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THEORETICAL ANALYSIS OF DISCRETE CONTACT PROBLEMS

WITH COULOMB FRICTION

Tomáš Ligurský, Praha
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Abstract. A discrete model of the two-dimensional Signorini problem with Coulomb
friction and a coefficient of friction F depending on the spatial variable is analysed. It
is shown that a solution exists for any F and is globally unique if F is sufficiently small.
The Lipschitz continuity of this unique solution as a function of F as well as a function
of the load vector f is obtained. Furthermore, local uniqueness of solutions for arbitrary
F > 0 is studied. The question of existence of locally Lipschitz-continuous branches of
solutions with respect to the coefficient F is converted to the question of existence of locally
Lipschitz-continuous branches of solutions with respect to the load vector f . A condition
guaranteeing the existence of locally Lipschitz-continuous branches of solutions in the latter
case and results for determining their directional derivatives are given. Finally, the general
approach is illustrated on an elementary example, whose solutions are calculated exactly.
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1. Introduction

Contact problems describe the behaviour of loaded deformable bodies in mutual

contact. On the contacting parts one often has to take into account non-penetration

as well as frictional conditions. The Coulomb law of friction leads to a complicated

mathematical problem, in which a lot of issues are still open. In the static case

of linear elasticity, existence results have been obtained for a small coefficient of

friction F (see e.g. [13], [4]). More recently, it has been proved in [14] that if a

solution possesses a certain property, it is unique provided that F is small enough.

The present work was supported under the grant No. 18008 of the Charles University
Grant Agency and under grant No. 201/07/0294 of the Grant Agency of the Czech Repub-
lic. The support of the Nečas Center for Mathematical Modeling is also acknowledged.
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On the other hand, some examples of non-uniqueness are known for large F ([9],

[10]).

In the finite element setting it is known that the discretized problem admits al-

ways a solution. There are even results guaranteeing uniqueness of the solution (see

e.g. [7]). However, most of them are of global nature and need the assumption on

the magnitude of the coefficient of friction F again. To the author’s knowledge the

only result concerning local uniqueness of solutions, which admits even large F , has

been presented in [11]. Therein, the discrete problem is formulated as a system

of non-smooth equations and a suitable version of the implicit function theorem is

employed to establish the result.

Having been inspired by this approach, the present paper deals with the local

behaviour of discrete solutions. It analyses dependence of solutions not only on the

coefficient F as in [11] but also on the loading. In fact, the role of loading seems to

be important, as well (see e.g. the discrete model with non-unique solutions in [12]).

Besides, qualitative properties of solutions are established.

The paper is organized as follows: Section 2 is devoted to discrete contact prob-

lems with given friction, which form basis of our study of problems with Coulomb

friction. In Section 3 we prove that the discrete contact problem with Coulomb fric-

tion admits always a solution and that the solution is globally unique provided that

the coefficient F is small enough. Moreover, we show that the unique solution is a

Lipschitz-continuous function of F . To get local uniqueness results we first reformu-

late the problem with Coulomb friction as a system of generalized equations. Using a

generalization of the implicit function theorem to this case we show that there exist

locally Lipschitz-continuous branches of solutions as functions of the coefficient F if

there are locally Lipschitz-continuous branches of the solutions as functions of the

load vector f . Consequently, we focus on the dependence of the solutions on f and

show that it is Lipschitz-continuous provided that the magnitude of F does not ex-

ceed the bound guaranteeing the global uniqueness of the solutions derived before.

Next, we present the formulation of the problem consisting of piecewise-differentiable

equations. Making use of the implicit function theorem corresponding to this case

we arrive at a condition on the determinant sign of particular Jacobians that ensures

the existence of locally Lipschitz-continuous branches of the solutions with respect

to f . Results for determining directional derivatives to these branches are also ob-

tained. Finally, Section 4 deals with an elementary example with one contact node.

After calculating all its solutions, we discuss the question of their uniqueness or local

uniqueness with regard to the previous general results.

We consider a linearly elastic body whose reference configuration is given by a

bounded domain Ω ⊂ R
2 with the Lipschitz boundary ∂Ω. Let Γu, Γp, and Γc be

three disjoint, (relatively) open subsets of ∂Ω such that ∂Ω = Γu ∪Γp ∪Γc. The body
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is fixed on Γu, surface tractions of density p act on Γp while a rigid foundation S

supports the body unilaterally along Γc. In addition, the body is subject to volume

forces of density f . We seek the equilibrium state of the body. In the sequel, we

shall suppose that there is no gap between S and Γc.

The so-called Signorini problem consists in finding a displacement vector u : Ω →

R
2 satisfying the following equations and boundary conditions:

−div σ(u) = f in Ω,

σ(u) = Cε(u) in Ω,

u = 0 on Γu,

σ(u)ν = p on Γp,

uν 6 0, σν(u) 6 0, uνσν(u) = 0 on Γc.

Here σ(u) is the stress tensor, ε(u) = 1/2(∇u + ∇⊤u) is the linearized strain tensor

and C is the 4th order elasticity tensor. By ν we denote the unit outward normal

vector to ∂Ω and uν := u · ν, σν(u) := (σ(u)ν) · ν stand for the normal components

of the displacement vector u and of the stress vector σ(u)ν on Γc, respectively.

To take into account effects of friction, let t be a unit tangent vector orthogonal

to ν. Then ut := u · t and σt(u) := (σ(u)ν) · t denote the tangential displacement and

the tangential contact stress on Γc, respectively. The Coulomb law of friction reads

as follows:

|σt(u)(x)| 6 −F(x)σν (u)(x),

ut(x) 6= 0 =⇒ σt(u)(x) = F(x)σν (u)(x)
ut(x)

|ut(x)|







x ∈ Γc.

Throughout the paper we shall use the following notation: (·, ·)n stands for the

scalar product in R
n, ‖·‖n for the corresponding norm, whereas ‖·‖n,∞ denotes the

max-norm in R
n:

‖v‖n,∞ = max
i=1,...,n

|vi|, v = (v1, . . . , vn) ∈ R
n.

The symbol ‖·‖n is also used for the matrix norm in R
n×n generated by the vector

norm ‖·‖n.

2. Discrete contact problems with given friction

This section deals with the two-dimensional Signorini problem with given friction

in which the threshold for the magnitude of σt is set to be the product of F and a
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given slip bound g. It is assumed that F depends on the spatial variable, i.e. F =

F(x). A finite element approximation of this model leads to the variational inequality

(for more details see e.g. [8]):

(P (f , F , g))























Find u ∈ K such that

(Au, v − u)n +

p
∑

i=1

Figi(|(Btv)i| − |(Btu)i|) > (f , v − u)n

∀v ∈ K,

where u represents the displacement vector and K is the convex set of all kinemat-

ically admissible displacements:

K = {v ∈ R
n : Bνv 6 0}

with n being the number of degrees of freedom. By A ∈ R
n×n we denote the stiffness

matrix satisfying:

(2.1)

{

(i) A = A⊤;

(ii) ∃ γ > 0: (Av, v)n > γ‖v‖2
n ∀v ∈ R

n.

The matrices Bν , Bt ∈ R
p×n, where p is the number of the contact nodes, represent

the linear mappings associating with a displacement vector its normal and tangential

component on the contact zone, respectively. Hence we may suppose that

(2.2)











(j) the Euclidean norm of each row vector of Bν , Bt is equal to one;

(jj) each column of Bν , Bt contains at most one nonzero element;

(jjj) B⊤
ν µν + B⊤

t µt = 0 ⇐⇒ (µν , µt) = (0,0) ∈ R
2p.

Note that (jjj) holds if and only if there exists β > 0 such that

(2.3) sup
0 6=v∈Rn

(µν , Bνv)p + (µt, Btv)p

‖v‖n

> β‖(µν , µt)‖2p ∀ (µν , µt) ∈ R
2p.

Further, F = (F1, . . . ,Fp), g = (g1, . . . , gp) ∈ R
p
+ characterize the distribution of

the coefficient of friction F and of the given slip bound g in the contact nodes,

respectively, and f ∈ R
n denotes the load vector.

Using the Lagrange-multiplier sets Λν and Λt(F , g) defined by

Λν = R
p
−,

Λt(F , g) = {µt = (µt,1, . . . , µt,p) ∈ R
p : |µt,i| 6 Figi ∀ i = 1, . . . , p},
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one can reformulate problem (P (f , F , g)) as follows:

(M(f , F , g))























Find (u, λν, λt) ∈ R
n × Λν × Λt(F , g) such that

(Au, v)n = (f , v)n + (λν , Bνv)p + (λt, Btv)p ∀v ∈ R
n,

(µν − λν , Bνu)p + (µt − λt, Btu)p > 0

∀ (µν , µt) ∈ Λν × Λt(F , g).

Properties of both problems are summarized in the following proposition.

Proposition 2.1. Let (2.1) and (2.2) be satisfied. Then for any F , g ∈ R
p
+ and

any f ∈ R
n there exists a unique solution to (P (f , F , g)) as well as to (M(f , F , g)).

Moreover, if (u, λν, λt) is the solution of (M(f , F , g)) then u solves (P (f , F , g))

and we have

‖u‖n 6
‖f‖n

γ
,(2.4)

‖(λν , λt)‖2p 6
‖f‖n

β

(

‖A‖n

γ
+ 1

)

,(2.5)

where β is the constant from (2.3).

P r o o f. Since (P (f , F , g)) is a variational inequality of the second kind, its

solvability and uniqueness are established in [6]. To prove that (M(f , F , g)) has

a unique solution, one can introduce an equivalent saddle-point formulation and

apply results from [5] showing also the mutual relation between the solutions to

(P (f , F , g)) and (M(f , F , g)). Inserting v := 0 ∈ K into (P (f , F , g)), we obtain

−(Au, u)n −

p
∑

i=1

Figi|(Btu)i| > −(f , u)n.

Using (2.1), we get:

γ‖u‖2
n 6 (Au, u)n +

p
∑

i=1

Figi|(Btu)i| 6 (f , u)n 6 ‖f‖n‖u‖n,

which yields (2.4). To prove (2.5) we employ (M(f , F , g))2:

(λν , Bνv)p + (λt, Btv)p = (Au, v)n − (f , v)n 6 ‖A‖n‖u‖n‖v‖n + ‖f‖n‖v‖n

∀v ∈ R
n.
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From this, (2.3), and (2.4) we have:

β‖(λν , λt)‖2p 6 sup
0 6=v∈Rn

(λν , Bνv)p + (λt, Btv)p

‖v‖n

6 ‖A‖n‖u‖n + ‖f‖n 6 ‖A‖n

‖f‖n

γ
+ ‖f‖n.

�

It is worth mentioning that the bounds (2.4) and (2.5) are independent of F , g ∈

R
p
+.

3. Discrete contact problems with Coulomb friction

Having studied the problems with given friction, we are able to present the fixed-

point formulation of the problems with Coulomb friction. To this end let f ∈ R
n be

fixed and let us introduce the mapping G : R
p
+ × R

p
+ → R

p
+ by

G(F , g) = −λν, F , g ∈ R
p
+,

where λν := λν(F , g) is the second component of the solution to (M(f , F , g)).

Definition 3.1. Let f ∈ R
n and F ∈ R

p
+ be given. Any triplet (u, λν, λt) is

called a solution of the discrete contact problem with Coulomb friction if it solves

(M(f , F ,−λν)), i.e. −λν is a fixed point of the mapping G(F , ·):

G(F ,−λν) = −λν .

Lemma 3.1. Assume that (2.1), (2.2) hold and f ∈ R
n, F , F , g, g ∈ R

p
+ are arbi-

trary. Let (u, λν , λt), (ū, λ̄ν , λ̄t) be the solutions to (M(f , F , g)) and (M(f , F , g)),

respectively. Then

‖u − ū‖n 6
‖F‖p,∞

γ
‖g − g‖p +

‖g‖p

γ
‖F − F‖p,∞,(3.1)

‖(λν − λ̄ν , λt − λ̄t)‖2p 6
‖A‖n‖F‖p,∞

βγ
‖g − g‖p +

‖A‖n‖g‖p

βγ
‖F − F‖p,∞.(3.2)

In particular, if F = F then

‖λν − λ̄ν‖p 6
‖A‖n‖F‖p,∞

βγ
‖g − g‖p,(3.3)

i.e. G(F , ·) : R
p
+ → R

p
+ is Lipschitz-continuous in R

p
+.
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P r o o f. Inserting v := ū ∈ K in (P (f , F , g)) and v := u ∈ K in (P (f , F , g)),

we have

(Au, ū − u)n +

p
∑

i=1

Figi(|(Btū)i| − |(Btu)i|) > (f , ū − u)n,

(Aū, u − ū)n +

p
∑

i=1

F igi(|(Btu)i| − |(Btū)i|) > (f , u − ū)n.

Summing the two inequalities and using (2.1) and (2.2), we arrive at

γ‖u − ū‖2
n 6

(

A(ū − u), ū − u
)

n
6

p
∑

i=1

(Figi −F igi)(|(Btū)i| − |(Btu)i|)

6

p
∑

i=1

|Fi(gi − gi)||(Btū − Btu)i| +

p
∑

i=1

|(Fi −F i)gi||(Btū − Btu)i|

6 ‖F‖p,∞‖g − g‖p‖ū − u‖n + ‖F − F‖p,∞‖g‖p‖ū − u‖n,

which leads to (3.1). Furthermore, the difference (M(f , F , g))2 − (M(f , F , g))2

results in

(λν−λ̄ν, Bνv)p+(λt−λ̄t, Btv)p =
(

A(u−ū), v
)

n
6 ‖A‖n‖u−ū‖n‖v‖n ∀v ∈ R

n.

From this and (2.3) we obtain

β‖(λν − λ̄ν , λt − λ̄t)‖2p 6 sup
0 6=v∈Rn

(λν − λ̄ν , Bνv)p + (λt − λ̄t, Btv)p

‖v‖n

6 ‖A‖n‖u − ū‖n,

which together with (3.1) completes the proof. �

Let

BR(0) = {µ ∈ R
p : ‖µ‖p 6 R}, R > 0.

The next theorem guarantees the existence and under an additional assumption also

the uniqueness of the fixed points we seek.

Theorem 3.1. Suppose that (2.1) and (2.2) are satisfied. For any f ∈ R
n and

any F ∈ R
p
+ there exists at least one fixed point of the mapping G(F , ·). All the

fixed points are contained in R
p
+ ∩ BR(0) with R = ‖f‖n/β · (‖A‖n/γ + 1). In

addition, the fixed point is unique provided that ‖F‖p,∞ < βγ/‖A‖n.
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P r o o f. It follows from the Brouwer and the Banach fixed-point theorems by

making use of Proposition 2.1 and Lemma 3.1. �

Corollary 3.1. Let (2.1) and (2.2) be satisfied. For any F ∈ R
p
+, ‖F‖p,∞ <

βγ/‖A‖n, and any f ∈ R
n the discrete contact problem with Coulomb friction has

a unique solution. In addition, the method of successive approximations converges

for any choice of the initial approximation.

Confining ourselves to F such that ‖F‖p,∞ 6 Fmax for an arbitrary Fmax ∈

[0, βγ/‖A‖n), we shall show that the solution of the contact problem with Coulomb

friction is a Lipschitz-continuous function ofF . For this purpose we define a mapping

Sf : R
p
+ → R

n × R
p × R

p for a fixed f ∈ R
n by

Sf (F) = (u, λν , λt), F ∈ R
p
+, ‖F‖p,∞ <

βγ

‖A‖n

,

where (u, λν , λt) is the unique solution to the contact problem with Coulomb friction

with the coefficient F and the load vector f .

Theorem 3.2. Let (2.1) and (2.2) be satisfied and let f ∈ R
n be arbitrary. Then

for any Fmax ∈ [0, βγ/‖A‖n) there exists δ > 0 such that:

‖Sf (F) − Sf (F)‖n+2p 6 δ‖F − F‖p,∞ ∀F , F ∈ R
p
+, ‖F‖p,∞, ‖F‖p,∞ 6 Fmax.

P r o o f. For given Fmax ∈ [0, βγ/‖A‖n) and F , F ∈ R
p
+ with ‖F‖p,∞, ‖F‖p,∞ 6

Fmax let (u, λν , λt) := Sf (F), (ū, λ̄ν , λ̄t) := Sf (F). Further, let {gk}, {gk} be

sequences defined by

g0 = g0 ∈ R
p
+, ‖g0‖p 6

‖f‖n

β

(‖A‖n

γ
+ 1

)

,(3.4)

gk+1 = G(F , gk), gk+1 = G(F , gk), k = 1, 2, . . .

From Corollary 3.1 we know that

lim
k→∞

gk = −λν , lim
k→∞

gk = −λ̄ν .

First, (3.2) and (3.4) give

‖g1 − g1‖p = ‖G(F , g0) − G(F , g0)‖p 6
‖A‖n‖g0‖p

βγ
‖F − F‖p,∞(3.5)

6
‖A‖n‖f‖n

β2γ

(

‖A‖n

γ
+ 1

)

‖F − F‖p,∞ = c‖F − F‖p,∞,
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where c := ‖A‖n‖f‖n/(β2γ) · (‖A‖n/γ + 1). From (2.5), (3.2), and (3.5) we obtain

‖g2 − g2‖p = ‖G(F , g1) − G(F , g1)‖p

6
‖A‖n‖F‖p,∞

βγ
‖g1 − g1‖p +

‖A‖n‖g1‖p

βγ
‖F − F‖p,∞

6 q‖g1 − g1‖p + c‖F − F‖p,∞ 6 (cq + c)‖F − F‖p,∞

with q := Fmax‖A‖n/(βγ) < 1. Thus by induction,

‖gk+1 − gk+1‖p 6 c‖F − F‖p,∞ + q‖gk − gk‖p

6 c‖F − F‖p,∞ + q(c + cq + . . . + cqk−1)‖F − F‖p,∞

6
c

1 − q
‖F − F‖p,∞.

Letting k → ∞, we obtain

(3.6) ‖λν − λ̄ν‖p 6
c

1 − q
‖F − F‖p,∞.

Inserting g := −λν and g := −λ̄ν into (3.1), using (3.6) and Theorem 3.1 we see

that

‖u − ū‖n 6
‖F‖p,∞

γ
‖λν − λ̄ν‖p +

‖λ̄ν‖p

γ
‖F − F‖p,∞

6

(

cFmax

γ(1 − q)
+

‖f‖n

βγ

(

‖A‖n

γ
+ 1

))

‖F − F‖p,∞.

Finally, (3.2) with g := −λν and g := −λ̄ν together with Theorem 3.1 and (3.6)

ensures that

‖λt − λ̄t‖p 6 q‖λν − λ̄ν‖p + c‖F − F‖p,∞ 6
c

1 − q
‖F − F‖p,∞.

�

In the sequel, we shall restrict ourselves to the coefficients of friction F with

positive components solely. On the other hand, no upper bounds will be imposed,

i.e. F will belong to the set A defined by

A = {F ∈ R
p : Fi > 0 ∀ i = 1, . . . , p}.

As we know from Theorem 3.1, there exists at least one solution to the contact

problem with Coulomb friction for any F ∈ A. Next, we shall study the behaviour
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of such solutions as functions of F ∈ A and of the load vector f ∈ R
n, respectively.

For this purpose we introduce an alternative definition of the problem in which the

Lagrange-multiplier set Λt(·) does not depend on F .

Let F ∈ A, g ∈ R
p
+ be given and set

Λt(g) = {µt ∈ R
p : |µt,i| 6 gi ∀ i = 1, . . . , p}.

As an alternative to (M(f , F , g)), a mixed formulation of the problem with given

friction reads as follows:

(M∗(f , F , g))























Find (u, λν , λt) ∈ R
n × Λν × Λt(g) such that

(Au, v)n = (f , v)n + (λν , Bνv)p + (Fλt, Btv)p ∀v ∈ R
n,

(µν − λν , Bνu)p + (F (µt − λt), Btu)p > 0

∀ (µν , µt) ∈ Λν × Λt(g),

where F := F (F) = diag{F1, . . . ,Fp} ∈ R
p×p.

Clearly, the triplet (u, λν , λt) solves problem (M∗(f , F , g)) if and only if

(u, λν , Fλt) is a solution of (M(f , F , g)). Hence, the existence and the uniqueness

of the solution to (M∗(f , F , g)) result from Proposition 2.1.

Now we are ready to rewrite Definition 3.1.

Definition 3.2. Let F ∈ A be given. Any triplet (u, λν , λt) is said to

be a solution of the discrete contact problem with Coulomb friction if it solves

(M∗(f , F ,−λν)).

Since there is a one-to-one correspondence between the solutions established by

this and the former definition, the existence and uniqueness results remain valid.

Next, we derive an equivalent formulation of the contact problem using Defini-

tion 3.2. Let f ∈ R
n be fixed and let (u, λν , λt) be the corresponding solution of

(M∗(f , F ,−λν)). The inequality (M∗(f , F ,−λν))3 can be written as

−Bνu ∈ NΛν
(λν), −FBtu ∈ NΛt(−λν)(λt),

where NΛν
(µ), NΛt(−λν)(µ) denote the normal cones of Λν and Λt(−λν), respec-

tively, at a point µ ∈ R
p. Consequently, the solution of the discrete contact problem

with Coulomb friction can be characterized as a solution to the system of generalized

equations

(3.7) Find y ∈ R
n+2p such that 0 ∈ Cf (F , y) + Q(y),
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where Cf : A×R
n+2p → R

n+2p and Q : R
n+2p ⇒ R

n+2p are the single-valued, con-

tinuously differentiable function and the set-valued mapping, respectively, defined by

Cf (F , y) =





A −B⊤
ν −B⊤

t F

Bν 0 0

FBt 0 0









u

λν

λt



 −





f

0

0



 ,

Q(y) =





0

NΛν
(λν)

NΛt(−λν)(λt)



 ,

F = (F1, . . . ,Fp) ∈ A, y ≡ (u, λν , λt) ∈ R
n+2p,

with F := F (F) = diag{F1, . . . ,Fp}.

InterpretingF as a perturbation parameter and following the technique used in [1],

we shall analyse this system according to [15] (see also [3]):

Let F0 ∈ A be a reference point. Assume that y0 ∈ R
n+2p is such that

0 ∈ Cf (F0, y0) + Q(y0).

Define multi-valued functions S∗
f : A ⇒ R

n+2p, Σf : R
n+2p ⇒ R

n+2p by

S∗
f (F) = {y ∈ R

n+2p : 0 ∈ Cf (F , y) + Q(y)}, F ∈ A,(3.8)

Σf (ξ) = {y ∈ R
n+2p : ξ ∈ Cf (F0, y0) + ∇yCf (F0, y0)(y − y0) + Q(y)},

ξ ∈ R
n+2p,

where ∇yCf (F0, y0) stands for the gradient of Cf with respect to y at (F0, y0). In

other words, S∗
f (F) is the solution set of (3.7) for a given coefficient F ∈ A and

the load vector f ∈ R
n. Furthermore, Σf (ξ) is the solution set to the generalized

equation obtained by the partial linearization of Cf (F , y) in (3.7) with respect to

the second variable around the reference point (F0, y0).

The following generalization of the implicit function theorem holds (see [3, Theo-

rem 5.1]).

Theorem 3.3. Assume that there exist a single-valued Lipschitz function φf from

a neighbourhood W of 0 ∈ R
n+2p into R

n+2p and a neighbourhood Ṽ of y0 such

that

φf (0) = y0 and φf (ξ) = Σf (ξ) ∩ Ṽ ∀ ξ ∈ W .

Then there exist neighbourhoods U and V of F0 and y0, respectively, and a single-

valued Lipschitz map σf : U → V with

σf (F0) = y0 and σf (F) = S∗
f (F) ∩ V ∀F ∈ U .
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Let us mention that if Q ≡ 0, the single-valuedness of Σf in a neighbourhood

of 0 in the assumption of the previous theorem corresponds to the nonsingularity

of ∇yCf (F0, y0). Hence Theorem 3.3 is a generalization of the classical implicit

function theorem.

Next, we analyse the assumptions of the theorem. Obviously, Σf (ξ) with ξ :=

(ξu, ξν , ξt) ∈ R
n+2p is the set of all y = (u, λν , λt) satisfying

(3.9)











0 = Au − B⊤
ν λν − B⊤

t F 0λt − f − ξu,

0 ∈ Bνu − ξν + NΛν
(λν),

0 ∈ F 0Btu − ξt + NΛt(−λν)(λt),

where F 0 := F 0(F0) = diag{F0
1 , . . . ,F0

p}. Substitution

w := u −

(

Bν

F 0Bt

)+ (

ξν

ξt

)

,

where

(

Bν

F 0Bt

)+

denotes the Moore-Penrose pseudo-inverse of

(

Bν

F 0Bt

)

, leads to

the following transformation of (3.9):

(3.10)



















0 = Aw − B⊤
ν λν − B⊤

t F 0λt − f + A

(

Bν

F 0Bt

)+ (

ξν

ξt

)

− ξu,

0 ∈ Bνw + NΛν
(λν),

0 ∈ F 0Btw + NΛt(−λν)(λt).

Indeed,

(

Bνw

F 0Btw

)

=

(

Bν

F 0Bt

)

w =

(

Bν

F 0Bt

)

u −

(

Bν

F 0Bt

) (

Bν

F 0Bt

)+ (

ξν

ξt

)

=

(

Bνu − ξν

F 0Btu − ξt

)

.

Comparing this with (3.7), it is readily seen that the triplet (w, λν , λt) satisfies (3.10)

if and only if it is a solution to the contact problem with Coulomb friction with the

coefficient F0 and the new load vector ξf ,

ξf := f − A

(

Bν

F 0Bt

)+ (

ξν

ξt

)

+ ξu,

being a perturbation of f . That is,

(w, λν , λt) ∈ S∗
ξf

(F0),

where S∗
ξf

(F0) is defined by (3.8) with f := ξf and F := F0.
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To summarize the results we now introduce for a fixed F ∈ A the set-valued

mapping S∗
F

: Rn ⇒ R
n × R

p × R
p by

S∗
F

(f) = {(u, λν, λt)}, f ∈ R
n,

where {(u, λν, λt)}, (u, λν , λt) := (u(f), λν(f), λt(f)), denotes the set of all solu-

tions to the contact problem with Coulomb friction with the coefficient F and the

load vector f .

Theorem 3.4. Let us suppose that S∗
F0 has a locally Lipschitz-continuous branch

containing y0 in a vicinity of f ∈ R
n, i.e. there exist a single-valued Lipschitz-

continuous function ϕF0 from a neighbourhood O of f into Rn+2p and a neighbour-

hood V̂ of y0 such that

ϕF0(f) = y0 and ϕF0(ξf ) = S∗
F0(ξf ) ∩ V̂ ∀ ξf ∈ O.

Then there are neighbourhoods U , V of F0, y0, respectively, and a single-valued

Lipschitz-continuous function σf : U → V satisfying

σf (F0) = y0 and σf (F) = S∗
f (F) ∩ V ∀F ∈ U .

P r o o f. One can easily verify the assumptions of Theorem 3.3 for

φf (ξ) := ϕF0

(

f − A

(

Bν

F 0Bt

)+ (

ξν

ξt

)

+ ξu

)

+









(

Bν

F 0Bt

)+ (

ξν

ξt

)

0

0









,

ξ = (ξu, ξν , ξt) ∈ W ,

with a sufficiently small neighbourhoodW of 0 ∈ R
n+2p. �

The previous theorem says that the analysis of local dependence of a solution to

the contact problem with Coulomb friction on the coefficient F can be converted

to the analysis of local dependence of the solution on the load vector f . For this

reason, we shall focus on the study of the set-valued mapping f 7→ S∗
F

(f), f ∈ R
n,

for F ∈ A fixed.

To start with, using the same technique as in the proof of Lemma 3.1 one can get

the following auxiliary result.

Lemma 3.2. Let (2.1) and (2.2) be satisfied and let F = (F1, . . . ,Fp) ∈ A,

f , f ∈ R
n and g, g ∈ R

p
+ be arbitrary. Denote the unique solutions of (M

∗(f , F , g)),
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(M∗(f , F , g)) by (u, λν , λt) and (ū, λ̄ν , λ̄t), respectively. Then

‖u − ū‖n 6
1

γ
‖f − f‖n +

‖F‖p,∞

γ
‖g − g‖p,(3.11)

‖λν − λ̄ν‖p 6
1

β

(

‖A‖n

γ
+ 1

)

‖f − f‖n +
‖A‖n‖F‖p,∞

βγ
‖g − g‖p,(3.12)

‖λt − λ̄t‖p 6
1

βFmin

(

‖A‖n

γ
+ 1

)

‖f − f‖n +
‖A‖n‖F‖p,∞

βγFmin
‖g − g‖p,(3.13)

where Fmin = min
i=1,...,p

Fi.

Now we shall suppose for a moment that all components of the fixed coefficient

F ∈ A are strictly bounded by βγ/‖A‖n from above, i.e. F ∈ B with

B :=
{

F ∈ R
p : 0 < Fi <

βγ

‖A‖n

∀ i = 1, . . . , p
}

.

Then S∗
F
is single-valued on R

n for any such F according to Corollary 3.1. Owing

to the previous lemma it can be proved in a way similar to that in Theorem 3.2 that

S∗
F
is even Lipschitz-continuous on R

n.

Theorem 3.5. Assume that (2.1) and (2.2) are satisfied and F ∈ B is arbitrary

but fixed. Then there exists δF > 0 such that

‖S∗
F

(f) − S∗
F

(f)‖n+2p 6 δF‖f − f‖n ∀f , f ∈ R
n.

As a consequence of this and Theorem 3.4 we arrive at a result, which is weaker

than that of Theorem 3.2.

Corollary 3.2. Let (2.1) and (2.2) hold and let f ∈ R
n be arbitrary but fixed.

Then S∗
f is locally Lipschitz-continuous in B, i.e. for any F0 ∈ B there exist a

neighbourhood U ⊆ B of F0 and δf > 0 such that:

‖S∗
f (F) − S∗

f (F)‖n+2p 6 δf‖F − F‖p,∞ ∀F , F ∈ U .

In the rest of this section we shall suppose again that F ∈ A, i.e. no upper bounds

on F are imposed. Our aim is to analyse the mapping f 7→ S∗
F

(f), f ∈ R
n, for

such F fixed with the aid of the implicit function theorem for piecewise-differentiable

functions presented in [16] (see also Appendix).

First, we shall formulate the discrete contact problem with Coulomb friction as

a system of non-smooth equations. Let r > 0 be an arbitrary parameter and let
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F ∈ A be fixed. If y = (u, λν, λt) ∈ S∗
F

(f), i.e. (u, λν , λt) solves (M
∗(f , F ,−λν)),

the inequality (M∗(f , F ,−λν))3 multiplied by (−r) gives

(3.14)

{

(µν,i − λν,i)((λν − rBνu)i − λν,i) 6 0, i = 1, . . . , p, ∀µν ∈ Λν ,

(µt,i − λt,i)((λt − rBtu)i − λt,i) 6 0, i = 1, . . . , p, ∀µt ∈ Λt(−λν).

Since λν ∈ Λν and λt ∈ Λt(−λν), the equivalent expression of (3.14) is

λν = PΛν
(λν − rBνu), λt = PΛt(−λν)(λt − rBtu).

Here PΛν
: R

p → Λν and PΛt(−λν) : R
p → R

p are vector functions with the compo-

nents

(PΛν
)i(µ) = P(−∞,0](µi), i = 1, . . . , p, µ ∈ R

p,

(PΛt(−λν))i(µ) =

{

P[λν,i,−λν,i](µi) if λν,i 6 0,

−P[−λν,i,λν,i](µi) if λν,i > 0,
i = 1, . . . , p, µ ∈ R

p,

where P(−∞,0], P[a,b] stand for the projections of R
1 onto (−∞, 0] and [a, b], −∞ <

a 6 b < ∞, respectively. It is readily seen that PΛν
is the projection of Rp onto Λν

and PΛt(−λν) is the projection of R
p onto Λt(−λν) whenever λν ∈ Λν .

Let H∗ : R
n × R

n+2p → R
n+2p be defined by

H∗(f , y) =





Au − B⊤
ν λν − B⊤

t Fλt − f

λν − PΛν
(λν − rBνu)

λt − PΛt(−λν)(λt − rBtu)



 , y = (u, λν, λt) ∈ R
n+2p.

Then y ∈ S∗
F

(f), f ∈ R
n, if and only if y solves the following problem:

(3.15) Find y ∈ R
n+2p such that H∗(f , y) = 0.

We shall view this problem as an equation parametrized by f .

Below we shall show that H∗ is a piecewise-differentiable function. Obviously,

it is continuous. Moreover, let (f0, y0) ∈ R
n × R

n+2p, y0 ≡ (u0, λ0
ν , λ0

t ), be an

arbitrarily chosen vector. To construct a set of selection functions forH∗ at (f0, y0)
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we introduce in a way similar to [2] the following index sets (see Fig. 1):

Is
ν(y0) := {i ∈ {1, . . . , p} : (λ0

ν − rBνu0)i < 0},

I0
ν (y0) := {i ∈ {1, . . . , p} : (λ0

ν − rBνu0)i > 0},

Iw
ν (y0) := {i ∈ {1, . . . , p} : (λ0

ν − rBνu0)i = 0},

I+
t (y0) := {i ∈ {1, . . . , p} : (λ0

t − rBtu
0)i < −|λ0

ν,i|},

I−t (y0) := {i ∈ {1, . . . , p} : (λ0
t − rBtu

0)i > |λ0
ν,i|},

Is
t (y

0) := {i ∈ {1, . . . , p} : |(λ0
t − rBtu

0)i| < |λ0
ν,i|},

Iw+
t (y0) := {i ∈ {1, . . . , p} : (λ0

t − rBtu
0)i = λ0

ν,i},

Iw−
t (y0) := {i ∈ {1, . . . , p} : (λ0

t − rBtu
0)i = −λ0

ν,i},

J−(y0) := {i ∈ {1, . . . , p} : λ0
ν,i < 0},

J0(y0) := {i ∈ {1, . . . , p} : λ0
ν,i = 0},

J+(y0) := {i ∈ {1, . . . , p} : λ0
ν,i > 0}.

(Bνu
0)i

λ
0

ν,i

(λ0

ν − rBνu
0)i < 0

(λ0

ν − rBνu
0)i > 0

(λ0

ν − rBνu
0)i = 0

(λ0

t − rBtu
0)i

λ
0

ν,i

(λ0

t − rBtu
0)i < −|λ0

ν,i| (λ0

t − rBtu
0)i > |λ0

ν,i|

|(λ0

t − rBtu
0)i| < |λ0

ν,i|

|(λ0

t − rBtu
0)i| < |λ0

ν,i|

(λ0

t − rBtu
0)i = λ0

ν,i (λ0

t − rBtu
0)i = −λ0

ν,i

Figure 1. Partitions corresponding to the index sets.

R em a r k 3.1. To interpret the sets defined above, suppose for a moment that

y0 ∈ S∗
F

(f0). Then

i ∈ Is
ν(y0) ⇐⇒ (Bνu0)i = 0 & λ0

ν,i < 0 (strong contact),

i ∈ I0
ν (y0) ⇐⇒ (Bνu0)i < 0 & λ0

ν,i = 0 (no contact),

i ∈ Iw
ν (y0) ⇐⇒ (Bνu0)i = λ0

ν,i = 0 (weak contact).

Analogously,

i ∈ I+
t (y0) ⇐⇒ (Btu

0)i > 0 & λ0
t,i = λ0

ν,i

i ∈ I−t (y0) ⇐⇒ (Btu
0)i < 0 & λ0

t,i = −λ0
ν,i

}

(slip),
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i ∈ Is
t (y

0) ⇐⇒ (Btu
0)i = 0 & |λ0

t,i| < −λ0
ν,i (strong stick),

i ∈ Iw+
t (y0) ⇐⇒ (Btu

0)i = 0 & λ0
t,i = λ0

ν,i

i ∈ Iw−
t (y0) ⇐⇒ (Btu

0)i = 0 & λ0
t,i = −λ0

ν,i

}

(weak stick).

Let Iw−
ν ⊆ Iw

ν (y0), Iw++
t ⊆ Iw+

t (y0) and Iw−−
t ⊆ Iw−

t (y0) be arbitrary sets. For

such sets we shall denote

Iw+
ν := Iw

ν (y0) \ Iw−
ν , Iw+−

t := Iw+
t (y0) \ Iw++

t , Iw−+
t := Iw−

t (y0) \ Iw−−
t

here and in what follows. These index sets will be associated with the set

π(Iw−
ν ,I

w++

t ,I
w−−
t ) = {(f , y) ∈ R

n × R
n+2p :(3.16)

(λν − rBνu)i 6 0 ∀ i ∈ Iw−
ν , (λν − rBνu)i > 0 ∀ i ∈ Iw+

ν ,

(λt − rBtu)i > λν,i ∀ i ∈ Iw++
t , (λt − rBtu)i 6 λν,i ∀ i ∈ Iw+−

t ,

(λt − rBtu)i 6 −λν,i ∀ i ∈ Iw−−
t , (λt − rBtu)i > −λν,i ∀ i ∈ Iw−+

t }

and the function H∗(Iw−
ν ,I

w++

t ,I
w−−
t ) : R

n × R
n+2p → R

n+2p whose components are

defined by

(3.17) H
∗(Iw−

ν ,I
w++

t ,I
w−−
t )

i (f , y) = (Au − B⊤
ν λν − B⊤

t Fλt − f)i,

i = 1, . . . , n, (f , y) ∈ R
n × R

n+2p,

H
∗(Iw−

ν ,I
w++
t ,I

w−−
t )

n+i (f , y) =

{

r(Bνu)i if i ∈ Is
ν(y0) ∪ Iw−

ν ,

λν,i if i ∈ I0
ν (y0) ∪ Iw+

ν ,

i = 1, . . . , p, (f , y) ∈ R
n × R

n+2p,

H
∗(Iw−

ν ,I
w++
t ,I

w−−
t )

n+p+i (f , y)

=



































































r(Btu)i if i ∈
(

(Is
t (y

0) ∪ Iw++
t ∪ Iw−−

t ) ∩ J−(y0)
)

∪(Iw++
t ∩ Iw−−

t ∩ J0(y0)),

(2λt − rBtu)i if i ∈
(

(Is
t (y

0) ∪ Iw+−
t ∪ Iw−+

t ) ∩ J+(y0)
)

∪(Iw+−
t ∩ Iw−+

t ∩ J0(y0)),

(λt − λν)i if i ∈ I+
t (y0) ∪ (Iw+−

t ∩ J−(y0)) ∪ (Iw−−
t ∩ J+(y0))

∪(Iw+−
t ∩ Iw−−

t ∩ J0(y0)),

(λt + λν)i if i ∈ I−t (y0) ∪ (Iw−+
t ∩ J−(y0)) ∪ (Iw++

t ∩ J+(y0))

∪(Iw−+
t ∩ Iw++

t ∩ J0(y0)),

i = 1, . . . , p, (f , y) ∈ R
n × R

n+2p.
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Then one can easily verify that there exists a neighbourhood W of (f0, y0) such

that

H∗(f , y) = H∗(Iw−
ν ,I

w++

t ,I
w−−
t )(f , y)

∀ (f , y) ∈ W ∩ ({(f0, y0)} + π(Iw−
ν ,I

w++
t ,I

w−−
t )).

Now consider all possible combinations of Iw−
ν ⊆ Iw

ν (y0), Iw++
t ⊆ Iw+

t (y0) and

Iw−−
t ⊆ Iw−

t (y0) and denote their total number by l. One obtains the collections Π

and {H∗(1), . . . , H∗(l)} of subsets of Rn × R
n+2p and functions from R

n × R
n+2p

into Rn+2p, respectively:

∀π ∈ Π ∃ Iw−
ν ⊆ Iw

ν (y0), Iw++
t ⊆ Iw+

t (y0), Iw−−
t ⊆ Iw−

t (y0) :

π = π(Iw−
ν ,I

w++

t ,I
w−−
t ),

∀ j ∈ {1, . . . , l} ∃ Iw−
ν ⊆ Iw

ν (y0), Iw++
t ⊆ Iw+

t (y0), Iw−−
t ⊆ Iw−

t (y0) :(3.18)

H∗(j) = H∗(Iw−
ν ,I

w++

t ,I
w−−
t ) in R

n × R
n+2p.

From the construction it immediately follows that there exists a neighbourhoodW

of (f0, y0) such that:

∀π ∈ Π ∃ jπ ∈ {1, . . . , l} :(3.19)

H∗(f , y) = H∗(jπ)(f , y) ∀ (f , y) ∈ W ∩ ({(f0, y0)} + π).

This implies thatH∗ is a continuous selection ofH∗(1), . . . , H∗(l) and consequently

a piecewise-differentiable function in a sufficiently small neighbourhood of (f0, y0).

Let us note that if y0 is such that Iw
ν (y0), Iw+

t (y0) as well as Iw−
t (y0) are empty

sets then l = 1, Π = {Rn ×R
n+2p} and H∗(1) = H∗ in a neighbourhood of (f0, y0),

i.e. H∗ is even differentiable therein. Otherwise, we claim that Π is a conical subdi-

vision of Rn × R
n+2p.

Indeed, let π = π(Iw−
ν ,I

w++

t ,I
w−−
t ) ∈ Π be given. Introduce functions Θ

(Iw
ν (y0))

1 :

{1, . . . , |Iw
ν (y0)|} → Iw

ν (y0), Θ
(Iw+

t (y0))
2 : {1, . . . , |Iw+

t (y0)|} → Iw+
t (y0) and

Θ
(Iw−

t (y0))
3 : {1, . . . , |Iw−

t (y0)|} → Iw−
t (y0) such that

∀ i ∈ Iw
ν (y0) ∃ j ∈ {1, . . . , |Iw

ν (y0)|} : Θ
(Iw

ν (y0))
1 (j) = i,

∀ i ∈ Iw+
t (y0) ∃ j ∈ {1, . . . , |Iw+

t (y0)|} : Θ
(Iw+

t (y0))
2 (j) = i,

∀ i ∈ Iw−
t (y0) ∃ j ∈ {1, . . . , |Iw−

t (y0)|} : Θ
(Iw−

t (y0))
3 (j) = i,
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where |K| stands for the cardinality of a set K. With the aid of these functions

define the matrix B(Iw−
ν ,I

w++

t ,I
w−−
t ) ∈ R

(|Iw
ν (y0)|+|Iw+

t (y0)|+|Iw−
t (y0)|)×(2n+2p) by

B
(Iw−

ν ,I
w++

t ,I
w−−
t )

j =

{ (

0, (−rBν)i, (Ip)i, 0
)

if i ∈ Iw−
ν ,

(

0, (rBν )i, (−Ip)i, 0
)

if i ∈ Iw+
ν ,

j = 1, . . . , |Iw
ν (y0)|, i = Θ

(Iw
ν (y0))

1 (j),

B
(Iw−

ν ,I
w++

t ,I
w−−
t )

j =

{
(

0, (rBt)i, (Ip)i, (−Ip)i

)

if i ∈ Iw++
t ,

(

0, (−rBt)i, (−Ip)i, (Ip)i

)

if i ∈ Iw+−
t ,

j = |Iw
ν (y0)| + 1, . . . , |Iw

ν (y0)| + |Iw+
t (y0)|, i = Θ

(Iw+

t (y0))
2 (j − |Iw

ν (y0)|),

B
(Iw−

ν ,I
w++

t ,I
w−−
t )

j =

{
(

0, (−rBt)i, (Ip)i, (Ip)i

)

if i ∈ Iw−−
t ,

(

0, (rBt)i, (−Ip)i, (−Ip)i

)

if i ∈ Iw−+
t ,

j = |Iw
ν (y0)| + |Iw+

t (y0)| + 1, . . . , |Iw
ν (y0)| + |Iw+

t (y0)| + |Iw−
t (y0)|,

i = Θ
(Iw−

t (y0))
3 (j − |Iw

ν (y0)| − |Iw+
t (y0)|).

Here Ci denotes the ith row vector of a matrix C and Ip represents the identity

matrix of order p. Then we have

(3.20) π(Iw−
ν ,Iw++

t ,Iw−−
t ) =

{

(f , y) ∈ R
n × R

n+2p : B(Iw−
ν ,Iw++

t ,Iw−−
t )

(

f

y

)

6 0

}

,

which shows that π(Iw−
ν ,I

w++

t ,I
w−−
t ) is a polyhedral cone with vertex at 0.

By the assumption (2.2), B(Iw−
ν ,I

w++

t ,I
w−−
t ) is a full-row-rank matrix and one can

find a vector (f , y) ∈ R
n × R

n+2p with

B(Iw−
ν ,I

w++

t ,I
w−−
t )

(

f

y

)

< 0.

Hence the dimension of the linear hull of π(Iw−
ν ,I

w++

t ,I
w−−
t ) equals (2n + 2p).

The union of all cones in Π covers R
n × R

n+2p as we consider all possible

choices of Iw−
ν , Iw++

t and Iw−−
t . Finally, the intersection of any two cones

π = π(Iw−
ν ,I

w++

t ,I
w−−
t ), π̃ = π̃(Ĩw−

ν ,Ĩ
w++

t ,Ĩ
w−−
t ) ∈ Π takes the form

π(Iw−
ν ,I

w++

t ,I
w−−
t ) ∩ π̃(Ĩw−

ν ,Ĩ
w++

t ,Ĩ
w−−
t ) = {(f , y) ∈ R

n × R
n+2p :

(λν − rBνu)i = 0 ∀ i ∈ (Iw−
ν ∩ Ĩw+

ν ) ∪ (Iw+
ν ∩ Ĩw−

ν ),

(λν − rBνu)i 6 0 ∀ i ∈ Iw−
ν ∩ Ĩw−

ν , (λν − rBνu)i > 0 ∀ i ∈ Iw+
ν ∩ Ĩw+

ν ,
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(λt − rBtu)i = λν,i ∀ i ∈ (Iw++
t ∩ Ĩw+−

t ) ∪ (Iw+−
t ∩ Ĩw++

t ),

(λt − rBtu)i > λν,i ∀ i ∈ Iw++
t ∩ Ĩw++

t , (λt − rBtu)i 6 λν,i ∀ i ∈ Iw+−
t ∩ Ĩw+−

t ,

(λt − rBtu)i = −λν,i ∀ i ∈ (Iw−−
t ∩ Ĩw−+

t ) ∪ (Iw−+
t ∩ Ĩw−−

t ),

(λt − rBtu)i 6 −λν,i ∀ i ∈ Iw−−
t ∩ Ĩw−−

t ,

(λt − rBtu)i > −λν,i ∀ i ∈ Iw−+
t ∩ Ĩw−+

t }.

Whenever π(Iw−
ν ,I

w++

t ,I
w−−
t ) and π̃(Ĩw−

ν ,Ĩ
w++

t ,Ĩ
w−−
t ) are distinct, at least one of the

sets Iw−
ν , Iw++

t or Iw−−
t does not coincide with Ĩw−

ν , Ĩw++
t , Ĩw−−

t , respectively, and

the set above forms a common proper face of both cones.

Next, let q denote the dimension of the lineality space of Π. According to the

assumptions of the previously mentioned implicit function theorem for piecewise-

differentiable equations, either (2n + 2p − q) 6 1 needs to be satisfied or there has

to exist a number m ∈ {2, . . . , (2n + 2p − q)} such that the mth branching number

of Π does not exceed 2m.

The lineality space of any cone π = π(Iw−
ν ,I

w++
t ,I

w−−
t ) ∈ Π is the subspace

{

(f , y) ∈ R
n × R

n+2p : B(Iw−
ν ,I

w++

t ,I
w−−
t )

(

f

y

)

= 0

}

with an appropriate B(Iw−
ν ,I

w++

t ,I
w−−
t ) ∈ R

(|Iw
ν (y0)|+|Iw+

t (y0)|+|Iw−
t (y0)|)×(2n+2p)

(cf. (3.20)). The full row rank of any B(Iw−
ν ,I

w++

t ,I
w−−
t ) under consideration guaran-

teed by (2.2) yields that the dimension of the lineality space of π(Iw−
ν ,I

w++

t ,I
w−−
t ) (and

ofΠ, as well) is equal to (2n+2p−(|Iw
ν (y0)|+|Iw+

t (y0)|+|Iw−
t (y0)|)). Consequently,

the condition (2n+2p− q) 6 1 is equivalent to |Iw
ν (y0)|+ |Iw+

t (y0)|+ |Iw−
t (y0)| 6 1.

If it is not satisfied, we assert that the other condition holds with m = 2. Indeed,

the 2nd branching number of Π is the maximal number of cones in Π containing a

common face of dimension (2n + 2p − 2). Having in mind (2.2), each such face can

be written as

{(f , y) ∈ R
n × R

n+2p :

(λν − rBνu)i = 0 ∀ i ∈ Iw0
ν , (λν − rBνu)i 6 0 ∀ i ∈ Iw−

ν \ Iw0
ν ,

(λν − rBνu)i > 0 ∀ i ∈ Iw+
ν \ Iw0

ν , (λt − rBtu)i = λν,i ∀ i ∈ Iw+0
t ,

(λt − rBtu)i > λν,i ∀ i ∈ Iw++
t \ Iw+0

t , (λt − rBtu)i 6 λν,i ∀ i ∈ Iw+−
t \ Iw+0

t ,

(λt − rBtu)i = −λν,i ∀ i ∈ Iw−0
t , (λt − rBtu)i 6 −λν,i ∀ i ∈ Iw−−

t \ Iw−0
t ,

(λt − rBtu)i > −λν,i ∀ i ∈ Iw−+
t \ Iw−0

t }

for some Iw−
ν , Iw0

ν ⊆ Iw
ν (y0), Iw++

t , Iw+0
t ⊆ Iw+

t (y0) and Iw−−
t , Iw−0

t ⊆ Iw−
t (y0)

with |Iw0
ν | + |Iw+0

t | + |Iw−0
t | = 2. From this it easily follows that the 2nd branching

number of Π is equal to 4.
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To conclude, the following two theorems are valid (cf. Theorem 4.2.2 and Propo-

sition 4.2.2 in [16]).

Theorem 3.6. Let (f0, y0) ∈ R
n × R

n+2p be a vector with H∗(f0, y0) = 0. If

all matrices ∇yH∗(j)(f0, y0), j = 1, . . . , l, where H∗(j) are given by (3.18) have the

same nonvanishing determinant sign then

1. the equation H∗(f , y) = 0 determines an implicit PC 1-function at (f0, y0),

i.e. there exist neighbourhoodsO, V̂ of f0, y0, respectively, and a PC 1-function

ϕF : O → V̂ such that

ϕF (f0) = y0 and ϕF (f) = S∗
F

(f) ∩ V̂ ∀f ∈ O;

2. the implicit functions determined by the equationsH∗(j)(f , y) = 0, j = 1, . . . , l,

form a collection of selection functions for the PC 1-function ϕF at f0;

3. for every h ∈ R
n the identity ξ = ϕ′

F
(f0; h) holds if and only if ξ satisfies the

piecewise-linear equation H∗′((f0, y0); (h, ξ)) = 0.

Theorem 3.7. Suppose that the assumptions of the previous theorem are satisfied

and h ∈ R
n is arbitrary.

1. Then there exists a cone π ∈ Π such that

(3.21)

(

h

0

)

∈

(

In 0n,(n+2p)

∇fH∗(jπ)(f0, y0) ∇yH∗(jπ)(f0, y0)

)

π

with jπ being given by (3.19).

2. The inclusion (3.21) holds if and only if

(

h

−
(

∇yH∗(jπ)(f0, y0)
)−1

∇fH∗(jπ)(f0, y0)h

)

∈ π.

3. If h satisfies (3.21) then

ϕ′
F

(f0; h) = −
(

∇yH∗(jπ)(f0, y0)
)−1

∇fH∗(jπ)(f0, y0)h,

where ϕF is the implicit PC
1-function determined by the equation H∗(f , y)

= 0 at (f0, y0).

Applying Corollary 4.1.1 in [16], which tells us that every piecewise-differentiable

function is locally Lipschitz-continuous, we get the following consequence of Theo-

rems 3.4 and 3.6.
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Corollary 3.3. If F ∈ A and (f0, y0) ∈ R
n × R

n+2p are such that the assump-

tions of Theorem 3.6 are fulfilled then there are neighbourhoods U , V of F , y0,

respectively, and a single-valued Lipschitz-continuous function σf0 : U → V satisfy-

ing

σf0(F) = y0 and σf0(ξF ) = S∗
f0(ξF ) ∩ V ∀ ξF ∈ U .

Let us note that the assertion of the corollary is close to Theorem 1 in [11], which

concerns discrete contact problems with Coulomb friction and a coefficient of friction

represented by one real. However, the latter result was obtained from the version of

the implicit function theorem involving Clarke’s gradient and one has to deal with

generally infinite number of matrices included in the respective generalized Jacobian

to verify its assumptions.

At the end of this section we shall analyse the cases when the assumption con-

cerning the determinant signs in Theorem 3.6 is not satisfied.

1. There exists an index j ∈ {1, . . . , l} such that

H∗(j)(f0, y0) = 0,(3.22)

rank
(

∇yH∗(j)
)

= n + 2p− s, s > 0.(3.23)

Here we denote ∇yH∗(j) := ∇yH∗(j)(f0, y0) because H∗(j), j = 1, . . . , l, are affine

functions.

From (3.17) and (3.18) it is readily seen that ∇yH∗(j) satisfies

∇yH
∗(j)
i =

(

Ai, (−B⊤
ν )i, (−B⊤

t F )i

)

, i = 1, . . . , n,

∇yH
∗(j)
n+i ∈ {((rBν)i, 0, 0), (0, (Ip)i, 0)}, i = 1, . . . , p,

∇yH
∗(j)
n+p+i ∈ {((rBt)i, 0, 0), ((−rBt)i, 0, (2Ip)i), (0, (−Ip)i, (Ip)i),

(0, (Ip)i, (Ip)i)}, i = 1, . . . , p,

for an arbitrary j.

Taking into account thatH∗(j) is an affine function, we see that (3.22) is equivalent

to

∇yH∗(j)y0 =





f0

0

0



 .

Making use of (2.2) one can eliminate 2p columns with the aid of the last 2p rows of

the matrix ∇yH∗(j) and one can arrive at an equivalent system of the type

(3.24) My0 =





f0

0

0



 , M =





Mu

Mν

Mt



 ,
Mu ∈ R

n×(n+2p),

Mν , Mt ∈ R
p×(n+2p),
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where the rows of the matrix

(

Mν

Mt

)

are linearly independent not only to each

other but also to the rows of Mu. This and (3.23) yield that rank(Mu) = n − s.

Moreover, the system in (3.24) is solvable if and only if f0 is contained in the range

ofMu. Therefore, (3.22) and (3.23) restrict f
0 to some (n−s)-dimensional subspace

of Rn.

Since the number of all possible selection functions of H∗ is finite, the presented

situation occurs generally only for (f0, y0) such that f0 is from a union of some

lower-dimensional subspaces of Rn.

2. Two or more selection functions with nonsingular Jacobians are active at

(f0, y0), satisfying H∗(f0, y0) = 0.

Taking one such selection function, say H∗(j), it follows that H∗(j)(f0, y0) = 0,

i.e.

(3.25) ∇yH∗(j)y0 =





f0

0

0



 .

In addition to this, |Iw
ν (y0) ∪ Iw+

t (y0) ∪ Iw−
t (y0)| > 0 (which means that at least

one contact node is in weak contact or in weak stick) and the following (|Iw
ν (y0)| +

|Iw+
t (y0)| + |Iw−

t (y0)|) conditions have to be satisfied:

(3.26)











(λ0
ν − rBνu0)i = 0 ∀ i ∈ Iw

ν (y0),

(λ0
t − rBtu

0)i = λ0
ν,i ∀ i ∈ Iw+

t (y0),

(λ0
t − rBtu

0)i = −λ0
ν,i ∀ i ∈ Iw−

t (y0).

Notice that if i ∈ I0
ν (y0)∩Iw+

t (y0)∩Iw−
t (y0) then the (n+ i)th equation in (3.25)

is λ0
ν,i = 0, which together with the two corresponding conditions from (3.26)2 and

(3.26)3 yields only two linearly independent equations with respect to y0. Further-

more, if i ∈ Iw
ν (y0) ∩ Iw+

t (y0) ∩ Iw−
t (y0) then the (n + i)th equation in (3.25) and

the corresponding equation in (3.26)1 are equivalent to λ0
ν,i = (Bνu0)i = 0, which

added to the two corresponding conditions in (3.26)2 and (3.26)3 leads only to three

linearly independent equations. As a consequence, we can leave out one of the equa-

tions in (3.26)2 or (3.26)3 for any such i and (3.26) reduces in this way to a system

of s equations with

s := |Iw
ν (y0)| + |Iw+

t (y0)| + |Iw−
t (y0)|

− |(I0
ν (y0) ∪ Iw

ν (y0)) ∩ Iw+
t (y0) ∩ Iw−

t (y0)| > 0.
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This system extended by (3.25) can be transformed similarly to the previous case

into an equivalent system of the form

My0 =









f0

0

0

0









, M =









Mu

Mν

Mt

Mc









,
Mu ∈ R

n×(n+2p), Mν , Mt ∈ R
p×(n+2p),

Mc ∈ R
s×(n+2p),

in which the rows of the matrix





Mν

Mt

Mc



 are linearly independent to each other and

also to the rows ofMu.

Arguing in the same way as previously, one can show that (3.25) and (3.26) con-

fine f0 to some subspace of Rn of dimension (n − s) and that the set of all f0

corresponding to this case forms a union of some lower-dimensional subspaces of Rn

again.

We get the following remark.

R em a r k 3.2. All vectors (f0, y0) ∈ R
n ×R

n+2p withH∗(f0, y0) = 0 which do

not satisfy the assumption on the determinant sign of the Jacobians in Theorem 3.6

are such that y0 ∈ S∗
F

(f0) and f0 is an element from a union of subspaces of

dimension strictly lower than n.

4. An elementary example

This section presents an elementary discrete contact problem for one contact node

(see Fig. 2). This example is taken from [11] and is nothing else than a special case

of the model studied in [12].

f

rigid foundation

Dirichlet
condition

linear
finite
element

Figure 2. Geometry of the elementary example.
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Denoting u := (uν , ut) and f := (fν , ft), an alternative of the projection formula-

tion (3.15) of this problem reads as follows:

(4.1)



























Find y := (uν , ut, λν , λt) ∈ R
4 such that

H(y) :=









auν − but − λν − fν

−buν + aut − λt − ft

λν − P(−∞,0](λν − ruν)

λt − P[−F|λν |,F|λν |](λt − rut)









=









0

0

0

0









,

where the constants a := (λ + 3µ)/2 and b := (λ + µ)/2 depend on the Lamé

coefficients λ > 0 and µ > 0 characterizing the isotropic and homogeneous material

of the body.

We derive exact solutions of this problem by considering all possible contact modes.

First, let there be no contact forces between the body and the rigid foundation,

i.e. λν = 0. Then the fourth equation in (4.1) implies that λt = 0. Substituting

these values of λν and λt into the first and the second equation in (4.1), we obtain

a system of two linear equations with the solution

uν =
afν + bft

a2 − b2
, ut =

aft + bfν

a2 − b2
.

In addition, from λν = 0 and the third equation in (4.1) it is readily seen that uν 6 0

so that

afν + bft 6 0.

Secondly, suppose that there is a stick contact between the body and the rigid

foundation, i.e. uν = ut = 0. Consequently, (4.1)1,2 yield

λν = −fν , λt = −ft.

Since λν 6 0, Fλν 6 λt 6 −Fλν by (4.1)3 and (4.1)4, respectively, one has

fν > 0, −Ffν 6 ft 6 Ffν .

Finally, consider a slip contact, i.e. uν = 0, ut 6= 0.

If ut > 0 then λt = Fλν by virtue of (4.1)3,4, and (4.1)1,2 give

λν = −
afν + bft

a + bF
, ut =

ft −Ffν

a + bF
.

From the conditions λν 6 0 and ut > 0 it follows that

afν + bft > 0, ft −Ffν > 0.
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If ut < 0 then λt = −Fλν , and (4.1)1,2 are equivalent to

(4.2)

{

−but − λν = fν ,

(a − bF)ut = ft + Ffν .

Assuming F 6= a/b this system has a unique solution

λν = −
afν + bft

a − bF
, ut =

ft + Ffν

a − bF
,

whose constraints are
(

F <
a

b
& afν + bft > 0 & ft + Ffν < 0 & fν > 0

)

∨
(

F >
a

b
& afν + bft 6 0 & ft + Ffν > 0 & fν > 0

)

.

If F = a/b then (4.2) is solvable if and only if

ft + Ffν = 0

and its solutions form the set

{(ut, λν) ∈ R
2 : λν = −but − fν , ut ∈ R

1}.

Due to the conditions λν 6 0 and ut < 0, ut has to satisfy

−
fν

b
6 ut < 0.

Consequently,

fν > 0.

Introduce linear functions S
(i)
F : R

2 → R
4, i = 1, . . . , 5, and a multi-valued func-

tion S
(6)
F : R

2 ⇒ R
4 by

S
(1)
F (f) =

(

afν + bft

a2 − b2
,

bfν + aft

a2 − b2
, 0, 0

)

, f ∈ R
2, F ∈ R

1
+,

S
(2)
F (f) = (0, 0, −fν, −ft), f ∈ R

2, F ∈ R
1
+,

S
(3)
F (f) =

(

0,
ft −Ffν

a + bF
, −

afν + bft

a + bF
, −F

afν + bft

a + bF

)

, f ∈ R
2, F ∈ R

1
+,

S
(4)
F (f) =

(

0,
ft + Ffν

a − bF
, −

afν + bft

a − bF
, F

afν + bft

a − bF

)

, f ∈ R
2, F ∈

[

0,
a

b

)

,

S
(5)
F (f) =

(

0,
ft + Ffν

a − bF
, −

afν + bft

a − bF
, F

afν + bft

a − bF

)

, f ∈ R
2, F ∈

(a

b
,∞

)

,

S
(6)
F (f) =

{

(uν , ut, λν , λt) ∈ R
4 :

uν = 0, −
fν

b
6 ut 6 0, λν = −(fν + but), λt = F(fν + but)

}

, f ∈ R
2, F =

a

b
.
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Moreover, let F ∈ R
1
+ and let us define sets:

(4.3)







































































̺
(1)
F = {f ∈ R

2 : afν + bft 6 0} (no contact),

̺
(2)
F = {f ∈ R

2 : fν > 0, −Ffν 6 ft 6 Ffν} (contact and stick),

̺
(3)
F = {f ∈ R

2 : afν + bft > 0, ft −Ffν > 0}

(contact and non-negative slip),

̺
(4)
F = {f ∈ R

2 : afν + bft > 0, ft + Ffν 6 0, fν > 0}

(contact and non-positive slip, F < a/b),

̺
(5)
F = {f ∈ R

2 : afν + bft 6 0, ft + Ffν > 0, fν > 0}

(contact and non-positive slip, F > a/b).

Observe that only ̺
(1)
F does not depend on F . One can easily verify that S

(i)
F (f)

solves (4.1) for f ∈ ̺
(i)
F , i = 1, 2, 3, F ∈ R

1
+, S

(4)
F (f) solves (4.1) for f ∈ ̺

(4)
F ,

F ∈ [0, a/b), S
(5)
F (f) is a solution for f ∈ ̺

(5)
F , F ∈ (a/b,∞), and S

(6)
F (f) is a set of

solutions for f ∈ ̺
(4)
F = ̺

(5)
F valid when F = a/b.

Denote by ˚̺
(i)
F the interior of ̺

(i)
F , i = 1, . . . , 5. From (4.3) it is readily seen that

˚̺
(3)
F is disjoint with ˚̺

(i)
F , i 6= 3, for any F > 0. Hence, the structure of the solution

set to (4.1) will be determined by the mutual position of ̺
(1)
F , ̺

(2)
F , and ̺

(4)
F or ̺

(5)
F ,

which depends on the magnitude of F . We shall distinguish 3 cases.

Case 1 : F ∈ [0, a/b).

−2 0 2
2−

1.5−

1−

0.5−

0

0.5

1

1.5

2

fν

ft ̺
(1)
F

̺
(2)
F

̺
(3)
F

̺
(4)
F

−2
0

2 −2

0

2
−2

−1

0

1

2

ft
fν

u
ν

−2
0

2 −2

0

2
−2

−1

0

1

2

ft
fν

u
t

−2
0

2 −2

0

2
−2

−1

0

1

2

ft
fν

λ
ν

−2
0

2 −2

0

2
−2

−1

0

1

2

ft
fν

λ
t

Figure 3. Solution for 0 < F < a/b.
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Suppose first that F 6= 0. Then ̺
(5)
F = {0}, ˚̺

(1)
F ∩ ˚̺

(2)
F = ∅ and ̺

(4)
F is the wedge

between ̺
(1)
F and ̺

(2)
F (see Fig. 3). The system {̺

(1)
F , ̺

(2)
F , ̺

(3)
F , ̺

(4)
F } defines the

partition of R2, i.e. R2 =
4
⋃

i=1

̺
(i)
F , ˚̺

(i)
F ∩ ˚̺

(j)
F = ∅, i 6= j, i, j = 1, . . . , 4.

The solution map SF : R2 → R
4 is defined by

SF = S
(i)
F in ̺

(i)
F , i = 1, . . . , 4.

It is easy to verify that

S
(i)
F |Γij

= S
(j)
F |Γij

∀ i, j = 1, . . . , 4,

where Γij is the common side of two neighbouring sectors ̺
(i)
F , ̺

(j)
F . Hence, SF is a

single-valued function in the whole R2.

If F = 0 then ̺
(2)
F = ̺

(3)
F ∩ ̺

(4)
F and the partition is realized by {̺

(1)
F , ̺

(3)
F , ̺

(4)
F }.

Adapting SF to this case we see that it is again single-valued in R
2.

Consequently, if F ∈ [0, a/b) then (4.1) has a unique solution for any f ∈ R
2.

Case 2 : F > a/b.

−2 0 2
2−

1.5−

1−

0.5−

0

0.5

1

1.5

2

fν

ft ̺
(1)
F

̺
(2)
F

̺
(3)
F

̺
(5)
F

−2 0 2 −2

0

2

−2

−1

0

1

2

ft

fν

u
ν

−2 0 2 −2

0

2

−2

−1

0

1

2

ft

fν

u
t

−2 0 2 −2

0

2

−2

−1

0

1

2

ft

fν

λ
ν

−2 0 2 −2

0

2

−2

−1

0

1

2

ft

fν

λ
t

Figure 4. Solution for F > a/b.

In this case ̺
(4)
F = {0}, ̺

(5)
F = ̺

(1)
F ∩ ̺

(2)
F and ˚̺

(5)
F 6= ∅ (see Fig. 4). Introduce the

function SF as before:

SF = S
(i)
F in ̺

(i)
F , i = 1, 2, 3, 5,

which is multi-valued in ̺
(5)
F .
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We conclude that there exists a unique solution to (4.1) if f belongs to ((̺
(1)
F ∪

̺
(2)
F ∪ ̺

(3)
F ) \ ̺

(5)
F ) ∪ {0}, there are two solutions on ∂̺

(5)
F \ {0} and three solutions

in ˚̺
(5)
F .

Case 3 : F = a/b.
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Figure 5. Solution for F = a/b.

This is the limit case, in which ̺
(4)
F = ̺

(5)
F = ̺

(1)
F ∩̺

(2)
F is the ray emanating from

the origin and separating ̺
(1)
F and ̺

(2)
F (see Fig. 5).

If f ∈ (R2 \ ̺
(5)
F )∪ {0}, there exists a unique solution to (4.1). For f ∈ ̺

(5)
F \ {0}

the continuous branch S
(6)
F (f) of solutions connects S

(1)
F (f) and S

(2)
F (f).

From the above analysis we see that the solution of (4.1) is a PC1-function of

F ∈ [0, a/b) for an arbitrary f ∈ R
2 fixed. Therefore, it is Lipschitz-continuous with

respect to F in [0,Fmax] for any Fmax ∈ [0, a/b). On the other hand, we have proved

the global uniqueness as well as the Lipschitz continuity of the solutions with respect

to F in [0,Fmax] with Fmax ∈ [0, βγ/‖A‖n) in Section 3. After some computations

one obtains βγ/‖A‖n = (a − b)/(a + b), which is strictly less than a/b. Since the

situation concerning the Lipschitz continuity with respect to f is analogous, one can

see that the bounds derived before are pessimistic.

Nevertheless, this example shows that unicity of solutions depends not only on F

but also on f . Even if one takes F so large that there are non-unique solutions for

some f , for the same F there still exist such f that the corresponding solution is

unique. Furthermore, one can easily verify that in this particular example Theo-

rem 3.6 guarantees local uniqueness of solutions precisely except the cases where it
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is actually lost. Hence, the presented local approach seems to be better suited for

studying the behaviour of solutions than the global one.

Finally, let us mention that if one introduces selection functions H(1), . . . , H(l) of

the PC1-function H in a way analogous to (3.18) for an appropriate l, each function

f 7→ S
(i)
F (f), i = 1, . . . , 6, is nothing else than a mapping associating f with the

solution of the equation H(j)(y) = 0 for some particular H(j). Since H(1), . . . , H(l)

are piecewise-linear functions of the load vector f , the structure of solutions to (4.1)

as functions of f is quite simple. On the other hand, dependence of the solutions on

the coefficient F is substantially more complicated, as exhibited in [11].

5. Conclusions

Theoretical analysis of discrete contact problems with Coulomb friction in which

the coefficient of friction F is assumed to be a vector was presented. The existence

result is obtained for any coefficient F whereas to get the global uniqueness result

one needs the norm of F to be sufficiently small. Moreover, the unique solution is

a Lipschitz-continuous function of F as well as of the load vector f . Local analysis

of potentially non-unique solutions is based on two different but equivalent formu-

lations of the problem—the former consists of generalized equations, the latter of

non-smooth equations. For the first formulation we showed that the study of lo-

cal behaviour of solutions as functions of F can be replaced by the study of local

behaviour of the solutions as functions of f . For the second one we got that the

solutions are locally unique and Lipschitz-continuous with respect to f if particular

Jacobian matrices depending on the contact status of the solutions have the same

nonvanishing determinant sign. Results determining directional derivatives to these

locally Lipschitz-continuous branches were also achieved. In the end, benefits of the

proposed approach are illustrated by a simple example.

Appendix A. Piecewise-differentiable functions

For the sake of completeness we give here a brief introduction to the theory of

piecewise-differentiable functions. The exposition is extracted from [16].

We start with some basic notions. Let π := {x ∈ R
n : Bx 6 0} with B ∈ R

m×n

be a polyhedral cone with vertex at 0. Recall that the dimension of π is defined as

the dimension of its linear hull and nonempty faces of π can be represented as the

sets

{x ∈ R
n : Bix = 0 ∀ i ∈ I, Bjx 6 0 ∀ j ∈ {1, . . . , m} \ I}
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for some index set I ∈ I(B,0), where

I(B,0) = {I ⊆ {1, . . . , m} :

∃x ∈ R
n : Bix = 0 ∀i ∈ I, Bjx < 0 ∀j ∈ {1, . . . , m} \ I}

([16, Proposition 2.1.3]). Here Bi is the ith row vector of the matrixB. A nonempty

face of π which does not coincide with π is called a proper face. Further, the lineality

space of π is the linear subspace {x ∈ R
n : Bx = 0}.

A finite collectionΠ of convex polyhedral cones in Rn is called a conical subdivision

of a polyhedral cone ̺ ⊆ R
n if

1. all polyhedral cones in Π are subsets of ̺;

2. the dimension of the cones in Π coincides with the dimension of ̺;

3. the union of all cones in Π covers ̺;

4. the intersection of any two distinct cones in Π is either empty or a common

proper face of both cones.

It holds that if Π is a conical subdivision of a polyhedral cone then all polyhedral

cones π ∈ Π have the same lineality space ([16, Proposition 2.2.4]). Hence, the

lineality space of Π is introduced as the common lineality space of the polyhedral

cones of Π.

The pth branching number of a conical subdivision Π of a polyhedral cone ̺ is

defined as the maximal number of cones inΠ containing a common face of dimension

(dim̺−p), where p ∈ {1, . . . , dim̺−q} and q is the dimension of the lineality space

of Π.

Finally, let U be a subset of Rn and letH(j) : U → R
k, j = 1, . . . , l, be a collection

of continuous functions. A functionH : U → R
k is said to be a continuous selection

of the functions H(1), . . . , H(l) on the set W ⊆ U if it is continuous on W and

H(x) ∈ {H(1)(x), . . . , H(l)(x)} for every x ∈ W . A function H : U → R
k defined

on an open set U ⊆ R
n is called a PC r-function for some r ∈ {1, 2, . . .} ∪ {∞} if

for every x0 ∈ U there exist an open neighbourhood W ⊆ U of x0 and a finite

number, say l, of Cr-functionsH(j) : W → R
k such thatH is a continuous selection

of H(1), . . . , H(l) onW . A set of Cr-functions H(j) : W → R
k, j = 1, . . . , l, defined

on an open neighbourhood W ⊆ U of x0 is called a set of selection functions for

the PCr-function H at x0 if H(x) ∈ {H(1)(x), . . . , H(l)(x)} for every x ∈ W .

The selection functions H(j) such that H(j)(x0) = H(x0) are called active selection

functions at x0. PC1-functions are also called piecewise-differentiable functions.

Theorem A.1 ([16, Theorem 4.2.2]). Let U ⊆ R
n×R

k be open, letH : U → R
k

be a PCr-function and let (x0, y0) ∈ U be a vector withH(x0, y0) = 0. Further, let

H(1), . . . , H(l) : W → R
k be a collection of selection functions for H at (x0, y0) ∈
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W ⊆ U , andΠ a conical subdivision of Rn×R
k with a lineality space of dimension q.

If

1. for every π ∈ Π there exists an index jπ ∈ {1, . . . , l} such that H(x, y) =

H(jπ)(x, y) for every (x, y) ∈ W ∩ ({(x0, y0)} + π);

2. either (n + k − q) 6 1 or there exists a number p ∈ {2, . . . , (n + k − q)} such

that the pth branching number of Π does not exceed 2p;

3. all matrices ∇yH(jπ)(x0, y0), π ∈ Π, have the same nonvanishing determinant

sign,

then

1. the equationH(x, y) = 0 determines an implicit PCr-function y(x) at (x0, y0);

2. the implicit functions y(jπ)(x) determined by the equations H(jπ)(x, y) = 0,

π ∈ Π, form a collection of selection functions for the PCr-function y(x) at x0;

3. for every h ∈ R
n the identity ξ = y′(x0; h) holds if and only if ξ satisfies the

piecewise-linear equation H′((x0, y0); (h, ξ)) = 0.

Theorem A.2 ([16, Proposition 4.2.2]). Suppose that the assumptions of the

previous theorem are satisfied and h ∈ R
n is arbitrary.

1. Then there exists a cone π ∈ Π such that

(A.1)

(

h

0

)

∈

(

In 0n,k

∇xH(jπ)(x0, y0) ∇yH(jπ)(x0, y0)

)

π.

2. The inclusion (A.1) holds if and only if

(

h

−
(

∇yH(jπ)(x0, y0)
)−1

∇xH(jπ)(x0, y0)h

)

∈ π.

3. If h satisfies (A.1) then

y′(x0; h) = −
(

∇yH(jπ)(x0, y0)
)−1

∇xH(jπ)(x0, y0)h.

Acknowledgement. The author would like to thank Prof. J. Haslinger for his

help and constructive discussions. He also appreciates the comments of Assoc. Prof.

J. V. Outrata and the anonymous referee, which helped to improve the presentation.

294



References

[1] P. Beremlijski, J. Haslinger, M. Kočvara, R. Kučera, J. V. Outrata: Shape optimiza-
tion in three-dimensional contact problems with Coulomb friction. SIAM J. Optim. 20
(2009), 416–444.

[2] P. Beremlijski, J. Haslinger, M. Kočvara, J. V. Outrata: Shape optimization in contact
problems with Coulomb friction. SIAM J. Optim. 13 (2002), 561–587.

[3] A.L. Dontchev, W.W. Hager: Implicit functions, Lipschitz maps, and stability in opti-
mization. Math. Oper. Res. 19 (1994), 753–768.

[4] C. Eck, J. Jarušek: Existence results for the static contact problem with Coulomb
friction. Math. Models Methods Appl. Sci. 8 (1998), 445–468.

[5] I. Ekeland, R. Temam: Analyse convexe et problèmes variationnels. Études mathéma-
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