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Quasigroups arisen by right nuclear extension

PETER T. NAGY, IZABELLA STUHL

Abstract. The aim of this paper is to prove that a quasigroup @ with right unit
is isomorphic to an f-extension of a right nuclear normal subgroup G by the
factor quasigroup Q/G if and only if there exists a normalized left transversal
¥ C @ to G in @ such that the right translations by elements of ¥ commute
with all right translations by elements of the subgroup G. Moreover, a loop Q
is isomorphic to an f-extension of a right nuclear normal subgroup G by a loop
if and only if G is middle-nuclear, and there exists a normalized left transversal
to G in Q contained in the commutant of G.

Keywords: extension of quasigroups, right nucleus, quasigroup with right unit,
transversal

Classification: 20N05

1. Introduction

A loop extension is called (right) nuclear, if the kernel of the corresponding
homomorphism is contained in the (right) nucleus of the extension. In our previ-
ous paper [2] we made a systematic study of right nuclei of quasigroups obtained
by an extension process in the category of quasigroups with right unit. The
investigated extensions of quasigroups are defined by a slight modification of non-
associative Schreier-type extensions of groups or loops (cf. [1]). These extensions
will be determined by a triple (K, G, f), where K is a quasigroup, G is a loop and
f: K x K — @ is a function, called the factor system of the extension. The main
result of this paper gives a characterization of quasigroups which are isomorphic
to an f-extension of a right nuclear normal subgroup by the factor quasigroup.
They are precisely the quasigroups @ with a right nuclear normal subgroup G
such that there exists a normalized left transversal ¥ C @ to G in @ such that
the right translations by elements of ¥ commute with all right translations by ele-
ments of the subgroup G. As an application we prove that a loop @ is isomorphic
to an f-extension of a right nuclear normal subgroup G by the loop K = Q/G
if and only if G is also a middle-nuclear subgroup, and there exists a normalized
left transversal £ to G in @ contained in the commutant Cg(G) of G.

2. Preliminaries

A quasigroup @ is a set with a binary operation (z,y) — z -y such that the
equations a -y = b and = - a = b are uniquely solvable in ). The solutions are
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denoted by y = a\b and x = b/a. The element e, is called the right unit of the
quasigroup @ if z-e, = z for all z € Q. A loop is a quasigroup with unit element.

The left, right respectively middle nucleus of a quasigroup () are the subgroups
of @) defined by

N(Q)={u; (u-2) y=u-(z-y), z,y € Q},
NT(Q):{U‘) (xy)u:x(yu), mayEQ}a

The intersection N (Q) = Ni(Q)NN,(Q)NNp(Q) is the nucleus of Q. A subgroup
G C @ of the quasigroup @ is called (left, right, respectively middle) nuclear if
it is contained in the (left, right, respectively middle) nucleus of @). If the right
nucleus N,.(Q) of a quasigroup @ is non-empty and e is the unit of the group
N (Q), then ze-n =z -en = xn for any z € Q, n € N,(Q), hence e is the right
unit of Q.

The commutant Cg(G) of a subgroup G in @ is the subset consisting of all
elements ¢ € @ such that ¢-z =z - ¢ for all z € G. The centralizer Zg(G) of the
subgroup in @ consists of elements z € N(Q) such that zz = zz, for all z € G.
The center Z(Q) of @ is the centralizer Zg(Q) of @ in Q.

For any z € () the maps A\, : y — = -y and p, : y — y -  are the left and the
right translations, respectively.

A subloop N of a quasigroup () with right unit e, is a normal subloop if there
exists a homomorphism ¢ : @ — Q' of @ onto the quasigroup Q' with right unit e,
such that ¢~!(e’.) = N. In this case e, is the unit element of N and for any q € Q
one has ¢N = ¢~'(q'), where ¢(q) = ¢'. Hence the map ¢N — ¢(q) : Q/N — Q'
is bijective.

The set of left cosets {¢N € Q/N;q € Q} equipped with the quasigroup
structure isomorphic to Q' is called the factor quasigroup of ) by the normal
subloop N.

A subset ¥ C @ of a quasigroup ) with right unit e, is said to be a left
transversal to a normal subloop N in @ if it contains exactly one element from
each coset of ¢V, ¢ € Q. If X contains the right unit e, then we say that ¥ is a
normalized left transversal (cf. [3, Chapter 2]).

Let L be a loop, K a quasigroup and let f be a function f : K x K — L. The
set K x L ={(a,a),a € K,a € L} with the operation

(1) (a= Oé) ’ (b: B) = (ab7 f(aa b) ' OLB),

is a quasigroup Qs called the f-extension of the loop L by the quasigroup K.
The function f : K x K — L is the factor system of the extension Q)¢ and the
map 7: Qf — K : (a,a) = a is the related homomorphism of the extension Q.

Assume that the right nucleus N,(Q) of an f-extension @y is a non-empty
subgroup of Q. Then its unit E, € N,(Qy) is the right unit of @ and its
homomorphic image e, = 7(E,) € K is the right unit of K. The quasigroup
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Qg is called a right nuclear f-extension if {e,} x G = {(e,.,g9); g € G} is a
right nuclear subgroup of ;. In this case Q¢ is an f-extension of a group by a
quasigroup with right unit.

In the following we focus our attention on right nuclear f-extensions of groups
by quasigroups with right unit element (cf. [2, Theorem 11]).

3. Characterization

Let @ be a quasigroup with right unit and let G be a right nuclear normal
subgroup of @.

Lemma 1. A quasigroup @ is isomorphic to an f-extension of a right nuclear
normal subgroup G by the factor quasigroup Q/G with right unit if and only if
Q) is isomorphic to an f-extension Q¢ of G by a quasigroup K with right unit
e, such that the factor system f : K x K — G satisfies f(z,e,) = f(er,e,) = €,
where € is the unit of G.

PrOOF: According to Theorem 11 in [2] an f-extension Qs of a group G by
a quasigroup K is right nuclear if and only if the factor system satisfies f(z,e,) =
fler,er) € Z(G) for all & € K. In this case for the f*-extension Q- of G
by K defined by the factor system f*(x,y) = f(z,y)f(er, e,)~" the map

(x,&) = (z, fler,e)€) : Qf = Qy+ is an isomorphism. O

Lemma 2. Let G be a group with unit ¢, K a quasigroup with right unit e, and
let Q¢ be an f-extension of G by K with factor system f : K x K — G satisfying
f(z,e;) = f(er,e.) =e€. Thesubset ¥ = {(z,¢€); z € K} C K X is a normalized

left transversal to the normal subgroup G = {(e,,&); £ € G} C K x G of Q.
The factor system satisfies

(2) (er; f(,9)) = o(zy)\ (o(2)o(y)) ,

where o is the map © — (x,¢) : K — K xG. The right translation by any element
of ¥ commutes with all right translations by elements of G, i.e.

(3) Ptn = ptpy = pppr forall te X, ned.

Proor: Clearly, (z,€) = (z,¢)(es, &) for any element (z,£) € K x G. Hence the
subset ¥ = {(z,¢); v € K} C K x G is a normalized left transversal to the
subgroup G. We have

(er, f(2,9)) = (2y, )\ ((z,€)(y,€)) = o(zy)\ (0(2)0 (1)),

which is the equation (2). For any (z,£) € K x G the right translation p(,
yields

Py (2,6) = (zy, f(2,9)6N) = p(y.e)P(er.m) (T,6) = Pler.m)Ply.e) (T, )

giving the commutation relations (3). O
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Theorem 3. If a quasigroup ) with right unit is isomorphic to an f-extension
Qg of a right nuclear normal subgroup G by the factor quasigroup /G then
there exists a normalized left transversal . to G in @) satisfying the commutation
relations (3).

Conversely, if Y. is a normalized left transversal to the right nuclear normal
subgroup G of @) satisfying the commutation relations (3) then ) is isomorphic
to the f-extension Qs on /G x G determined by the factor system

(4) f(pG.qG) = o(pgG)\ (0(pG)a(¢G)), pG,qG € Q/G,
where 0 : Q/G — @ is the map determined by o(¢G) € ¢qGN X for any q € G.

PROOF: The first assertion follows from the previous lemma.

Now, we assume that ¥ is a normalized left transversal to the right nuclear
normal subgroup G of the quasigroup @ satisfying the commutation relations (3)
and consider the f-extension @y on @/G x G given by the factor system

f(pG,qG) = a(pgG)\ (o(pG)o(¢G)), pG,qG € Q/G.

Since ¥ is normalized we have f(pG,G) = ¢ for any p € G. We show that the
bijection ¢ : @ — @y given by ¢ — (¢G,0(¢G)\q) is an isomorphism. The
elements o(pG)\p and o(¢G)\g belong to the right nuclear subgroup G of Q,
hence

(o(pG) - a(pG)\p) - (0(¢G) - 7(qG)\q)
[(0(pG) - a(pG)\p) - 0(¢G)] - 0(¢G)\q.

It follows from the relations (3) and from the right nuclear property of G that

(o(pG) - o(pG)\p) - 0(¢G) = o (pG) - (0(¢G) - o (pG)\p) -

Once more using the right nuclear property we get

pq = o(pG)o(qG) - (o(pG)\p - o(¢G)\q) -

pq

Hence

¢(pq) = (paG,0(pgG)\ [0(pG)o(qG) - (o (pG)\p - 7(qG)\q)]) -
We have

d(p)o(a) = (paG, f(pG,qG) - [o(pG)\p - 0(¢G)\d]) .

where f(pG,¢QG) is defined by (4). Hence, using the right nuclear property of G
we get ¢(pq) = ¢(p)d(q) for any p,q € @), which proves the assertion. O

For loops the previous theorem yields the following:

Theorem 4. A loop @ is isomorphic to an f-extension Q¢ of a right nuclear
normal subgroup G by the factor loop Q/G if and only if
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(a) G is a middle-nuclear subgroup,
(b) there exists a normalized left transversal ¥ to G in () contained in the
commutant Cq(G) of G.
In this case @) is isomorphic to the f-extension @y on Q/G x G determined by
the factor system (4).

PRrROOF: Let ¥ be a normalized left transversal to G in the loop @. According to
Theorem 3 the assertion is true if and only if the commutation relations (3) are
satisfied:

z-tn=xn-t=xt-n forall z€Q,teX, ned.
Putting x = e, where e is the unit of (), we obtain that ¥ is contained in the
commutant Cg(G) of the subgroup G in Q. Since G is a right nuclear subgroup

we have z - tn =zt -y for any x € ), t € ¥, n € G. Now, multiplying the identity
x-tn=uan-tby & € G we get

z(n-t§) =x(nt- &) =z(tn- &) = (v - tn) = (zn - 1)§ = 2 - £&.

Denoting y = t£ we obtain the identity
z(n-y) =n-y.

Hence G is a middle-nuclear subgroup and the properties (a) and (b) are proved.
Conversely, the previous arguments yield that the conditions (a) and (b) are
equivalent to the commutation relations (3). O

It is well known that a group @ is isomorphic to a central extension of an
abelian normal subgroup G, (i.e. G is contained in the center Z(Q),) if and only
if @ is isomorphic to an f-extension of G. The following assertion gives a direct
generalization of this assertion to groups () with non-necessarily abelian normal
subgroup G:

Corollary 5. A group () is isomorphic to an f-extension Q¢ of a normal subgroup
G by the group K = Q/G if and only if there exists a normalized left transversal
¥ to G in @ contained in the centralizer Zg(G) of the group G in Q.
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