial of the function y → k(x, y)

expanded around y0. By the standard estimate of the remainder term in the Taylor

expansion, there exists ξ between y and y0 such that

|k(x, y) − qN (x, y)| 6 c|y − y0|N
∑

k1+...+kn=N

∣∣∣ ∂N

∂yk1
1 . . . ∂ykn

n

k(x, ξ)
∣∣∣

6 c|y − y0|N
( m∏

i=1

|x − Aiξ|−n/qi

)( m∑

l=1

|x − Alξ|−1

)N

,

where the last inequality follows from Lemma 1. Since x ∈ R and y ∈ B, it follows

that |x − Aiξ| > c|x − Aiy0| for 1 6 i 6 m. So

(5) |k(x, y) − qN (x, y)| 6 c|y − y0|N
( m∏

i=1

|x − Aiy0|−n/qi

)( m∑

l=1

|x − Aly0|−1

)N

.

For 1 6 k 6 m, let

Rk = {x ∈ R : |x − Aky0| 6 |x − Ajy0| for all j 6= k}.
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We note that R =
m⋃

k=1

Rk and that Rk ⊆ (B∗
k)c. So, from (4) and (5), we have

∫

R

∣∣∣∣
∫

B

k(x, y)a(y) dy

∣∣∣∣
q

dx

6 c

∫

R

( ∫

B

( m∏

i=1

|x − Aiy0|−n/qi

)( m∑

l=1

|x − Aly0|−1

)N

|y − y0|N |a(y)| dy

)q

dx

6 c
∑

16k6m

∫

Rk

m∏

i=1

|x − Aiy0|−qn/qi

( m∑

l=1

|x − Aly0|−1

)qN( ∫

B

|y − y0|N |a(y)| dy

)q

dx

6 c
∑

16k6m

∫

(B∗

k)c

( ∫

B

|y − y0|N |a(y)| dy

)q

|x − Aky0|−qn(1−r)(m|x − Aky0|−1)qN dx

6 c
∑

16k6m

δqN−nq/p+nq

∫ ∞

4Dδ

t−q(n(1−r)+N)+n−1 dt 6 c,

with c independent of the p-atom a, since −q(n(1 − r) + N) + n < 0. �

We recall that a locally integrable function f belongs to BMO(Rn) if the inequality

1

|B|

∫

B

|f(x) − fB| dx 6 A

holds for all balls B ⊂ R
n; here fB = |B|−1

∫
B f dx. The dual result to the previous

theorem, corresponding to the case p = 1, is the following.

Corollary 3. Let T be the operator defined by (2). Then T is bounded from

L1/r(Rn) into BMO(Rn) for 0 6 r < 1.

P r o o f. Is is well known that the dual space of H1(Rn) is the space BMO(Rn).

Let T̃ be the integral operator with kernel k̃(x, y) = k̃1(x−A−1
1 y) . . . k̃m(x−A−1

m y),

with k̃i(x) = ki(Aix). Since for each 1 6 i 6 m, it can be checked that A−1
i is

invertible and A−1
i − A−1

j is invertible if i 6= j, the previous theorem gives us the

boundedness of T̃ from H1(Rn) into L1/(1−r). Now it is easy to check that T is the

adjoint operator of T̃ , so the corollary follows. �
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4. A counterexample

In this section we show that we can not expect that operators of the form (2) be

bounded from Hp(R) into Hq(R) with 0 < p 6 1/(1 + r) and 1/q = 1/p− r.

For n = 1 and 0 < r < 1 we consider the integral operator

Trf(x) =

∫
f(y) dy

|x − y|(1−r)/2|x + y|(1−r)/2
,

we will show that for a given 1-atom a,
∫

Tra(x) dx 6= 0.

We observe that Tra ∈ L1(R) and that
∫

Tra(x) dx = ’(Tra)(0), where the Fourier

transform of a integrable function f is given by “f(ξ) =
∫
R

e−ixξf(x) dx. Thus it is

enough to show that ’(Tra)(0) 6= 0. Let ϕ ∈ S(R) be an even function such that

ϕ(0) = 1 and for ε > 0 let ϕε(x) = ϕ(εx). Now’(Tra)(0) = lim
ε→0

◊(ϕεTra)(0) so we will

compute

◊(ϕεTra)(0) =

∫
ϕ(εx)

( ∫
|x2 − y2|(r−1)/2a(y) dy

)
dx

=

∫
a(y)

( ∫
|x2 − y2|(r−1)/2ϕ(εx) dx

)
dy

=

∫
a(y)|y|r

( ∫
|z2 − 1|(r−1)/2ϕ(ε|y|z) dz

)
dy

=

∫
a(y)|y|r

( ∫
¤(|z2 − 1|(r−1)/2)(σ)÷(ϕε|y|)(σ) dσ

)
dy.

Since − 1
2 < − 1

2r < 0, the Fourier transform of the function |z2 − 1|(r−1)/2 is

Γ
(r + 1

2

)√
π

[(σ

2

)−r/2

Jr/2(σ) +
∣∣∣σ
2

∣∣∣
−r/2(cos(πr/2)J−r/2(|σ|) − Jr/2(|σ|)

sin(πr/2)

)]
,

where

Jp(s) =
2(s/2)p

Γ(p + 1
2 )
√

π

∫ 1

0

(1 − t2)p− 1
2 cos(st) dt

is the Bessel function of order p > − 1
2 (see p. 185–188 in [2]). So

◊(ϕεTra)(0)

= cr

∫
a(y)

∫
|εσ|−r

( ∫ 1

0

(1 − t2)(r−1)/2 cos(ε|y||σ|t) dt

)
“ϕ(σ) dσ dy

+ 2
(
1 − 1

sin(πr/2)

)∫
a(y)|y|r

∫ ( ∫ 1

0

(1 − t2)(r−1)/2 cos(ε|y||σ|t) dt

)
“ϕ(σ) dσ dy,
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thus it is easy to check that

lim
ε→0

◊(ϕεTra)(0) = 2
(
1 − 1

sin(πr/2)

) ∫ 1

0

(1 − t2)(r−1)/2 dt

∫
a(y)|y|r dy.

We take the 1-atom

aδ(y) =

{
2δ for − 1

2 6 y 6 0,

−δ for 0 < y 6 1

with 0 < δ 6 1
3 . A computation shows that

∫
aδ(y)|y|r dy = δ(2−r − 1)/(r + 1), so

∫
Traδ(x) dx = ÷(Traδ)(0) = 2δ

2−r − 1

r + 1

(
1 − 1

sin(πr/2)

)∫ 1

0

(1 − t2)(r−1)/2 dt 6= 0.

We note that

lim
r→0

∫
Traδ(x) dx = 2δ ln(2) =

∫
T0aδ(x) dx,

where the last equality is computed in [5]. Also aδ ∈ Hp(R) for 1
2 < p 6 1/(1 + r),

and Traδ does not belong to Hq(R) for 1/q = 1/p−r since
∫

Traδ 6= 0. For 0 < p 6 1
2

we take N any fixed integer with N > p−1−1, then the set of all bounded, compactly

supported functions for which
∫
R

xαf(x) dx = 0 for all α with 0 6 α < N, is dense

in Hp(R) (see 5.2b), p. 128 in [7]). In particular, there exists b ∈ Hp(R) such that

‖aδ − b‖H1/(1+r)(R) < |÷(Traδ)(0)|/2c. Then

∣∣∣∣
∫

Trb(x) dx

∣∣∣∣ >

∣∣∣∣
∫

Traδ(x) dx

∣∣∣∣ −
∫

|Trb(x) − Traδ(x)| dx

> |÷(Traδ)(0)| − c‖aδ − b‖H1/(1+r)(R) >
|÷(Traδ)(0)|

2
,

where the second inequality follows from Theorem 3.1 with p = 1/(1 + r). But then

Tr is not bounded on Hp(R) into Hq(R) for 1/q = 1/p − r, since
∫

Trb(x) dx 6= 0.
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