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Quasigroups arisen by right nu
lear extensionP�eter T. Nagy, Izabella StuhlAbstra
t. The aim of this paper is to prove that a quasigroup Q with right unitis isomorphi
 to an f-extension of a right nu
lear normal subgroup G by thefa
tor quasigroup Q=G if and only if there exists a normalized left transversal� � Q to G in Q su
h that the right translations by elements of � 
ommutewith all right translations by elements of the subgroup G. Moreover, a loop Qis isomorphi
 to an f-extension of a right nu
lear normal subgroup G by a loopif and only if G is middle-nu
lear, and there exists a normalized left transversalto G in Q 
ontained in the 
ommutant of G.Keywords: extension of quasigroups, right nu
leus, quasigroup with right unit,transversalClassi�
ation: 20N051. Introdu
tionA loop extension is 
alled (right) nu
lear, if the kernel of the 
orrespondinghomomorphism is 
ontained in the (right) nu
leus of the extension. In our previ-ous paper [2℄ we made a systemati
 study of right nu
lei of quasigroups obtainedby an extension pro
ess in the 
ategory of quasigroups with right unit. Theinvestigated extensions of quasigroups are de�ned by a slight modi�
ation of non-asso
iative S
hreier-type extensions of groups or loops (
f. [1℄). These extensionswill be determined by a triple (K;G; f), where K is a quasigroup, G is a loop andf : K�K ! G is a fun
tion, 
alled the fa
tor system of the extension. The mainresult of this paper gives a 
hara
terization of quasigroups whi
h are isomorphi
to an f -extension of a right nu
lear normal subgroup by the fa
tor quasigroup.They are pre
isely the quasigroups Q with a right nu
lear normal subgroup Gsu
h that there exists a normalized left transversal � � Q to G in Q su
h thatthe right translations by elements of � 
ommute with all right translations by ele-ments of the subgroup G. As an appli
ation we prove that a loop Q is isomorphi
to an f -extension of a right nu
lear normal subgroup G by the loop K = Q=Gif and only if G is also a middle-nu
lear subgroup, and there exists a normalizedleft transversal � to G in Q 
ontained in the 
ommutant CQ(G) of G.2. PreliminariesA quasigroup Q is a set with a binary operation (x; y) 7! x � y su
h that theequations a � y = b and x � a = b are uniquely solvable in Q. The solutions are



392 P.T. Nagy, I. Stuhldenoted by y = anb and x = b=a. The element er is 
alled the right unit of thequasigroup Q if x � er = x for all x 2 Q. A loop is a quasigroup with unit element.The left, right respe
tively middle nu
leus of a quasigroup Q are the subgroupsof Q de�ned by Nl(Q) = fu; (u � x) � y = u � (x � y); x; y 2 Qg;Nr(Q) = fu; (x � y) � u = x � (y � u); x; y 2 Qg;Nm(Q) = fu; (x � u) � y = x � (u � y); x; y 2 Qg:The interse
tionN(Q) = Nl(Q)\Nr(Q)\Nm(Q) is the nu
leus of Q. A subgroupG � Q of the quasigroup Q is 
alled (left, right, respe
tively middle) nu
lear ifit is 
ontained in the (left, right, respe
tively middle) nu
leus of Q. If the rightnu
leus Nr(Q) of a quasigroup Q is non-empty and e is the unit of the groupNr(Q), then xe � n = x � en = xn for any x 2 Q, n 2 Nr(Q), hen
e e is the rightunit of Q.The 
ommutant CQ(G) of a subgroup G in Q is the subset 
onsisting of allelements 
 2 Q su
h that 
 � x = x � 
 for all x 2 G. The 
entralizer ZQ(G) of thesubgroup in Q 
onsists of elements z 2 N(Q) su
h that zx = xz, for all x 2 G.The 
enter Z(Q) of Q is the 
entralizer ZQ(Q) of Q in Q.For any x 2 Q the maps �x : y 7! x � y and �x : y 7! y � x are the left and theright translations, respe
tively.A subloop N of a quasigroup Q with right unit er is a normal subloop if thereexists a homomorphism � : Q! Q0 of Q onto the quasigroup Q0 with right unit e0rsu
h that ��1(e0r) = N . In this 
ase er is the unit element of N and for any q 2 Qone has qN = ��1(q0), where �(q) = q0. Hen
e the map qN 7! �(q) : Q=N ! Q0is bije
tive.The set of left 
osets fqN 2 Q=N ; q 2 Qg equipped with the quasigroupstru
ture isomorphi
 to Q0 is 
alled the fa
tor quasigroup of Q by the normalsubloop N .A subset � � Q of a quasigroup Q with right unit er is said to be a lefttransversal to a normal subloop N in Q if it 
ontains exa
tly one element fromea
h 
oset of qN , q 2 Q. If � 
ontains the right unit er then we say that � is anormalized left transversal (
f. [3, Chapter 2℄).Let L be a loop, K a quasigroup and let f be a fun
tion f : K �K ! L. Theset K � L = f(a; �); a 2 K;� 2 Lg with the operation(1) (a; �) � (b; �) := (ab; f(a; b) � ��);is a quasigroup Qf 
alled the f-extension of the loop L by the quasigroup K.The fun
tion f : K �K ! L is the fa
tor system of the extension Qf and themap � : Qf �! K : (a; �) 7! a is the related homomorphism of the extension Qf .Assume that the right nu
leus Nr(Qf ) of an f -extension Qf is a non-emptysubgroup of Qf . Then its unit Er 2 Nr(Qf ) is the right unit of Qf and itshomomorphi
 image er = �(Er) 2 K is the right unit of K. The quasigroup



Quasigroups arisen by right nu
lear extension 393Qf is 
alled a right nu
lear f-extension if ferg � G = f(er; g); g 2 Gg is aright nu
lear subgroup of Qf . In this 
ase Qf is an f -extension of a group by aquasigroup with right unit.In the following we fo
us our attention on right nu
lear f -extensions of groupsby quasigroups with right unit element (
f. [2, Theorem 11℄).3. Chara
terizationLet Q be a quasigroup with right unit and let G be a right nu
lear normalsubgroup of Q.Lemma 1. A quasigroup Q is isomorphi
 to an f -extension of a right nu
learnormal subgroup G by the fa
tor quasigroup Q=G with right unit if and only ifQ is isomorphi
 to an f -extension Qf of G by a quasigroup K with right uniter su
h that the fa
tor system f : K �K ! G satis�es f(x; er) = f(er; er) = �,where � is the unit of G.Proof: A

ording to Theorem 11 in [2℄ an f -extension Qf of a group G bya quasigroup K is right nu
lear if and only if the fa
tor system satis�es f(x; er) =f(er; er) 2 Z(G) for all x 2 K. In this 
ase for the f�-extension Qf� of Gby K de�ned by the fa
tor system f�(x; y) = f(x; y)f(er; er)�1 the map(x; �) 7! (x; f(er; er)�) : Qf ! Qf� is an isomorphism. �Lemma 2. Let G be a group with unit �, K a quasigroup with right unit er andlet Qf be an f -extension of G by K with fa
tor system f : K�K ! G satisfyingf(x; er) = f(er; er) = �. The subset � = f(x; �); x 2 Kg � K�G is a normalizedleft transversal to the normal subgroup �G = f(er; �); � 2 Gg � K � G of Qf .The fa
tor system satis�es(2) (er; f(x; y)) = �(xy)n (�(x)�(y)) ;where � is the map x 7! (x; �) : K ! K�G. The right translation by any elementof � 
ommutes with all right translations by elements of �G, i.e.(3) �t� = �t�� = ���t for all t 2 �; � 2 G:Proof: Clearly, (x; �) = (x; �)(er; �) for any element (x; �) 2 K �G. Hen
e thesubset � = f(x; �); x 2 Kg � K � G is a normalized left transversal to thesubgroup �G. We have(er; f(x; y)) = (xy; �)n ((x; �)(y; �)) = �(xy)n (�(x)�(y)) ;whi
h is the equation (2). For any (x; �) 2 K � G the right translation �(y;�)yields �(y;�)(x; �) = (xy; f(x; y)��) = �(y;�)�(er;�)(x; �) = �(er ;�)�(y;�)(x; �)giving the 
ommutation relations (3). �



394 P.T. Nagy, I. StuhlTheorem 3. If a quasigroup Q with right unit is isomorphi
 to an f -extensionQf of a right nu
lear normal subgroup G by the fa
tor quasigroup Q=G thenthere exists a normalized left transversal � to G in Q satisfying the 
ommutationrelations (3).Conversely, if � is a normalized left transversal to the right nu
lear normalsubgroup G of Q satisfying the 
ommutation relations (3) then Q is isomorphi
to the f -extension Qf on Q=G�G determined by the fa
tor system(4) f(pG; qG) = �(pqG)n (�(pG)�(qG)) ; pG; qG 2 Q=G;where � : Q=G! Q is the map determined by �(qG) 2 qG \ � for any q 2 G.Proof: The �rst assertion follows from the previous lemma.Now, we assume that � is a normalized left transversal to the right nu
learnormal subgroup G of the quasigroup Q satisfying the 
ommutation relations (3)and 
onsider the f -extension Qf on Q=G�G given by the fa
tor systemf(pG; qG) = �(pqG)n (�(pG)�(qG)) ; pG; qG 2 Q=G:Sin
e � is normalized we have f(pG;G) = � for any p 2 G. We show that thebije
tion � : Q ! Qf given by q 7! (qG; �(qG)nq) is an isomorphism. Theelements �(pG)np and �(qG)nq belong to the right nu
lear subgroup G of Q,hen
e pq = (�(pG) � �(pG)np) � (�(qG) � �(qG)nq)= [(�(pG) � �(pG)np) � �(qG)℄ � �(qG)nq:It follows from the relations (3) and from the right nu
lear property of G that(�(pG) � �(pG)np) � �(qG) = �(pG) � (�(qG) � �(pG)np) :On
e more using the right nu
lear property we getpq = �(pG)�(qG) � (�(pG)np � �(qG)nq) :Hen
e �(pq) = (pqG; �(pqG)n [�(pG)�(qG) � (�(pG)np � �(qG)nq)℄) :We have �(p)�(q) = (pqG; f(pG; qG) � [�(pG)np � �(qG)nq℄) ;where f(pG; qG) is de�ned by (4). Hen
e, using the right nu
lear property of Gwe get �(pq) = �(p)�(q) for any p; q 2 Q, whi
h proves the assertion. �For loops the previous theorem yields the following:Theorem 4. A loop Q is isomorphi
 to an f -extension Qf of a right nu
learnormal subgroup G by the fa
tor loop Q=G if and only if
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lear extension 395(a) G is a middle-nu
lear subgroup,(b) there exists a normalized left transversal � to G in Q 
ontained in the
ommutant CQ(G) of G.In this 
ase Q is isomorphi
 to the f -extension Qf on Q=G � G determined bythe fa
tor system (4).Proof: Let � be a normalized left transversal to G in the loop Q. A

ording toTheorem 3 the assertion is true if and only if the 
ommutation relations (3) aresatis�ed: x � t� = x� � t = xt � � for all x 2 Q; t 2 �; � 2 G:Putting x = e, where e is the unit of Q, we obtain that � is 
ontained in the
ommutant CQ(G) of the subgroup G in Q. Sin
e G is a right nu
lear subgroupwe have x � t� = xt � � for any x 2 Q, t 2 �, � 2 G. Now, multiplying the identityx � t� = x� � t by � 2 G we getx(� � t�) = x(�t � �) = x(t� � �) = (x � t�)� = (x� � t)� = x� � t�:Denoting y = t� we obtain the identityx(� � y) = x� � y:Hen
e G is a middle-nu
lear subgroup and the properties (a) and (b) are proved.Conversely, the previous arguments yield that the 
onditions (a) and (b) areequivalent to the 
ommutation relations (3). �It is well known that a group Q is isomorphi
 to a 
entral extension of anabelian normal subgroup G, (i.e. G is 
ontained in the 
enter Z(Q),) if and onlyif Q is isomorphi
 to an f -extension of G. The following assertion gives a dire
tgeneralization of this assertion to groups Q with non-ne
essarily abelian normalsubgroup G:Corollary 5. A groupQ is isomorphi
 to an f -extensionQf of a normal subgroupG by the group K = Q=G if and only if there exists a normalized left transversal� to G in Q 
ontained in the 
entralizer ZQ(G) of the group G in Q.Referen
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