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Bijective Reflexions and Coreflexions of Commutative Unars 

JAROSLAV JEZEK and TOMAS KEPKA 

Praha 

Received 10. October 1995 

In this páper we investigate bijective reflexions and coreflexions of commutative unars. 
V tomto článku jsou vyšetřovány bijektivní reflexe a koreflexe komutativních unárů. 

1. Introduction and preliminaries 

Let n be a positive integer. By an n-unar we mean an algebra A with n unary 
operations, i.e. A = (A,fl9..., fn) where A is a non-empty set and fl5 ...,f, are 
transformations of A. The n-unar is said to be 

— commutative if ff = ff for all ije {1,..., n}, 
— cancellative if the transformations f are all injective, 
— divisible if the transformations f are all surjective, 
— bijective if the unary operations f are all permutations. 
We denote by #„ the variety of commutative n-unars, by ^^n the class of 

cancellative commutative n-unars, by 3)%>n the class of divisible commutative 
n-unars and by 30%\ the class of bijective commutative n-unars. Let us observe that 
the n-unar A = (-4,f,..., f) is commutative if and only iff is an endomorphism 
of A, for any i. 

In this paper we are going to investigate reflexions and coreflexions of arbitrary 
commutative n-unars in the category of bijective commutative n-unars. If L is 
a subcategory of a category K and A is an object of K, then by a reflexion of A in 
L we mean an object B of L together with a morphism \i:A-*B such that for 
any morphism v: A -> C, where C is an object of L, there exists a unique 
L-morphism X: B -» C with v = X\i. (More simply, we can say that \i: A -*> B is 
the reflexion.) Coreflexions are defined dually. 

*) MFF UK, Sokolovská 83, 186 00 Praha 8, Czech Republic 
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With respect to the subcategory of bijective commutative n-unars, the reflexions 
and coreflexions will be called bijective. We shall give the constructions and also 
investigate related concepts of bijective envelopes and bijective covers of cancel-
lative and divisible commutative n-unars, respectively. 

The construction of a bijective coreflexion of a divisible commutative 2-unar 
has been given in an earlier paper [2]; it was needed as an auxiliary result to prove 
that every medial division groupoid is a homomorphic image of a medial 
quasigroup, and turned out to be a two-dimensional version of the ergodic-theoretic 
construction of an automorphism on a measure space naturally extending an 
endomorphism; see Chapter 10, §4 of [1] for the en tropic theory of dynamical 
systems. In Section 4 of the present paper we generalize this construction. 

Let A = (.4,/,..., /,) be a commutative n-unar and denote by/ the composition 
/ ... / „ so that / is an endomorphism of A. One can easily see that A is 
cancellative if and only if / is injective, and A is divisible if and only if / is 
surjective. Consequently, A is bijective if and only if / is a permutation of A. We 
have 

i d ^ k e r ( / ) c = k e r ( / 2 ) c = . . . 

and the relation cA = (J,°L0 ker/ ' is the smallest cancellative congruence of A. (By 
a cancellative congruence we mean such a congruence that the corresponding 
factor is cancellative.) 

Subalgebras of n-unars will be called subunars. By a dense subunar of 
a commutative n-unar A we mean a subunar B such that for any element a e A 
there is a nonnegative integer i with f\a) e B. 

1.1. Lemma. Let cp and i/t be two homomorphisms of a commutative n-unar 
A into a cancellative commutative n-unar C and let B be a dense subunar of A. 
If cp and xf/ coincide on B, then cp = i/L 

Proof. Let / = / . . . / , and g = gx...gn, where A = (A, / , . . . , / ) and 
C = (C, gb ..., gn). Let ae A. Then f\a) e B for some i and we have 

gi<p(a) = cpf\a) = xl,f\a) = g^(a). 

Hence cp(a) = ij/(a), since g is injective. • 

Let A = (-4,/,..., /,) be a commutative n-unar and / = / . . . / . We denote by 
DA the set of the elements of A for which there exists an infinite sequence a0, au ... 
with a, = f(ai+x) for all i. Clearly, DA is either empty or the underlying set of 
a subunar of A, which is then denoted by D^; it is the largest divisible subunar of A. 

We denote by <&+ the class of the commutative n-unars A with non-empty DA. 
Clearly, the classes ##„, ^#„ and the class of finite commutative n-unars are 
contained in ^n . 

If cp is a homomorphism of a commutative n-unar A into a commutative 
n-unar B, then clearly (p(DA) ^ DB. In particular, if A e #+, then Be%?n. 
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1.2. Example. Define a unary operation / on the set Z of integers by 

f(i) = i - l for i < 0, 

f(n2 -f i) = i for n > 0 and 0 < i < In. 

For the 1-unar (Z,f) we have D(ZJ) = 0, although the set Pj,^0/'(Z) is non-empty. 

2. Bijective reflexions of commutative unars 

Let A = (A,f,..., /,) be a commutative n-unar. Put f = f ... fn, A = A x co 
where co is the set of nonnegative integers and define transformations f, ...,/„ 
of A by 

f(a,k) = (f(a),k). 

Clearly, the algebra A = A(f,...,f) is again a commutative n-unar and the 
mapping i: a h-» (a, 0) is an injective homomorphism of A into A. 

Denote by r the set of the ordered pairs ((a, k), (f(a), k + 1)) where a e A and 
k e co, so that r is a binary relation on A; denote by sA (or only by s) the transitive 
closure of r u r~l u id,}. Then s is the equivalence on A generated by r. 

2.1 Lemma. Let (a, k) and (b, m) be two elements of A with k < m. Then 
((a, k), (b, m)) e s if and only iffj(a) = fi+k~m(b)for an integer j > m — k. 

Proof. The 'if part is clear, since ((a, k), (fJ(a), k -F j)) e s and 
((b, m), (fj+k~m, k + j)) e s by the definition of s. Let ((a, k), (b, m)) e s. There is 
a finite sequence x0,..., xq (q > 0) of elements of A such that x0 = (a, k), 
xq = (b, m) and (xh xi+l) e r u r " 1 for 0 < i < q. We can assume that q is the 
least nonnegative integer with respect to the existence of a finite sequence with 
these properties. Using the minimality of q, the obvious observation r r\ r~{ = $ 
and the fact that (x„ x,+1) e r~x and (xi+l, xi+2) ~ r together imply x, = .x,+2> it is 
easy to see that there is a je{0,..., q) such that (xhxi+l)er for all i <j and 
(x» *i+i) ~ r - 1 for all i > j . But then x, = (fj(a), k + j) and, from the other side, 
Xj = (fq~J(b), m 4- q — j); we get k + j = m + q — / which implies q — j = 
j + k-m, and />(fl) = /"''(ft). Q 

The relation r is clearly compatible with the unary operations f. This implies 
that s is a congruence of A; s is just the congruence generated by r. Denote by 
A = (.4,/j,..., /,) the factor A/s, by n the natural projection of A onto A and put 
il/A = ni, so that ij/A is a homomorphism of A into A. 

2.2. Theorem. A is a bijective commutative n-unar; together with i//A, it is 
a reflexion of A in the categorty &<&„. We have ker (^A) = cA and the range of 
i//A is a dense subunar of A which is isomorphic to A/cA. 
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Proof. Let / = f ... fn. In order to show that A is bijective, it is sufficient to 
verify that f is a permutation of A. From 

(a, k)/s = (f(a), k + l)/s = f((a, k + l)/s) 

we see that f is surjective. On the other hand, let (a, k)/s and (fc, m)/s be two 
elements of A with k < m such that f((a, k)/s) = f((fc, m)/s). Then we have 
((f(a), k), (f(b), m)) e s and consequently fi+\a) = fi+l+k~m(b) for some; >m-k 
by 2.1; a second application of 2.1 yields (a, k)/s = (b,m)/s. Hence / is also 
injective. 

It follows easily from 2.1 that ker (ij/A) = cA. If a e A and k e c0, then f((a, k)/s) = 
(a, 0)/s e il/A(A), so that the range of \j/A is a dense subunar of A; the subunar is 
isomorphic to A/cA by the homomorphism theorem. 

It remains to prove that \j/A: A -> A is reflexion of A in 38%',,. Let Q be 
a homomorphism of A into a bijective commutative n-unar B = (£, gb ..., g,,). Put 
g = g! ... g,„ so that g is a permutation of B. Define a mapping A: A -* .8 by 
A(a, k) = a_A:o(a). One may check easily that X is a homomorphism of the n-unars 
and Xi = Q. Since 

X(a,k) = rt(a) = g-k-'gQ(a) = g-k-'Qf(a) = X(f(a),k + 1), 

we have 5 <~\ ker (X). Consequently, X induces a homomorphism x: A -> B such 
that T7i = 2. Then also Ti/tA = T7Uf = Xi = Q. Moreover, x is unique by 1.1, 
because the range of i/tA is dense in A. • 

2.3. Proposition. If A is cancellative, then \j/A is injective. If A is divisible, then 
ij/A is surjective. If A is finite, then A is also finite and i/tA is surjective. 

Proof. If A is cancellative, then ker (i//A) = cA = id^ by Theorem 2.2. If A is 
divisible, then the range of \j/A is a divisible subunar of the bijective n-unar A, and 
consequently bijective itself; but it is also a dense subunar and thus coincides with 
A. If A is finite, then the image of t/tA is a finite subunar of the bijective n-unar 
A, so that again it is bijective and coincides with A. • 

The existence of reflexions implies that there is a functor Q> of the category ^,. 
into &<&„: if cp: A -> B is a homomorphism of two commutative n-unars, then 
<t>(cp):A -> B is the only homomorphism with Q>(cp) i/tA = ij/Rcp. It follows easily 
from 2.1 that <l>(cp) can be defined by <J>(cp) ((a, k)/sA) = (<p(a), k)/sB, and that <&(cp) 
is injective (or surjective, respectively) whenever cp is. 

3. Bijective envelopes of cancellative commutative unars 

By a bijective envelope of a commutative n-unar A we mean a bijective 
commutative n-unar B such that A is a dense subunar of B. 
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3.1. Theorem. A commitative n-unar A has a bijective envelope if and only if 
it is cancellative; in that case the bijective envelope is unique up to isomorphism 
over A and is isomorphic with A. If A is a subunar of a bijective commutative 
n-unar B, then B is a bijective envelope of A if and only ifB is the only bijective 
subunar ofB containing A. 

Proof. It is an easy combination of the construction and results given in 
Section 2. • 

4. Bijective coreflexions of commutative unars 

Let A = (-4,f,..., f.) be a commutative n-unar and putf = f ... fn. Denote by 
A the set of the mappings oc:a) -> A such that f(oc(i + 1)) = oc(i) for all ieco. 
Define unary operations f , . . . , fn on A by 

m (0 = Mi)); 
the correctness follows from 

/(/(«) (/ +1))=/(/(«(. +1)))=f(/(«o +1)))=/wo)=m (o. 
One can easily check that the unary operations f commute. Hence, if A is non­
empty, then A = (-4,f,..., f,) is again a commutative n-unar. Define a mapping 
(/>A : i-^^by0A(a) = a(O). 

If A £ #+, then there is no bijective commutative n-unar with a homomorphism 
into A; in particular, A has no coreflexion in the category of bijective commutative 
n-unars. 

4.1 Theorem. Let Aer€n. Then 0A: A -> A is a coreflexion of A in the 
category of bijective commutative n-unars. The range of (j)A coincides with DA. 

Proof. Since A e <&„ (i.e., DA =N 0), the set A is non-empty. We are going to 
prove that the unary operations f are permutations of A. 

If f(a) = fi(p) for some a, /? e A, then f(a(/)) = f(P(i)) kfor all i e co. Con­
sequently, 

/wo)= f - fj-jj+l- fnfk<m=f - fj-ifj+i- mm)=/wo) 
for all i e co, and hence also 

«(0=f(«(/ + i))=f(/s(/ + i)) = ,9(0, 
i.e., a = p. We see that f is injective. 

If oce A, then we can define a mapping P: co -* A by 

/5(0 = f.-f-.f+.-fW' + i))-
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One can easily verify that f(/3(/ + 1)) = JS(/), i.e., jS e A. We have f(j3)(/) =f(j3(/)) = 
f(a(/ + 1)) = a(/), so that f(/J) = a. We see that f is surjective, and A is 
a bijective commutative n-unar. 

Obviously, cpAf = fjCpA for every j , and hence (£A is a homomorphism of A into 
A. Clearly, DA is just the range of cpA. 

Let B = (£, gh..., g„) be a bijective commutative n-unar and Q:B -* A be 
a homomorphism. Put g = gi... g„. For every x e B define a mapping X(x) :CD-> A 
by X(x)(i) = Q(g~i(x)). Then 

f(i(x)(/ + 1)) = f(Q(g~i'\x))) = Q(gg-i-\x)) = Q(g-\x)) = X(x)(i) 

and this means that X(x) e A. Consequently, A is a mapping of B into A. It is 
a homomorphism of B into A, since 

%W) (0 = (te-W*))) = J W T W) = M*) (0) = J5W*)) (0. 
i.e., X(gj(x)) = f(X(x)). For x e B we have </>AA(x) = >l(x) (0) = g(x), and hence 
cpAX = Q. 

It remains to prove the uniqueness of a homomorphism X with this property. Let 
X' :B -> A be a homomorphism with 0A>i' = £. Put f = f ... f„. One can easily 
check that f(a) (/) = f(a(/)) and f'(a) (/) = a(0) for all a e A and / e co. If x e B, then 

r(x)(0 = (f-'(i'W))(o) = %-'(x))(o) = <M%-'M)) = (Ktf-'W) = ^)(0 
for every i e co, so that X'(x) = A(x). • 

4.2 Proposition. //" A is divisible, then cpA is surjective. If A e #,," « cancellative, 
then cpA is injective. If A is finite, then A is finite. 

Proof. If A is divisible, then the range DA of cpA concides with A. If A is injective, 
then f is injective and it is easy to see that for any element a e A there is at most 
one element oce A with a = cpA(ot). If A is finite, then DA is bijective and the rest 
is clear. • 

From the existence of coreflexions it follows that there is a functor *F of the 
category <€+ into ^#„: if cp: A -> B is homomorphism and A e <£+ (which implies 
that also B e # + ) , then *F(<p):A->B is the only homomorphism with 
(/)B%) = (p(/)\- It follows easily from 4.1 that ^(cp) can be defined by 
^(cp) (a) (/) = cp(ct(i)), and that *¥(cp) is injective whenever cp is injective. On the 
other hand, the following example shows that ¥(</>) is not necessarily surjective if 
cp is surjective. 

4.3 Example. Consider the 1-unars Z = (Z,f) and N = (IV, g), where Z is the 
set of all integers, IV is the set of nonnegative integers, f(i) = / — 1 for all /, 
g(i) = / — 1 for / > 0, and g(0) = 0. The mapping cp: Z -> IV, defined by cp(i) = i 
for / > 0 and cp(i) = 0 for / < 0, is a homomorphism of Z onto N. Since Z is 
bijective, Z is isomorphic to Z. On the other hand, N is only divisible. As it is easy 
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to see, N contains a subunar C isomorphic with Z and an element e not belonging 
to C, with g(e) = e\ we have JV = C u [e],Clearly, *F(<p) is an isomorphism of 
2 onto C; it is an injective, but not surjective homomorphism of Z into N. 

5. Bijective covers of divisible commutative unars 

By a bijective cover of a divisible commutative n-unar A we mean a surjective 
homomorphism Q : B -> A such that B is a bijective commutative .n-unar and there 
is no cancellative congruence of B, conktained in ker (Q), other than idB. 

5.1. Theorem. Let A. be a divisible commutative n-unar. A homomorphism 
Q : B -» A is a bijective cover of A if and only if there is an injective homomor­
phism G : B -* A with Q = (f>AG. 

In other words, all representative examples of bijective covers of A can be 
obtained by taking a bijective subunar C of A, such that (f>A(C) = Af and 
restricting the homomorphism </>A: A -> A to C. 

Proof. First, let Q:B —> A be a bijective cover. By Theorem 4.1, Q = (j)AG for 
a homomorphism G : B -+ A. Then ker (G) is a cancellative congruence of B con­
tained in ker (g), so that ker (G) = idB and G is injective. 

Next, let Q = ({)AG for an injective homomorphism <r:B-> A and let c be 
a cancellative congruence of B contained in ker (Q). Denote by B' the image of 
B under G and by c' the image of c under tr, so that c' is a cancellative congruence 
of B'. Then d = c' u id -̂ is a cancellative congruence of A and d .= ker (<t>A). 

Let (<x,fi)ed. Since d is cancellative, (f~'(ot),f~l(p))ed for any nonnegative 
integer i (we employ the notation of Section 4). But d ^ ker ((f)A) and we get 

«(.) =/-'(«) (o) = /--(/0(o) = /j(0. 

This means that a = /?. We have proved that d = id^-; but then, c = \AB. • 

5.2. Example. In the notation of Example 4.3, the 1-unar N = (IV, g) has two 
bijective covers, namely, </>N: N -> N and </>: C -> N, where <f> is a restriction of 
</>N. The first of these two covers is not strong, while the second is. By comparison 
with Section 3, we see that there are more possibilitites for bijective covers than 
for bijective envelopes. 

5.3. Proposition. Let A be a divisible commutative n-unar. There exist a bijec­
tive cover Q : B - • A of A with Card (B) = Card (A). Moreover, we have 
Card (B) = Card (A) for any strong bijective cover Q : B -• A of A. 

Proof. With respect to Theorem 5.1, it is sufficient to prove that if B is 
a bijective subunar of A with <f)A(B) = A, then there is a bijective subunar C of 
B with Card (C) = A and (f)A(C) = A. Clearly, there exists a subset 5 of B with 
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Card (S) = A and (f>\(S) = A\ then we can take C to be the bijective subunar 
generated by S. • 

5.4. Example. Denote by S the set of finite sequences of elements of {1,2}; 
the empty sequence 0 is not excluded. Consider the divisible 1-unar S = (S,f), 
where f is defined by f(0) = 0 and f(ah ..., ak) = (au..., ak_{) for k > 0. If 
uhul9... is an infinite sequence of elements of {1,2}, then we can define an 
element <xM of S by taking aM(i) = (uh..., u). In this way we obtain an injective 
mapping, and hence Card (5) = 2N(). We are going to show that S has no strong 
bijective cover. 

Let Q:T - • S be a bijective cover of S, and T = (T, g). Our claim will be 
justified by proving that there is a proper bijective subunar of T which is mapped 
onto S by Q. With respect to Theorem 5.1, we can assume that T is a subunar of 
S (so that g is a restriction of / ) and that Q is a restriction of (f)s. Since Q is 
surjective, there exists an element a of T with Q(OC) = (1), i.e. a(0) = (1). Denote 
by P the set of the elements / ' (a) , where i runs over all integers. Then P is 
a bijective subunar of T; but also its complement Q = T — P is a proper bijective 
subunar of T. We are going to show that Q(Q) = S. 

Let a = (a,,..., ak)eS. As it is easy to see, at most one of the elements 
b{ = (ab ..., ak, 1) and b2 = (ai,..., ah 2) belongs to the set {a(0),a(l), ...} and thus 
we can take a number j e {1,2} with b} $ {a(0),a(l), ...}. Since Q is surjective, there 
is an element /J of T with Q(P) = bp i.e., /?(0) = br By the choice of j we have 
jB i P, and so ]8 e Q. Then also f(p) e Q. We have e(/(j8)) = /(/3) (0) = f(b7) = a. 
An arbitrary element a of S belongs to Q(Q). 

6. Balanced divisible commutative 2-unars 

Let A = (A,f g) be a divisible commutative 2-unar. Put A, = (-4,f) and 
Ar = (A, g), so that both A, and Ar are divisible commutative 1-unars and we have 
the bijective coreflexions (f>Xl: B, -> A, and <£Ar: B r -• Ar, where B, = (A,) and 
Br = (Ar). Of course, g is an endomorphism of A, and thus there is a corresopon-
ding endomorphism g of B,; as it is easy to see, it can be defined by 
g(a) (/) = g(a(/)). We say that A is left balanced if g is a surjective endomorphism 
of B,. Analogously, f is an endomorphism of Ar and A is called right balanced if 
the corresponding endomorphism / o f B r is surjective. 

6.1. Proposition. Let A = (-4,f, g) be a divisible commutative 2-unar. Then A 
is both left and right balanced, provided that at least one of the following four 
conditions is satisfied: 

(Df=g; 
(2) f is bijective; 
(3) g is bijective; 
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(4) for any triple a, b, c of elements of A with f(a) = b = g(c) there is an 
element d of A such that g(d) = b and f(d) = c. 

Proof. The situation is clear under any of the first three conditions. Let the 
assumptions of (4) be satisfied, and let a e B,. We need to find an element /? with 
g(f$) = a. The elements /?(/), i = 0, 1,... can be constructed by induction on / as 
follows: P(0) is an arbitrary element of A with g(fi(0)) = a(0); if /?(/ — 1) has 
already been constructed in such a way that g(P(i — 1)) = a(/ — 1), then there is 
an element d with g(d) = a(/) and f(d) = /}(/ — 1), and we can take /?(/) = d. • 

Let us remark that if A = (A,f, g) is left balanced, then a 4by parts' construction 
of a 2-unar isomorphic to A is possible and may in some cases turn out to be more 
advantageous: first we find the 1-unar B/ and consider it as a 1-unar C with respect 
to the unary operation g; then we find the 1-unar C, to which we add the 
endomorphism, corresponding to the fundamental operation of B,, as the first 
fundamental unary operation (and keep the other operation). 

6.2. Example. Let E be the set of the ordered pairs (/, j) of integers such that 
either / > 2 or else 0 < / < 1 and j > 0. Define two binary operations f and g on 
£by 

fC \ = J^") if iei°^} *ndj = 0, 
J[hJ) \(i,j- 1) otherwise 

and 

((Uj) if i = 0, 
g(i,j) = < (1,0) if i = 2 a n d j < 0 , 

I (/ — Ij) otherwise. 

It is easy to verify that E = (£, f, g) is a divisible commutative 2-unar. Put 
B, = (E,) and Br = (Er). 

Let us prove that E is not left balanced. Since f(l, 0) = (1,0), we have a e B,, 
where a(/) = (1, 0) for all /. Suppose that a = g(fi) for some /J. Then g(P(i)) = (1,0) 
for all /, and so /}(/) = (2, fc,) for some /c, < 0. Let kj be maximal among the 
numbers k0, kx,...; its existence is clear. We have 

(2, kj) = P(j) = f(/J(; + 1)) = f(2, k]+l) = (2, ki+l - 1), 

so that kj = kj+l — 1, a contradiction with the maximality of kj. 
Let us prove that E is right balanced. Let a e Br; for any / > 0, denote 

a(0 = (Pn <l)- If Pi = 0 f°r every /, then there is a q with q{ = q for all / and we 
have a = /(/?), where /?(/) = (0, q -h l) for all /. Therefore, we can assume that 
Pj > 1 for somef Then pj+k = p} + k for all k > 0. Define j5 by 

R(i) = | ( p " g ' ~ l) f o r i:>J> 
\g(P(i + 1)) (by induction) for i = jj - 1,..., 0. 
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It is easy to verify that /J e Br and a = /(/}). 
We see that the divisible commutative 2-unar (£, / , g) is right balanced, but not 

left balanced. Consequently, (£, g, / ) is left balanced, but not right balanced. The 
cartesian product of these two 2-unars is neither left nor right balanced. 
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