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Multiplication Groups of Quasigroups and Loops I

ALES DRAPAL, TOMAS KEPKA*)
MFF UK Praha

Received 13 January 1992

Transversals A, B to a subgroup H in a group G are called H-connected if [ A, B] is contained in H.
In the sequel, the connected transversals will turn out to be important tools for the study of the
multiplication groups of quasigroups and loops.

Transversdly A, B podgrupy H grupy G se nazyvaji H-spojené, jestlize [A, B] je obsaZzeno v H.
Spojené transversaly se pozd&ji ukazi jako duleZité néstroje pro studium multiplikacnich grup kvazigrup
a lup.

1. Preliminaries

1.1 Let G be a group. For alla, b € G, a® = b™'ab and [a, b] = a”'b'ab. If
A, B are subsets of G, then A™' = {a™'; a € A}, A* = x"'Ax for every x € G,
AB ={ab;ac A, be B} and [A, B] = {[a, b];a€ A, b€ B} (then [B, A] =
= [A, B]™"). Moreover, (A) denotes the subgroup generated by A.

We put G’ = (|G, G]), G" = (G, etc.

If H is a subgroup of G, then ([H, G]) is a normal subgroup of G (indeed, for
x,y¢e Gand u€ H, y " 'u"'x'uxy = y 'u"'yuu"'y 'x 'uxy € (H, G))).

1.2 Let G be a group. For a non-empty subset A of G, C5(A) = {x€ G;
xa = ax for each a € A} and N;(A) = {x € G; xA = Ax}. Then 5(A) and N;(A)
are subgroups of G and C;(A) is normal in N;(A). Moreover, A & C;(Cs(A)),
Ng(A) = {x€ G; x'Ax = A} = {x € G; xAx™' = A} and Cx(A) = C4((A4)),
N(A) = N4(A)).

If H is a subgroup of G, then H S Ng(H) and N;(H) is the greatest subgroup
of G containing H as a normal subgroup. Further, H & C(H) if H is abelian,;
in that case, H & Z(Cgs(H)).

*) Department of Mathematics, Charles University, 186 00 Praha 8, Sokolovsk4 83, Czechoslovakia
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Z(G) = C;(H) denotes the centre of G.

If H is a normal subgroup of G and K is a characteristic subgroup of H (i.e.
K is invariant under all automorphisms of H), then K is normal in G (in particular,
for H normal, Z(H) and H’ are also normal in G).

1.3 Let H be a subgroup of a group G. Put L;(H) = [| H*. Then Ly(H) (the
xeG

so called core of H) is the greatest subgroup of H which is normal in G. Clearly,
Ly(H) = {u€ H; x'uxe H for each x € G}.
For every x€ G, Lg(H) = Lg(H"). Moreover, L/ y(H/N) =1, where
N = L(H).
1.4 Lemma. Let H, K be subgroups of a group G.
(1) IfK, H are normal in G, then [K, H| S K n H. If, moreover, K n H =
=1, then [K,H] =1, K € C4(H) and H & C 4K).
(ii) If K~ H=1, K is normal in G and C;(H) € K, then L ;(H) = 1.
(iii) If KH S HK, then KH = HK is a subgroup of G.
(iv) If G = KH, then H n C K) € L(H) and K n C ;(H) € L «(K).
(v) If His normal in G and H » G' = 1, then H S Z(G).
1.5 Let G be a group. For every subset A of G, let cn(A) = cng(A) = J A~

x€G

(i) A & cn(A) and cn(cn(A)) = cn(A).

(ii) 1 € cn(A) iff 1 € A.

(iii) cn(A) N Z(G) = A n Z(G).

(iv) (en(A))~' = cn(A7Y).

(v) If A & Z(G), then cn(A) = A.

(vi) If H is a subgroup of G, then cn(H) = H iff H is normal in G.

(vii) If x, y € G, then xy € cn(A) if yx € cn(A).
(viii) If A, i€, is a non-empty system of subsets of G, then cn(|JA,) =

= Uen(4)).

2. Stable transversals

2.1 Let H be a subgroup of a group G. A subgroup A of G is said to be a left
(right) partial transversal to G in H if a 'b¢ H (ab™' ¢ H) for all a, b€ A,
a # b.

2.2 Lemma. Let A be a left (right) partial transversal to a subgroup H of
a group G. Then, for every x € G:
(i) xA (Ax) is a left (right) partial transversal to H.
(i) Ax (xA) is a left (right) partial transversal to H* (H*™").
(iii) A* is a left (right) partial transversal to H".
(iv) A7 is a right (left) partial transversal to H.
(V) A is a left (right) partial transversal to H n (A).
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2.3 Lemma. Let H be a subgroup of a group G and A a subset of G. The
following conditions are equivalent:
(i) a”'b ¢ cn(H) (ab™' ¢ cn(H)) for alla. b€ A, a # b.
(ii) Ax (xA) is a left (right) partial transversal to H for every x € G.
(iii) For every x € G, the sets Ax and xA are both left and right partial trans-
versals to H.
(iv) A is a left (right) partial transversal to H* for every x € G.
(V) A” is a left (right) partial transversal to H for every x € G.
(vi) For all x, y € G, A* is both left and right partial transversal to H’.
(vii) For allx, y, z € G, the sets (Ax), (xA)’, (A”) x, x(A’) are both left and right
partial transversals to H.
24 Let H be a subgroup of a group G. A subset A of G satisfying the
equivalent conditions of 2.3 is called a stable partial transversal to H in G.

2.5 Lemma. Let A be a stable partial transversal to a subgroup H of G. Then,
for all x,y,z¢€ G, the sets (Ax), (xA)’, (A%) x, x(A’) are stable partial trans-
versals to H'.

2.6 Let H be a subgroup of a group G. A subset A of G is said to be a left
(right) pseudotransversal to H in G if G = AH (G = HA).

2.7 Lemma. Let A be a left (right) pseudotransversal to a subgroup H of
a group G. Then, for every x € G:
(i) xA (Ax) is a left (right) pseudotransversal to H.
(ii) Ax (xA) is a left (right) pseudotransversal to H* (H*™").
(iii) A* is a left (right) pseudotransversal to H".
(iv) A™' is a right (left) pseudotransversal to H.
(V) A is a left (right) pseudotransversal to H N (A) in (A).

2.8 Lemma. Let H be a subgroup of a group G and A a subset of G. The
following conditions are equivalent:
(i) Ax (xA) is a left (right) pseudotransversal to H for every x € G.
(ii) For every x € G, the sets Ax and xA are both left and right pseudotransversals
to H.
(iii) A is a left (right) pseudotransversal to H* for every x € G.
(iv) A* is a left (right) pseudotransversal to H for every x € G.
(v) For all x,y € G, A" is both left and right pseudotransversal to H’.
(vi) For allx, y, z € G, the sets (Ax)’, (xA)’, (A”) x, x(A”) are both left and right
pseudotransversals to H'.
Proof. (i) implies (ii). For every x € G there are a€ A and u € H with
ax 'u = 1. Then x = ua and we have shown that A is a right pseudotransversal.

29 Let H be a subgroup of a group G. A subset A of G satisfying the
equivalent conditions of 2.8 is called a stable pseudotransversal to H in G.

2.10 Lemma. Let A be a stable pseudotransversal to a subgroup H of G. Then,
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for all x,y,z¢€ G, the sets (Ax), (xA)’, (A’) x, x(A”) are stable pseudotrans-
versals to H* in G.

2.11 Let H be a subgroup of a group G. A subset A of G is said to be a left
(right) transversal to H in G if it is both a left (right) partial transversal and a left
(right) pseudotransversal to H in G.

2.12 Lemma. Let A be a left (right) transversal to a subgroup H of a group G.
Then, for every x € G:

(i) xA (Ax) is a left (right) transversal to H.
(i) Ax (xA) is a left (right) transversal to H (H* ).
(iii) A* is a left (right) transversal to H".
(iv) A7 is a right (left) transversal to H.
(V) A is a left (right) transversal to H N (A) in (A).

2.13 Lemma. Let H be a subgroup of a group G and A a subset of G. The

following conditions are equivalent:
(1) Ax (xA) is a left (right) transversal to H for every x € G.
(ii) For every x € G, the sets Ax and xA are both left and right transversals toH.
(iii) A is a left (right) transversal to H* for every x € G.
(iv) A" is a left (right) transversal to H for every x € G.
(V) For all x, y € G, A” is both left and right transversal to H’.
(vi) For allx, y, z € G, the sets (Ax), (xA)’, (A’) x, x(A”) are both left and right
transversals to H'.

2.14 Let H be a subgroup of a group G. A subset A of G satisfying the
equivalent conditions of 2.13 is called a stable transversal to H in G.

2.15 Lemma. Let A be a stable transversal to a subgroup H of G. Then, for all
x, ¥,z € G, the sets (Ax), (xA)’, (A’) x, x(A”) are stable transversals to H* in G.

2.16 Lemma. Let H be a subgroup of a group G and A a subset of G. Put
G,=(A)and H, = H n G,. If A is a stable (partial, pseudo) transversal to H
in G, then A is a stable (partial, pseudo) transversal to H, in G,.

2.17 Lemma. Let H be a subgroup of a group G.

(i) If K is a subgroup of H and if A is a (left, right, stable) partial transversal
to H in G, then A is also a (left, right, stable) partial transversal to K in G.

(ii) If K is a subgroup of G with A € K, L = K n H and if A is a (left, right,
stable) (pseudo)transversal to H in G, then A is also a (left, right, stable)
(pseudo)transversal to L in K.

(iii) IfK is a subgroup of G with H S K and if A is a (left, right) (pseudo)trans-
versal to H in G, then A n K is a (left, right) (pseudo)transversal to H in
K. Moreover, if A is stable, then A n K is stable (in K).

2.18 Lemma. Let H be a subgroup of a group G and ¢ a homomorphism of
G onto a group K, Ker(¢) = N.

(1) If N & Hand A is a (left, right, stable) partial transversal to H, then ¢|A is
injective and @(A) is a (left, right, stable) partial transversal to ¢(H).
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(i) If A is a (left, right, stable) pseudotransversal to H in G, then @(A) is a (left,
right, stable) pseudotransversal to ¢(H) in K.
2.19 Lemma. Let H and K be subgroup of a group G.
(1) If H o K =1, then K (H) is both a left and right partial transversal to
H (K).
(i) If H is normal in G and H~ K =1, then K (H) is a stable partial
transversal to H (K).
(iii) If HK = G, then K (H) is a stable pseudotransversal to H (K).

2.20 Lemma. Let H, K be subgroups of a group G such that H » K = 1 and
HK = G. Then K (H) is a stable transversal to H (K).

Proof. Fisrt, let a,be HL x€ G, x=uv, u€c H ve K Then w=
= (@) ' (b") = v 'u'a 'buv. If w e K, then(a~'b)“€ H n K = 1 and hence
a~'b =1, a=b. We have shown that H* is a left partial transversal to K. By
2.3(v), H is a stable partial transversal to K.

Now, let x=uv, u€ H, ve K. Then FK= v 'H*vK=v 'HK=v"'G =
= G. By 2.8(iv), H is a stable pseudotransversal to K in G.

2.22 Lemma. Let H be a subgroup of a finite index in a group G and let A be
a (left, right) transversal to H in G. The following conditions are equivalent:
(i) A is a stable partial transversal.
(ii) A is a stable pseudotransversal.
(iii) A is a stable transversal.

Proof. Let n = [G: H], x€ G, B = x 'Ax. Then card(A) = card(B) = n.

(i) implies (iii). B is a left partial transversal and there is an injective mapping f:
B — A with bH = f(b) H for each b € B. Now, f is a bijection, f(B) = A and
BH = AH = G. Thus B is a transversal.
(ii) implies (iii). B is a left pseudotransversal and there is an injective mapping g:
A — B with aH = g(a) H for each a € A. Again, g is a bijection. If b, c € B,
b # ¢, then bH = g~ (b)) H # g™ '(c) H= cH and we see that B is a trans-
versal.

2.23 Lemma. Let H be a subgroup of a group G and A a left (right) pseudo-
transversal to H in G.
(i) There exists a left (right) transversal B to H in G such that B € A.
(ii) If(A) » H=1, then A is a subgroup of G and a transversal to H in G.
(iii) If K is a subgroup of G with H € K, thenL(K) = {u € K; u’ € K for each
ac A} (Le(K) = {u€K; u' €K for each a € A)).
(iv) If K is a subgroup of G with A € K, then Ly(K n H) € L ;(H).
(v) If K is a normal subgroup of H and if K" S H (K* S H) for each a € A,
then K S L ;(H).

2.24 Lemma. Let A be a stable (partial, pseudo) transversal to a subgroup H in
a group G. Then A™' is also a stable (partial, pseudo) transversal to H in G.
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3. Connected transversals

3.1 Let H be a subgroup of a group G and A, B subsets of G. We shall say that
A, B are H-connected if [A, B] € H.
3.2 Lemma. Let A be a left pseudotransversal to a subgroup H of a group
G and let B be a subset of G such that A, B are H-connected.
(1) If B is a left partial transversal to H, then B is a stable partial transversal.
(ii) If B is a left pseudotransversal to H in G, then both A and B are stable
pseudotransversals to H in G.

Proof. (i) Let x € G and b, ¢ € B be such that x™'b™'cx € H. There are a € A

and u € H with x = au. Then u 'a 'b"'cau € H, hence a 'b 'ca € H and we
have b™'c = b 'a 'ba-a 'b 'ca- a ‘¢ 'ac € H. However, then b = c.
(ii)) Let x,y€ G, x = au, a€ A, u< H. Then there are b € B and v € H with
uy = bv. Of course, w=b"'a 'bac H and b= a 'baw™'. Now, y=
=u'bv=u"ta 'baw v = u"'a 'bauz = x "'bxz, where z= u"'w v e H.
We have shown that B is a stable pseudotransversal. By the reason of symmetry,
A is also stable.

3.3 Corollary. Let A, B be H-connected left transversals to a subgroup H of
a group G. Then A, B are stable transversals.

3.4 In the sequel, by H-connected (pseudo)transversals we will always mean
H-connected left (pseudo)transversals (which are then both left and right (pseu-
do)transversals).

3.5 Lemma. Let A, B be H-connected (pseudo)tranversals to a subgroup H in
a group G and let K be a subgroup of G such that H & K. Then A N K, B n K
are H-connected (pseudo)transversals to H in K.

Proof. By 2.17(iii), both A » K and B n K are left (pseudo)transversals to H
in K. Clearly, they are H-connected in K.

3.6 Lemma. Let A, B be H-connected (pseudo)transversals to a subgroup H in
G. PutG,={(A,B)and H, = G, » H. Then A, B are H \-connected (pseudo)-
transversals to H, in G,.

3.7 Lemma. Let A, B be H-connected pseudotransversals to a subgroup H in
a group G. Then there exist H-connected transversals C, D to H in G such that
C&S Aand D € B.
3.8 Lemma. Let H be a subgroup of a group G, ¢ a homomorphism of G onto
a group K and N = Ker(¢).
(i) If A, B are H-connected pseudotransversals to H in G, then ¢(A), ¢(B) are
@(H)-connected pseudotransversals to ¢(H) in K.
(ii) If N & Hand A, B are H-connected transversals to H in G, then ¢( A), ¢(B)
are @(H)-connected transversals to @(H) in K and ¢|A, ¢|B are injective
mappings.
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(i) IfLo(NH) = N, A is a left pseudotransversal to H in G and if B is a subset
of G such that A, B are H-connected, then ¢(B) is a left partial transversal
to ¢(H) in K.

Proof. (i) and (ii). Easy.

(iii) Let b, c € B be such that ¢(b~'c) € ¢(H), i.e. b"'c € NH. For every a € A,
a'b”'ca=a'b7'ab- b 'a 'ac- ¢ 'a"'ca € NH, and so b~'c€ Lyz(NH) =
= N by 2.23(iii). We have shown that @(b) = ¢(c).

3.9 Lemma. Let H be a subgroup of a group G such that Lo(H) = 1. If A,
B are H-connected pseudotransversals to H in G, then A, B are transversals to
H in G.

Proof. This follows from 3.8(iii) for ¢ = idg, K = G and N = 1.

3.10 Lemma. Let A, B be H-connected pseudotransversals to a subgroup H
in a group G and let : G —~ K be a homomorphism of G onto a group K such
that Ker(¢) = Lg(NH) for a normal subgroup N of G. Then ¢(A), ¢(B) are
@(H)-connected transversals to ¢(H) in K.

Proof. This follows from 3.8(iii), as Ker(¢) H = NH.

3.11 Lemma. Let A, B be H-connected pseudotransversals to a subgroup H
in a group G.

(i) If Cis a subset of A v B and K = (H, C), then C & Ly(K).
(i) An HE Lg(H)and B H S L g(H).
(iii) Z(G) & A-Ly(H) andZ(G) & B ‘L ;(H).

Proof. (i) Let x€ G and c€ C. We have to show that x"'cx € K. To this
purpose, we can assume that c € A and x = bu, b€ B, u€ H. Then x ‘¢ 'x =
=y b ¢ tbu=u"'-b'c¢c'bc- c 'u e K, and therefore x 'cx € K.

(i) By (i), (A N H) U (B n H) S Ly(K), where K = (H,A n H,B n H) =
= H.

(iii) Letc € Z(G), c=au,a€ A, u€ H. Foreveryb€ B, b"'ub=b"'a 'cb =
=b"'a 'bc=b""'a"'ba- ue H. Consequently, u € Lo(H) and c € ALy(H).
Quite similarly, ¢ € BLg(H).

3.12 Lemma. Let H be a subgroup of a group G such that Lg(H) = 1 and let
A, B be H-connected transversals to H in G.

i) An H={1}=Bn H.

(i) Z(G) € A N B.
(iii)y If N is a normal subgroup of G and N & A n B, then N € Z((A, B)).

Proof. (i) and (ii) follow from 3.11 (ii) and (iii), respectively.
(iii) Let x€ N and a€ A v B. Then a 'x"'a€ N and a 'x 'ax € H. Thus
a”'x"'ax€ Nn H=1, and hence ax = xa. This shows that x € Z((A, B)).

3.13 Proposition. Let H be a proper subgroup of a simple group G such that
there exist H-connected transversals to H in G. Then H is a maximal subgroup
of G.
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Proof. Let a€c A— H and K = (a, H. By 3.11(i), a€LK), so that
Ls(K) # 1 and K = G. The assertion is now clear.

3.14 Lemma. Let A be a left pseudotransversal to a subgroup H in a group
G such that AA S AL(H) and let B be a subset of G such that A, B are
H-connected. Then [A, B] & Lg(H).

Proof. Leta,c€ A, b€ B. Then ac = du for some d € A, u € Lg(H) and we
have c'a"'b'ach = u"'d 'b"'dub = u~'-d"'b"'db- b~ 'ub € H. However,
b~'c¢™'bce H, and so ¢ 'a”'b"'abc € H, which shows that a~'b~'ab € L ;(H).

3.15 Proposition. Let H be a subgroup of a group G such thatL;(H) = 1, let
A be a left or right pseudotransversal to H in G and B also a left or right
pseudotransversal to H in G and suppose that [A, B] = 1.

(i) A, B are H-connected (and hence stable) transversals to H in G.

(ii) A, B are isomorphic subgroups of G and A n B & Z(G,), where

G, = (A, B). Moreover, A, B are normal subgroups of G,.
(iii) G, = AB = (A X A)/K, where K ={(a,a "");a€ A n B}.
(iv) Ls(H,)) = 1, where H, = H 0 G,.
(V) A, B are Hy-connected transversals to H, in G,.
(vi) An B=7Z(A) n Z(B) = Z(A) = Z(B) = Z(G ).
(vi) H, = G;/A = B/(An B)= G,/B = A/(A n B).
(viii) If H or H, is solvable (nilpotent), abelian), then G, is solvable (nilpotent,
nilpotent of class at most 2).
(ix) If H or H, is cyclic, then H = 1 and A = B = G is an abelian group.

(x) If H is cyclic, then G" = 1.

Proof. (i) The only case that requires consideration is the case of A a left
pseudotransversal and B a right pseudotransversal. Then [A, B™'] =1 as
[a, b7"]7" = [a, b]*" and we can use 2.7(iv), 3.2(ii), 2.24 and 3.9.

(i) Put C=(A) n H. Then bc = cb for all be B, ce C, C"= C<S H and
C & Lg(H) = 1 by 2.23(iii). Hence C = 1 and A is a subgroup of G by 2.23(ii).
Quite similarly, B is a subgroup of G.

For each a € A, there is a unique f(a) € B with af(a) € H. Now, if a, d € A,
then f(adyH=(ad) "'H=d 'a 'H=d 'f(a)H=f(a)d ~'H = f(a)f(d) H.
Clearly, f: A = B is an isomorphism.

Finally, since [A, B] = 1, we have A » B £ Z(G,).

(iii) G, = AB, since A, B are subgroups and [A, B] = 1. Now, define a mapping
g: A X A~ G, by g(a, d) = af(d), where f: A — B is as in (ii). Clearly, g is
a homomorphism of A X A onto G, and Ker(g) = K.

(iv)Ifu € Lg(H,), thena 'uac H, S Hforeverya€ A,andsou € Lo(H) = 1.
(v) and (vi). Obvious.

(vii) Let f: A~ B be as in (ii). Then H, = {af(a);a€ A}, and so H, =
= A/(An B)= AB/B= G,/B. Quite similarly, H, = B/(An B)= AB/A=
= G,/A
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(viii) If H, is solvable, then A/(A n B) is so. However, A © B € Z(A), so that
A is solvable and finally, by (iii), G, is solvable. The other cases are similar.
(ix) Suppose that H, is cyclic. Then A/Z(A) is cyclic, and hence A is abelian.
Consequently, G, is abelian, H, is normal in G, and H, = 1, since L (H,) = 1.
(x) By (ix), A = B is abelian. We have G = AH and G" = 1 by [1].

3.16 Proposition. Let A, B be left pseudotransversal to a subgroup H in
a group G. The following conditions are equivalent:
i) (4, B] SLo(H).
(ii) A, B are H-connected and AA S ALs(H).
(iii) A, B are H-coninected and BB & BL;(H).
(iv) A, B are H-connected and AL;(H), BLg(H) are subgroups of G.

Proof. Use 3.14 and 3.15(ii).

3.17 Proposition. Let A, B be left pseudotransversals to a subgroup H in
a group G such that L;(H) = 1. The following conditions are equivalent:
@ [A, B] =1
(ii) A, B are H-connected and AA S A.
(iii) A, B are H-connected and BB < B.
(iv) A, B are H-connected and A, B are isomorphic subgroups of G.

3.18 Proposition. Let A, B be H-connected transversals to a subgroup H in
a group G. ThenN;(H) = HK, where K/L o(H) = Z(G/L ¢(H)). In particular,
if Lo(H) = 1, then N ((H) = HZ(G) = H X Z(G).

Proof. Without loss of generality, we can assume that L;(H) = 1. For each
x € N = N(H), we can define a permutation f, of A by x"'ax € f,(a) H for each
ac A Ifx,ye Nanda€ A, then x"'ax=f (a)u, u€ H, y"'f(@) y=f fu a) v,
ve H, and y 'x7laxy = f,(a)w, we H and f,(d) = f f.(a), so that f,, =
= f,f.. Now, the mapping F: x — f,- is a homomorphism of N into the sym-
metric group ¥ (A). Since A, B are H-connected, we have C= B N N & Ker(F).
Put L = Ker(F) n H. Then L = {z€ H; a 'za€ H for each a€ A} = L;(H) =
= 1. However, N = CH (since B is a transversal and H & N), and so Ker(F) =
= (C) = C by 2.23(ii). Naturally, C is normal in N, and hence N is the direct
product of H and C. In particular, C & Cg(H).

It remains to show that C & Z(G). For, let D = ([C, GJ]). Then D is a normal
subgroup of G. However, if c€ C, x€ G, x = au, a€ A, u€ H, then ¢ 'x7'cx =
=c'u'a'cau=u""'"c'a'carue H Thus DS H, DS LgH) =1,
[C,G] =1 and C € Z(G) (in fact, C = Z(G), since Z(G) € N).

3.19 Lemma. Let HS K S L & G be subgroups of a group G such that
K is normal in L and suppose that there exist H-connected pseudotransversals to
H in G. Then the factorgroup L/K is abelian.

Proof. Without loss of generality, we can assume that H = K and L;(H) = 1.
By 3.18, Ng(H) = H-Z(G). However, L S Ng(H).
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3.20 Lemma. Let H be a proper subgroup of a group G such thatH N H* = 1
for eachx € G — H. If A, B are H-connected pseudotransversals to H in G, then
A = B is an abelian subgroup of G (and a transversal).

Proof. Clearly, L(H) = 1, so that A, B are transversals.

If ac A, then b 'ac H for some b€ B. Now, a 'b 'abe H, hence
b~ 'a€ aHb™' = bHb™'. It follows that b~'a€ H n pHb ~'. If b¢ H, then
Ho bHb '=1anda=b.If bec H thenb=1 ac Handa= b= 1. We
conclude that A = B.

Now, let a, b€ A. Again, ¢ 'ab € H for suitable c € A. Now, ¢ 'abaH =
= ¢ 'aabH = ¢ 'acH = aa ‘¢ 'acH = aH. From this, a 'c " 'aba € H and
clabe Hn aHa '.Mfa¢ H thenc = ab.Ifac H,thena = 1 and c = b. We
have shown that AA & A. By 3.17, A is a subgroup of G. Since A is H-selfcon-
nected, A is abelian.

3.21 Lemma. Let H be a non-normal subgroup of a group G such that
H n H* =1 for each x€ G — Ng(H). If A, B are H-connected pseudotrans-
versals to H in G, then A = B is an abelian subgroup of G (and a transversal).

Proof. Clearly, L (H) = 1, so that A, B are transversals. Further, Z(G) &
S A n B by 3.12(ii) and Ny(H) = HZ(G) by 3.18. Consequently, A N Ng(H) =
=~ Z(G) = B n N(H).

Letac A,be Bandb 'ac H. Thenb 'a€ H n H® ' (see the proof of 3.20).
If b™'a#1, then beNgH) N B=12Z(G), acbHES Ng(H), acZ(G),
b™'a€ Hn Z(G) = 1, a contradiction. Thus b™'a =1 and b = a. We have
proved that A = B.

Now, let a, b€ A. If a, b € Z(G), then ab € Z(G) & A. If a¢ Z(G), then
c'abe H 0 H“ ' for some a € A (see the proof 3.20). Again, if ¢ 'ab # 1, then
a € Z(G), a contradiction. Thus ¢c"'ab = 1 and ¢ = ab. Finally, if a € Z(G) and
b ¢ Z(G), then ab = ba and ba € A by the preceding part of the proof.

3.22 Remark. Let H be a subgroup of G such that Lg(H) = 1 and there exist
H-connected transversals A, B to H in G.

(i) Put /= |J H*and J = G — I Since both A and B are stabler transversals,

x€G

we have A — {1} S Jand B — {1} S J. Clearly, J is just the set of w € G such that
x"'wx ¢ H for every x € G. Moreover, J* = J for every x € G.
(il) Suppose that G is finite, card(H) = m, card(A) = card(B) = n
and card(Z(G))=r. Then card(l)< (m—1)n/r+1 and card(J) 2
2 n(rm—m+ 1)/r— 1.
(iii) Now, suppose that G is finite and that H n H* = 1 for each x € G — H. By
3.20, A = B is an abelian group and we have card(J) = n — 1 by (ii). Thus
J=A—-{1}, A=J v {1} and A = B is a normal subgroup of G by (i). (A is the
Frobenius kernel of G.)

3.23 Remark. Consider the situation from 3.21. We have Z(G) & A by
3.12(ii), and hence Z(G) & L = Lj(A).
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(i) Suppose that L # Z(G). Clearly, A S C4(L) S Ng(L) = G. If A # C4(L),
then there are a€ L — Z(G) and 1 # u € H such that au = ua, ie. 1 # u =
= a 'ua € H n H*", which is not possible. Hence, A = Cg(L) and this implies
that A is normal in G.

(i) We have G = AH, and therefore there exists a homomorphism ¢: A ~ ¥ (H)
(the symmetric group on H) such that Ker(¢) = L. In particular, if card(H)! <
< card(A/Z(G)), then L # Z(G).

(iii) Let Z(G) = 1 and let H be finite. If A is infinite, then L # Z(G) by (ii) and
A is normal by (i). If A is finite, then Ng(H) = HZ(G) = H by 3.18, and hence
3.22(iii) can be applied. Thus A is a normal abelian subgroup of G whenever
Z(G) = 1 and H is finite.

(iv) Suppose that Z(G) = L;(Ng(H)) and that H is finite and abelian. We are
again going to show that A is normal in G. Indeed, we have G = G/Z(G) =
= AH, A = A/Z(G), H = HZ(G)/Z(G) = H, L4(H) = 1. If A is infinite,
then the result follows from (i) and (ii). If A is finite (and non-trivial), then
L(A) # 1 by a well known result of 1td (1]. However, then L # Z(G) and we can
use (i) again.

3.24 Lemma. Let H be a subgroup of G such that [G:H] z 3 and
Hn H*n H” =1 whenever uyv€e G— H and uv "' € G — H. If A, B are
H-connected pseudotransversals to H in G and if there exists an element
e€ AN Bwithe # 1, then A = B is a transversal to H in G.

Proof. Clearly, L ;(H) = 1, so that A, B are transversals and A N H = {1} =
= B n H.

Letac A, be Band a 'be H. Then aH = bH and a™'be Hn H*' (see
the proof of 3.20). Further, e"'a 'ea€ H, e 'b~'ebe€ H and consequently
b 'e 'ba‘ea € H, ba' e ebHa 'e! = eaHa ‘e ' = H® ' and a 'b ¢
€ H(a"ea)‘l.

We have proved that @ 'be Hn H®' n H@ '™, Assume that a # b. If
a’'€H, then a=1=b, a contradiction. If (a 'ea)™' € H, then e=
= a 'eaa”'e™' € H, and so e = 1, a contradiction. Finally, if (¢"'ea)™' a € H,
then e 'a= e 'a 'ea-a ‘e 'aac H, and so e = a, e = b and a = b, again
a contradiction.

3.25 Lemma. Let H be a subgroup of G.
() If G’ € H and A, B are (pseudo)transversals to H in G, then A, B are
H-connected.
(ii) IfK is an abelian subgroup of G such that HK = G, then K is an H-selfcon-
nected pseudotransversal to H in G; it is a transversal iff H n K = 1.
(iii) If H=1 and A, B are H-connected pseudotransversals to H in G, then
A = B = G is an abelian group.
(iv) If H is normal in G and A, B are H-connected pseudotransversals to H in
G, then G’ & H.
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3.26 Corollary. Let H be a subgroup of a group G. Then G' < H iff H is
normal in G and there exist H-connected transversals to H in G.

4., Semiconnected transversals

4.1 Let H be a subgroup of a group G and A, B subsets of G. We shall say that
A, B are H-semiconnected if for all u € A and v € B there exists x € G such that
[Au~!, Bv™'] € H* (i.e., Au"', Bv™! are H*-connected).
4.2 Lemma. Let H be a subgroup of G and A, B subsets of G.
() IfA, B are H-connected, then [Au™', Bv™']| S H"“ ' forallue A, v € B.
In particular, A, B are H-semiconnected.

(ii) If A, B are H-connected, then A*, B* are H*-connected for every x € G.

(iii) If A, B are H-semiconnected, then A*, B* are H-semiconnected for every
x€ G.

(iv) If A, B are H-semiconnected, then A, B are H'-semiconnected for every
x€G.
(v) If A, B are H-semiconnected, then A*, B* are H’-semiconnected for all
x, y€ G.

(vi) If A, B are H-semiconnected, then Ax, By are H-semiconnected for all
x,y€ G.

vii) If A, B are H-semiconnected, then xA, xB are H-semiconnected for every
xeG.

(viii) IfA, B are H-semiconnected, then(xAy)", (xBz)" are H"-semiconnected for
all x, y,z,u, v e G.

Proof. (i) [au™!, bv™'| = ua 'vb~'au"'bv ™' = uv- v~ 'a 'va-a"'b'ab-
b buu v luv v lu e wvHY 'uT = H“ ' for alla € A, b e B.

The remaining assertions are clear.

4.3 Lemma. Let H be a subgroup of a group G. Subsets A, B of G are
H-semiconnected iff there exist u€A, ve€B and x€ G such that
[Au~!, Bv™'] € H".

Proof. This follows easily from 4.2.

4.4 Lemma. Let H be a subgroup of a group G. The following conditions are
equivalent:

(i) There exist H-connected pseudotransversals to H in G.

(ii) There exist H-connected transversals to H in G.
(iii) There exist H-semiconnected stable transversals to H in G.
(iv) There exist H-semiconnected stable pseudotransversals to H in G.

Proof. (i) implies (ii) by 3.7, (ii) implies (iii) and (iii) implies (iv) trivially.
(iv) implies (i). Let A, B be H-semiconnected stable pseudotransversals to H in
G. Take u € A, b € B. Then [Au™', Bv™'| & H* for some x € G. Since A, B are
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stable, Au~! and Bv~! are left pseudotransversals, and so Au~', Bv™' are

H*-connected pseudotransversals. But then (Au™")*"", (Bv™')*"' are H-connected
pseudotransversals.

4.5 Lemma. Let A, B be H-semiconnected stable pseudotransversals to a sub-
group H in a group G. If L;(H) = 1, then A, B are stable transversals.

Proof. Let u€ A, ve B and x € G be such that [Au“‘, Bv~'l & H*. Then
Au~', Bv~! are stable pseudotransversals. Of course, L;(H*) = 1, and therefore
Au~', Bv! are stable transversals by 3.9 and 3.3. By 2.15, A and B are stable
transversals to H in G.

5. Stable transversals and graphs

5.1 Here, by a graph we mean a non-empty set R together with a binary relation
r & R® (the case r = @ being also allowed) which is symmetric and antirefelxive.

If@ # S S R, then S together with s = r n §@ is also a graph and it is called
the subgraph induced by S.

If s = @, then S is said to be an independent subset.

5.2 Let # = (R, r) be a graph.
(i) Put dis(#) = max{card(S); @ # S € R, S independent}, provided that such
a cardinal number exists.
(ii) For each a € R, let deg(a) = deg(a, #) = card({x € R; (a, x) € r}).

The graph % is said to be regular if deg(a) = deg(b) for all @, b € R. In that
case, we put deg(#) = deg(a), a € R.
(iii) The graph # is said to be discrete if r = 0. Then dis(#) = card(R) and
deg(#) = 0.
(iv) The graph # is said to be complete if r = R® — id,. Then dis(R) = 1 and
deg(R) = card(R) — 1 (= card(R) if this cardinal number is infinite).

5.3 Let G be a group and A a subset of G such that A~!' = A. Now, define
a graph ¥ = 9(G, r,) on G by (x,y) € r,iff x, y€ G, x # y, xy™' € cn(A) (see
1.5). We put dis(G, A) = dis(9(G, r,)).

5.4 Lemma. Let A be a subset of a group G such that A™' = A and let
B = cn(A). Then:
(i) ry=rs
(i) (x,y) e r, iff x = ya (or x = ay, y = ax, y = xa) for some a € B.

Proof. Since A £ B, we have r, S rp. If (x, y) € rp, then xy' € cn(B) =
= B = cn(A), so that (x, y) € r4.

5.5 Corollary. Let A, B be subsets of a group G such that A = A and
B™' = B. Then r, = ry iff cn(A) = cn(B).

5.6 Lemma. Let A be a subset of a group G such that A”' = A. Then:
() ¢ = 9(G, r,) is a regular graph and deg(¥) = card(cn(A) — {1}).
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(ii) deg(¥) = card(cn(A)) if 1 ¢ A.

(iii) deg(¥) = card(cn(A)) — 1 if1 € A.

(iv) The following permutations are automorphisms of the graph %: All the
translation £ (G, u), Z(G, u), u< G; the permutation x - x~Y all auto-
morphisms f of G with f(cn(A)) = cn(A) (or f(A) = A).

Proof. Easy.

5.7 Lemma. Let H be a subgroup of a group G and ¢ = 4(G, rA): Then:

(i) A subset A of G is independent in & iff A is a stable partial transversal to
Hin G.

(i) If dis(G, H) exists, then dis(G, H) = [G: H].

(iii) If H is normal in G, then dis(G, H) = [G : H].

Proof. (i) See 2.3(i).

(ii) and (iii). Easy.

5.8 Lemma. Let H, K be subgroups of a group G.

() If HK = G and H » K = 1, then dis(G, H) = [G: H] = card(K) and
dis(G, K) = [G : K] = card(H).

(ii) IfHE K and K is normal in G, thendis(G, H) = [G: K] - dis(K, cng(H)) =
= dis(G, K) - dis(K, cn ;(H)) and dis(K, cng(H)) = dis(K, H).

(iii) If H S K and H is normal in G, then dis(G, K) = dis(G/ H, K/ H).

(iv) If card(H) < card(K), cn(H) = cn(K) and G is finite, then dis(G, H) <
<[G: H].

Proof. (i) This follows from 5.7(i) and 2.20.

(ii) First, let A be a left transversal to K in G; then A is a stable transversal and

card(A) = [G: K]. Let B be a subset of K independent in ¥(K, rg), R =

= cng(H). We are going to show that AB is independent in ¥(G, rg). For, let
a,c€ A, b,de B and abd'c™' = ab-(cd)”' € R. Then abd 'c¢c™' = x 'ux

for some x€ G, u€ H, so that xax™'- xbd 'x™'-xc"'x"' € H. But H € K,

K is normal in G, hence xbd 'x '€ K and xax ' - xc 'x™' = xac™'x"' € K,

ac'€ K, a=c, bd' = a 'x 'uxac R and, finally, b = d. We have proved

that AB is independent in ¥(G, rg) and that card(AB) = card(A) - card(B).

From this, dis(G, H) 2 [G: K] - dis(K, R). Since cng(H) S cng(H), we have

dis(K, R) = dis(K, H).

Now, let C be a subset of G such that C is independent in ¥ (G, rg). The set
C is divided in pair-wise disjoint blocks of elements congruent modulo K. The
number of all such blocks is at most [G : K]. Let D be one of these blocks, d € D
and E = Dd~'. Then E S K and E is independent in 9 (K, r¢). Consequently,
card(E) = dis(K, R) and we see that card(C) = [G : K] dis(K, R).

(iii) Easy.

(iv) We have r,; = ry and dis(G, H) = dis(G, K) = [G: K] < [G: H].

5.9 Corrollary. Let H be a subgroup of a finite group G. Then dis(G, H) =
= [G : H] iff there exists a stable transversal to H in G. '
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