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1993 ACTA UNrVERSrTATIS CAROLINAE-MATHEMATICA ET PHYSICA VOL. 34. NO. 1 

Multiplication Groups of Quasigroups and Loops I 

ALES DRAPAL, TOMAS KEPKA*) 

MFF UK Praha 

Received 13 January 1992 

Transversals A, B to a subgroup H in a group G are called H-connected if [A, B] is contained in H. 
In the sequel, the connected transversals will turn out to be important tools for the study of the 
multiplication groups of quasigroups and loops. 

Transversely A, B podgrupy H grupy G se nazývají H-spojené, jestliže [A, B] je obsaženo v H. 
Spojené transversely se později ukáží jako důležité nástroje pro studium multiplikačních grup kvazigrup 
a lup. 

1. P r e l i m i n a r i e s 

1.1 Let G be a group. For all a, b e G, ab = b~xab and [a, b] = a~lb~lab. If 
A, B are subsets of G, then A'1 = {a~l; a e 4̂}, Ax = x~lAx for every JC e G, 
AB = {ab; a e A, b e B} and [A, B] = {[a, b]; a e A, be B} (then [B, A] = 
= [A, B]~l). Moreover, (A) denotes the subgroup generated by A. 

We put G' = ([G, G]), G" = (GJ, etc. 
If H is a subgroup of G, then ([H, G]) is a normal subgroup of G (indeed, for 

JC, >> e G and w e //, y~lu~lx~xuxy = ^ ' ^ " ^ M W " 1 ) ; - 1 ^ - 1 " ^ 6 (-W, G])). 

1.2 Let G be a group. For a non-empty subset 4̂ of G, CG(^4) = {JC € G; 
jcfl = ajc for each fle.4} andNG(-4) = {JC € G; JĈ I = AJC}. Then G(A) andNG(.4) 
are subgroups of G and CG(.4) is normal in NG(^4). Moreover, A £ CG(CG(A)), 
Nc(i4) = {JC e G; JTUJC = A} = {JC e G; JC4JC-1 = A] and CG(_4) = CG((A)), 
NG(-4) = NG(^)). 

If H is a subgroup of G, then / / g NG(//) and NG(/./) is the greatest subgroup 
of G containing H as a normal subgroup. Further, H ~\ CG(H) if H is abelian,; 
in that case, H ~\ Z(CG(H)). 

*) Department of Mathematics, Charles University, 186 00 Praha 8, Sokolovská 83, Czechoslovakia 
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Z(G) = CG(H) denotes the centre of G. 
If H is a normal subgroup of G and K is a characteristic subgroup of H (i.e. 

K is invariant under all automorphisms of / /) , then K is normal in G (in particular, 
for H normal, Z(H) and H are also normal in G). 

1.3 Let H be a subgroup of a group G. Put LG(H) = f) //*. Then LG(H) (the 

so called core of //) is the greatest subgroup of H which is normal in G. Clearly, 
LG(H) = {u* H; J T 1 ^ e H for each x e G}. 

For every JC e G, LG(//) = LG(//X). Moreover, LG/N(H/N) = 1, where 
-V = LG(H). 

1.4 Lemma. Let H, K be subgroups of a group G. 
(i) IfK, H are normal in G, then [K, H] £ K n //. / / moreover, K n / / = 

= 1, t/rew [K, //] = 1, K £ CG(//) and Hi C G(K). 
(ii) If K r> H = 1, K is normal in G and CG(H) £ K, t/rerz L G(//) = 1. 

(iii) / / K// £ //K, t/ie« KH = HK is a subgroup of G. 
(iv) / / G = K//, then H n C G(K) £ LG(//) and K n C G(H) £ LG(K). 
(v) / / / / « Aiorma/ m G and H n G' = 1, t/ien / / £ Z(G). 

1.5 Let G be a group. For every subset A of G, let cn(A) = cnG(A) = (J 4̂*. 

(i) A £ cn(>l) and cn(cn(A)) = cn(A). 
(ii) 1 e cn(^) iff 1 e A 

(iii) cn(^) n Z(G) = A n Z(G). 
(iv) (cn(A))"1 = cn^" 1 ) . 
(v) If A £ Z(G), then cn(A) = A. 

(vi) If / / is a subgroup of G, then cn(//) = / / iff / / is normal in G. 
(vii) If x, y ~ G, then xy ' cn(A) if yjc ' cn(A). 

(viii) If A,, i e /, is a non-empty system of subsets of G, then cn((jAz) = 
= Ucn(A)-

2. Stable transversa ls 

2.1 Let H be a subgroup of a group G. A subgroup A of G is said to be a /e/t 
(right) partial transversal to G in H if a~lb t H (ab~l i H) for all a, b ' A, 
a* b. 

2.2 Lemma. Let A be a left (right) partial transversal to a subgroup H of 
a group G. Then, for every x ' G: 
(i) xA (Ax) is a left (right) partial transversal to H. 

(ii) Ax (xA) is a left (right) partial transversal to IF (Hx~). 
(iii) Ax is a left (right) partial transversal to Hx. 
(iv) A~l is a right (left) partial transversal to H. 
(v) A is a left (right) partial transversal to H n (A). 
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2.3 Lemma. Let H be a subgroup of a group G and A a subset of G. The 
following conditions are equivalent: 

(i) a~lb i cn(H) (ab~l t cn(H)) for all a. b ' A, a * b. 
(ii) Ax (xA) is a left (right) partial transversal to H for every x'G. 
(iii) For every x'G, the sets Ax and xA are both left and right partial trans­

versals to H. 
(iv) A is a left (right) partial transversal to FF for every x'G. 
(v) Ax is a left (right) partial transversal to H for every x'G. 

(vi) For all x,y~ G, Ax is both left and right partial transversal to FP. 
(vii) For allx, y,z~ G, the sets (Ax)y, (xA)y, (Ay) x, x(Ay) are both left and right 

partial transversals to FT. 

2.4 Let H be a subgroup of a group G. A subset A of G satisfying the 
equivalent conditions of 2.3 is called a stable partial transversal to H in G. 

2.5 Lemma. Let A be a stable partial transversal to a subgroup H of G. Then, 
for all x, y, z ~ G, the sets (Ax)y, (xA)y, (Ay) x, x(Ay) are stable partial trans­
versals to FT. 

2.6 Let H be a subgroup of a group G. A subset A of G is said to be a left 
(right) pseudotransversal to H in G if G = AH (G = HA). 

2.7 Lemma. Let A be a left (right) pseudotransversal to a subgroup H of 
a group G. Then, for every x'G: 
(i) xA (Ax) is a left (right) pseudotransversal to H. 

(ii) Ax (xA) is a left (right) pseudotransversal to FF (Hx~). 
(iii) Ax is a left (right) pseudotransversal to FF. 
(iv) A"1 is a right (left) pseudotransversal to H. 
(v) A is a left (right) pseudotransversal to H n (A) in (A). 

2.8 Lemma. Let H be a subgroup of a group G and A a subset of G. The 
following conditions are equivalent: 

(i) Ax (xA) is a left (right) pseudotransversal to H for every x'G. 
(ii) For every x ' G, the sets Ax andxA are both left and right pseudotransversals 

toH. 
(iii) A is a left (right) pseudotransversal to FF for every x'G. 
(iv) Ax is a left (right) pseudotransversal to H for every x'G. 
(v) For all x,y~ G, Ax is both left and right pseudotransversal to FP. 
(vi) For allx, y,z~ G, the sets (Ax)y, (xA)y, (Ay) x, x(Ay) are both left and right 

pseudotransversals to FF. 

Proof, (i) implies (ii). For every x'G there are a ' A and u~ H with 
ax~xu = 1. Then x = ua and we have shown that A is a right pseudotransversal. 

2.9 Let H be a subgroup of a group G. A subset A of G satisfying the 
equivalent conditions of 2.8 is called a stable pseudotransversal to H in G. 

2.10 Lemma. Let A be a stable pseudotransversal to a subgroup H of G. Then, 
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for all x, y, z e G, the sets (Ax)y, (xA)y, (Ay) x, x(Ay) are stable pseudotrans-
versals to If in G. 

2.11 Let H be a subgroup of a group G. A subset A of G is said to be a left 
(right) transversal to H in G if it is both a left (right) partial transversal and a left 
(right) pseudotransversal to H in G. 

2.12 Lemma. Let .4 be a left (right) transversal to a subgroup H of a group G. 
Then, for every x e G: 
(i) .r.4 (AJC) is a left (right) transversal to H. 

(ii) Ax (xA) is a left (right) transversal to If (Hx~). 
(iii) Ax is a left (right) transversal to If. 
(iv) A~* is a right (left) transversal to H. 
(v) A is a left (right) transversal to H r (A) in (A). 

2.13 Lemma. Let H be a subgroup of a group G and A a subset of G. The 
following conditions are equivalent: 

(i) Ax (xA) is a left (right) transversal to H for every x e G. 
(ii) For every x e G, the sets Ax andxA are both left and right transversals toH 

(iii) A is a left (right) transversal to If for every x e G. 
(iv) Ax is a left (right) transversal to H for every x e G. 
(v) For all x, y e G, _4* is both left and right transversal to If. 
(vi) For allx, y, z e G, t/ie sets (-4jc)y, (x^)*, (-4y) JC, x(Ay) are both left and right 

transversals to If. 
2.14 Let H be a subgroup of a group G. A subset A of G satisfying the 

equivalent conditions of 2.13 is called a stable transversal to H in G. 
2.15 Lemma. Let A be a stable transversal to a subgroup H ofG. Then, for all 

x, y, z e G, t/ie sets (Ax)y, (xA)y, (Ay) x, x(Ay) are stable transversals to If in G. 
2.16 Lemma. Let H be a subgroup of a group G and A a subset of G. Put 

Gx = (A) and Hx = H r Gx. If A is a stable (partial, pseudo) transversal to H 
in G, then A is a stable (partial, pseudo) transversal to Hx in Gx. 

2.17 Lemma. Let H be a subgroup of a group G. 
(i) If K is a subgroup of H and if A is a (left, right, stable) partial transversal 

to H in G, then A is also a (left, right, stable) partial transversal to K in G. 
(ii) IfK is a subgroup of G with A ~\ K, L = K r H and if A is a (left, right, 

stable) (pseudo)transversal to H in G, then A is also a (left, right, stable) 
(pseudo)transversal to L in K. 

(iii) IfK is a subgroup of G with H ~\ K and if A is a (left, right) (pseudotrans­
versal to H in G, then A r\ K is a (left, right) (pseudo)transversal to H in 
K. Moreover, if A is stable, then A r K is stable (in K). 

2.18 Lemma. Let H be a subgroup of a group G and cp a homomorphism of 
G onto a group K, Ker(<p) = IV. 
(i) If N ~\ H and A is a (left, right, stable) partial transversal to H, then <p\A is 

infective and cp(A) is a (left, right, stable) partial transversal to cp(H). 



(ii) If A is a (left, right, stable) pseudotransversal to H in G, then cp(A) is a (left, 
right, stable) pseudotransversal to cp(H) in K. 

2.19 Lemma. Let H and K be subgroup of a group G. 
(i) / / H n K = 1, then K (H) is both a left and right partial transversal to 

H(K). 
(ii) / / H is normal in G and H n K = 1, then K (H) is a stable partial 

transversal to H (K). 
(iii) If HK = G, then K (H) is a stable pseudotransversal to H (K). 

2.20 Lemma. LetH, K be subgroups of a group G such that H n K = 1 and 
HK = G. Then K (H) is a stable transversal to H (K). 

Proof. Fisrt, let a, b e H, x e G, x = uv, u e //, v e K. Then w = 
= (a*)-1 (M) = v~xu~xa~xbuv. If w e K, then(fl_16)" e / / n K = 1 and hence 
a~xb = \, a = b. We have shown that IT is a left partial transversal to K. By 
2.3(v), H is a stable partial transversal to K. 

Now, let x=uv,u*H,vzK. Then WK = v~lHuvK = v~lHK =v~lG = 
= G. By 2.8(iv), H is a stable pseudotransversal to K in G. 

2.22 Lemma. Let H be a subgroup of a finite index in a group G and let A be 
a (left, right) transversal to H in G. The following conditions are equivalent: 
(i) A is a stable partial transversal. 

(ii) A is a stable pseudotransversal. 
(iii) A is a stable transversal. 

Proof. Let n = [G: H], x e G, B = x'lAx. Then card(,4) = card(5) = n. 
(i) implies (iii). B is a left partial transversal and there is an injective mapping / : 
B - A with bH = f(b) H for each b e B. Now, / is a bijection, f(B) = A and 
BH = AH = G. Thus B is a transversal. 
(ii) implies (iii). B is a left pseudotransversal and there is an injective mapping g: 
A — B with a// = g(a) H for each A ^ A Again, g is a bijection. If b, c e /?, 
b ^ c, then 6// = g_1(6) / / ?-= g -1(c) / / = c// and we see that B is a trans­
versal. 

2.23 Lemma. Let H be a subgroup of a group G and A a left (right) pseudo­
transversal to H in G. 
(i) There exists a left (right) transversal B to H in G such that B S A. 

(ii) If (A) n H = 1, then A is a subgroup of G and a transversal to H in G. 
(iii) IfK is a subgroup of G with H S K, thenLG(K) = {u e K; w

fl e K/#r eacft 
a € A} (LG(K) = {w e K; if'1 e Kfor each a e A}). 

(iv) / / K w a subgroup of G with A g K, thenLK(K n //) g LG(//). 
(v) / / K is a norma/ subgroup of H and if Kal g / / (Kfl [5 //) /or eacA a e >1, 

thenKQLG(H). 
2.24 Lemma. Let A Z>e A stable (partial, pseudo) transversal to a subgroup H in 

a group G. Then A~l is also a stable (partial, pseudo) transversal to H in G. 
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3 . Connected transversa ls 

3.1 Let H be a subgroup of a group G and A, B subsets of G. We shall say that 
A, B are H-connected if [A, B] £ H. 

3.2 Lemma. Let A be a left pseudotransversal to a subgroup H of a group 
G and let B be a subset of G such that A, B are H-connected 
(i) If B is a left partial transversal to H, then B is a stable partial transversal. 

(ii) / / B is a left pseudotransversal to H in G, then both A and B are stable 
pseudotransversals to H in G. 

Proof, (i) Let x ' G and b, c ' B be such that x~lb~1cx ~ H. There are a ' A 
and u'H with x = au. Then u~la~lb~lcau ' H, hence a~1b~lca ' H and we 
have b~lc = b~1a~1ba • a~1b~1ca • a~lc~lac ~ H. However, then b = c. 
(ii) Let x, y ~ G, x = au, a ~ A, u'H. Then there are b ~ B and v ' H with 
uy = bv. Of course, w = b~la~lba ~ H and b = a~lbaw~l. Now, y = 
= u~lbv = u~1a~1baw~1v = u~1a~1bauz = x ~lbxz, where z = u~xw~xv ~ H. 
We have shown that B is a stable pseudotransversal. By the reason of symmetry, 
A is also stable. 

3.3 Corollary. Let A, B be H-connected left transversals to a subgroup H of 
a group G. Then A, B are stable transversals. 

3.4 In the sequel, by H-connected (pseudo)transversals we will always mean 
//-connected left (pseudo)transversals (which are then both left and right (pseu­
dotransversals). 

3.5 Lemma. Let A, B be H-connected (pseudo)tranversals to a subgroup H in 
a group G and let K be a subgroup of G such that H £ K. Then A n K, B n K 
are H-connected (pseudo)transversals to H in K. 

Proof. By 2.17(iii), both A n K and B r\ K are left (pseudo)transversals to H 
in K. Clearly, they are //-connected in K. 

3.6 Lemma. Let A, B be H-connected (pseudo)transversals to a subgroup H in 
G. Put Gl = (A, B) and Hx= Gx n //. Then A, B are H r connected (pseudo)-
transversals to Hx in Gx. 

3.7 Lemma. Let A, B be H-connected pseudotransversals to a subgroup H in 
a group G. Then there exist H-connected transversals C, D to H in G such that 
C £ AandD~\ B. 

3.8 Lemma. Let H be a subgroup of a group G,cp a homomorphism ofG onto 
a group K and N = Ker(q)). 
(i) If A, B are H-connected pseudotransversals to H in G, then cp(A), (p(B) are 

<p(H)-connected pseudotransversals to cp(H) in K. 
(ii) IfN £ H and A, B are H-connected transversals to H in G, then cp(A), cp(B) 

are cp{H)-connected transversals to cp(H) in K and cp\A, cp\B are injective 
mappings. 
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(iii) IfLG(NH) = N, A is a left pseudotransversal to H in G and ifB is a subset 
of G such that A, B are H-connected, then cp(B) is a left partial transversal 
to cp(H) in K. 

Proof, (i) and (ii). Easy. 
(iii) Let b, c e B be such that cp(b~xc) ' cp(H), i.e. b~xc e NH. For every a* A, 
a~lb~lca = a~lb~lab • b~la~lac • c~xa~xca e NH, and so b~xc e LG(NH) = 
= IV by 2.23(iii). We have shown that cp(b) = cp(c). 

3.9 Lemma. Let H be a subgroup of a group G such that LG(H) = 1. If A, 
B are H-connected pseudotransversals to H in G, then A, B are transversals to 
H in G. 

Proof. This follows from 3.8(iii) for cp = idG, K = G and IV = 1. 
3.10 Lemma. Let A, B be H-connected pseudotransversals to a subgroup H 

in a group G and let cp: G — K be a homomorphism of G onto a group K such 
that Ker(<p) = LG(NH) for a normal subgroup IV of G. Then cp(A), cp(B) are 
cp(H)-connected transversals to cp(H) in K. 

Proof. This follows from 3.8(iii), as Ker(cp) H = NH. 

3.11 Lemma. Let A, B be H-connected pseudotransversals to a subgroup H 
in a group G. 
(i) / / C is a subset of A u B and K = (17, C), then C £ LG(K). 

(ii) A n H £ LG(H) and B n H £ L G(H). 
(iii) Z(G) S A • LG(H) andZ(G) £ B • L G(/I). 

Proof, (i) Let JC e G and c e C We have to show that JC_1CJC e K. To this 
purpose, we can assume that c e A and x = bu, b £ B, u£ H. Then JC_1C_1JC = 
= u~xb~xc~xbu = w_1 • b~1c~1bc c~xu e K, and therefore JC_1CJC e K. 
(ii) By (i), (/4 n fi) u (B n / ^ g LG(K), where K = (H, A n H, B n H) = 
= H. 
(iii) Let c e Z(G), c = au, a £ A, u £ H. For every 6 e £, 6_1wb = b~xa~xcb = 
= b~xa~xbc = b~xa~xba • u £ H. Consequently, w e LG(/f) and c e ylLG(//). 
Quite similarly, c e BLG(H). 

3.12 Lemma. Let H be a subgroup of a group G such thatLG(H) = 1 and /ct 
A, .6 be H-connected transversals to H in G. 

(i) A n H = {1} = B n //. 
(ii) Z(G) £ .4 n B. 

(iii) / / IV w a norma/ subgroup of G and N ~\ A n B, then N ~\ Z((A, B)). 

Proof, (i) and (ii) follow from 3.11 (ii) and (iii), respectively, 
(iii) Let JC e IV and a e A u B. Then a"1^"^ e IV and a_1jc_1ajc e //. Thus 
a_1jc_1ajc e IV n H = 1, and hence ajc = jca. This shows that JC e Z«..4, 5)). 

3.13 Proposition. Let H be a proper subgroup of a simple group G such that 
there exist H-connected transversals to H in G. Then H is a maximal subgroup 
ofG. 
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Proof. Let ae A - H and K = (a, H). By 3.11(i), a e LG(K), so that 
LG(K) 5* 1 and K = G. The assertion is now clear. 

3.14 Lemma. Lef .4//ea /e/t pseudotransversal to a subgroup H in a group 
G such that AA £ ALG(H) and let B be a subset of G such that A, B are 
H-connected. Then [A, B] £ LG(H). 

Proof. Let a, c e A, b e B. Then ac = du for some d £ A, u e LG(H) and we 
h a v e c " 1 ^ " 1 ^ " 1 ^ = u~xd~xb~xdub = u~x - d~xb~xdb- b~xub£ H. However, 
b~xc~xbc e // , and so c~xa~xb~xabc e //, which shows that a~xb~xab e LG(H). 

3.15 Proposition. Let H be a subgroup of a group G such thatLG(H) = 1, let 
A be a left or right pseudotransversal to H in G and B also a left or right 
pseudotransversal to H in G and suppose that [A, B] = 1. 

(i) A, B are H-connected (and hence stable) transversals to H in G. 
(ii) A, B are isomorphic subgroups of G and A n B £ Z(GX), where 

Gx = (A, B). Moreover, A, B are normal subgroups of Gx. 
(iii) Gx = AB = (A X A)/K, where K = {(a, a ~x)\ a e A n B). 
(iv) LGl(/Ii) = 1, where Hx = H n G-. 
(v) i4, B are Hx-connected transversals to Hx in Gx. 

(vi) A n B = Z(A) n Z(B) = Z(A) = Z(B) = Z(G x). 
(vii) Hx = Gx/A = B/(A n B) = Gx/B = A/(A n B). 

(viii) If H or H x is solvable (nilpotent), abelian), then Gx is solvable (nilpotent, 
nilpotent of class at most 2). 

(ix) / / H or Hx is cyclic, then Hx = 1 and A = B = Gx is an abelian group. 
(x) IfH is cyclic, then G" = 1. 

Proof, (i) The only case that requires consideration is the case of A a left 
pseudotransversal and B a right pseudotransversal. Then [A, B~x] = 1 as 
[a, b~x]~x = [a, b]b~l and we can use 2.7(iv), 3.2(h), 2.24 and 3.9. 
(ii) Put C = (A) n H. Then be = cb for all b e B, c e C, C* = C £ H and 
C £ LG(H) = 1 by 2.23(iii). Hence C = 1 and A is a subgroup of G by 2.23(ii). 
Quite similarly, B is *a subgroup of G. 

For each fl^A, there is a unique f(a) £ B with a/(a) e / / . Now, if a, rf e ^4, 
then f (ad)H= (ad) XH= d~xa~xH= d~xf(a)H = f(a)d ~XH = f(a)f(d)H. 
Clearly, / : A -+ B is an isomorphism. 

Finally, since [A, B] = 1, we have A n B £ Z(Gj). 
(iii) Gx = AB, since ^4, S are subgroups and [A, B] = 1. Now, define a mapping 
g: 4̂ X >1 -> Gj by g(a, a) = a/(d), where / : A - /? is as in (ii). Clearly, g is 
a homomorphism of A X A onto Gx and Ker(g) = K. 
(iv) If u e LG l(//2), then a-1 wa £ Hx ~\ H for every a e A, and so w e LG(/f) = 1. 
(v) and (vi). Obvious. 
(vii) Let / : A - B be as in (ii). Then Hx = {af(a); a e A}, and so ^ = 
= A/(.4 n B) = A B / B = G j / B . Quite similarly, Hx = B/(A n B) = AB/A = 
= G j / A 
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(viii) If Hx is solvable, then A/(A n B) is so. However, A n B ~\ Z(A), so that 
A is solvable and finally, by (iii), Gx is solvable. The other cases are similar, 
(ix) Suppose that Hx is cyclic. Then A/Z(A) is cyclic, and hence A is abelian. 
Consequently, Gx is abelian, Hx is normal in Gx and Hx = 1, since LGl(H^) = 1. 
(x) By (ix), A = B is abelian. We have G = AH and G" = 1 by [1]. 

3.16 Proposition. Let A, B be left pseudotransversal to a subgroup H in 
a group G. The following conditions are equivalent: 

i) [A,B]QLG(H). 
(ii) A, B are H-connected and AA ~\ ALG(H). 

(iii) A, B are H-connected and BB ~\ BLG(H). 
(iv) A, B are H-connected and ALG(H), BLG(H) are subgroups of G. 

Proof. Use 3.14 and 3.15(ii). 

3.17 Proposition. Let A, B be left pseudotransversals to a subgroup H in 
a group G such thatLG(H) = 1. The following conditions are equivalent: 
(i) [A, B] = 1. 

(ii) A, B are H-connected and AA ~\ A. 
(iii) A, B are H-connected and BB ~\ B. 
(iv) A, B are H-connected and A, B are isomorphic subgroups of G. 

3.18 Proposition. Let A, B be H-connected transversals to a subgroup H in 
a group G. ThenNG(H) = HK, where K/L G(H) = Z(G/LG(H)). In particular, 
ifLG(H) - 1, thenNG(H) = HZ(G) = H X Z(G). 

Proof. Without loss of generality, we can assume that LG(H) = 1. For each 
x e IV -= NG(//), we can define a permutation fx of A by x~lax <- f x(a) H for each 
a-A.\ix,y *_N and a e A, then x~xax = f x(a) u, W- H, y~lfx(a) y = fyfx(a) v, 
ve H, and y~lx~~laxy = fxy(a) w, w e H and fxy(a) = fyfx(a), so that fxy = 
= fyfx% Now, the mapping F: x -* fx-\ is a homomorphism of IV into the sym­
metric group Sf(A). Since A, B are //-connected, we have C= B n IV £ Ker(F). 
Put /- - Ker(F) n //. Then L = {ze H; a~lza e / / for each fl^)-= LG(//) = 
= 1. However, IV = CH (since B is a transversal and H ~\ IV), and so Ker(F) = 
= /C) « C by 2.23(H). Naturally, C is normal in IV, and hence IV is the direct 
product of H and C. In particular, C li CG(H). 

It remains to show that C [5 Z(G). For, let D = <[C, G]). Then D is a normal 
subgroup of G. However, if c £ C, x £ G, x = au, a e A, u £ H, then c" 1*" 1^ = 
- c~lu-la~lcau = w"1 • c " ^ " 1 ^ • w <- //. Thus D ~\ H, D ~\ LG(H) = 1, 
rCj G] = 1 and C S Z(G) (in fact, C = Z(G), since Z(G) £ IV). 

3.19 Lemma. Let H~\K~\L~\Gbe subgroups of a group G such that 
K is normal in L and suppose that there exist H-connected pseudotransversals to 
H in G. Then the factorgroup L/K is abelian. 

Proof. Without loss of generality, we can assume that H = K and LG(H) = 1. 
By 3.18, NG(//) - / /• Z(G). However, L ~\ NG(//). 
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3.20 Lemma. Let H be a proper subgroup of a group G such thatH n IT = 1 
for each x e G — H. If A, B are H-connected pseudotransversals to H in G, then 
A = B is an abelian subgroup of G (and a transversal). 

Proof. Clearly, LG(/I) = 1, so that A, B are transversals. 
If a e A, then b~xa e / / for some 6 e 5. Now, a~1b~1ab € //, hence 

Z>_1a e a//*"1 = M/ZT1. It follows that b~xa e / / n bHb~\ If b < //, then 
/ / n bHb ~x = 1 and a = b. If b e //, then b = 1, a e / / and a = 6 = 1. We 
conclude that _4 = B. 

Now, let a, b e A Again, c~xab £ H for suitable c e A Now, c~labaH = 
= c~xaabH = c~xacH = aa~xc~xacH = a//. From this, a~xc~xaba e / / and 
c -1ab e f l n a//a -1. \iai H, then c = ab. If a e //, then a = 1 and c = b. We 
have shown that _4A 15 A By 3.17, A is a subgroup of G. Since .4 is //-selfcon-
nected, _4 is abelian. 

3.21 Lemma. Let H be a non-normal subgroup of a group G such that 
H n Hx = \ for each x e G — NG(H). If A, B are H-connected pseudotrans­
versals to H in G, then A = B is an abelian subgroup of G (and a transversal). 

Proof. Clearly, LG(H) = 1, so that A, B are transversals. Further, Z(G) 5 
5 A n B by 3.12(ii) and NG(#) = HZ(G) by 3.18. Consequently, A n NG(tf) = 
= Z(G) = B n NG(#). 

Letae A, b* B and b_1a e H. Then 6_1a e / / n //*_1 (see the proof of 3.20). 
If b~xa * 1, then b ' NG(fl) n £ = Z(G), a e bH ^ NG(H), a ' Z(G), 
b_1a e / / n Z(G) = 1, a contradiction. Thus b~xa = 1 and b = a. We have 
proved that A = B. 

Now, let fl,fteA If a, b ' Z(G), then ab e Z(G) 5 A If a * Z(G), then 
c -1ab e / / n //fl_l for some a ^ (see the proof 3.20). Again, if c~xab * 1, then 
a e Z(G), a contradiction. Thus c~xab = 1 and c = ab. Finally, if a € Z(G) and 
b * Z(G), then ab = ba and ba e A by the preceding part of the proof. 

3.22 Remark. Let H be a subgroup of G such that LG(H) = 1 and there exist 
H-connected transversals A, B to H in G. 
(i) Put 7 = (J Hx and / = G — I. Since both 4̂ and £ are stabler transversals, 

j c e G 

we have A - {1} 5 / and B - {1} 5 J. Clearly, J is just the set of w e G such that 
JC_1WJC < / / for every JC e G. Moreover, Jx = J for every * e G. 
(ii) Suppose that G is finite, card(/f) = ra, card(A) = card(fl) = n 
and card(Z(G)) = r. Then card(7) ^ (m - 1) /i/r + 1 and card(J) ^ 
^ n(rm — m + l ) / r — 1. 
(iii) Now, suppose that G is finite and that H n //* -= 1 for each JC e G — H. By 
3.20, 4̂ = B is an abelian group and we have card(J) = n — 1 by (ii). Thus 
/ = A — {1}, A = J u '{1} and .4 = £ is a normal subgroup of G by (i). (A is the 
Frobenius kernel of G.) 

3.23 Remark. Consider the situation from 3.21. We have Z(G) 5 A by 
3.12(H), and hence Z(G) 5 L = LG(,4). 
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(i) Suppose that L * Z(G). Clearly, A ~\ CG(L) £ NG(L) = G. If A * CG(L), 
then there are a ' L — Z( G) and 1 ^ u ' H such that au = ua, i.e. 1 ^ w « 
= a~lua~ H r\ Ha, which is not possible. Hence, A = CG(L) and this implies 
that A is normal in G. 
(ii) We have G = _4/f, and therefore there exists a homomorphism cp: A -* Sf(H) 
(the symmetric group on H) such that Ker(<p) = L. In particular, if card(//)! < 
< card(,4/Z(G)), then L * Z(G). 
(iii) Let Z(G) = 1 and let H be finite. If A is infinite, then L ^ Z(G) by (ii) and 
A is normal by (i). If A is finite, then NG ( / / ) = / /Z(G) = H by 3.18, and hence 
3.22(iii) can be applied. Thus A is a normal abelian subgroup of G whenever 
Z(G) = 1 and H is finite. 
(iv) Suppose that Z(G) = LG(NG(H)) and that H is finite and abelian. We are 
again going to show that A is normal in G. Indeed, we have G = G/Z(G) = 
= AH, A = A/Z(G), H = HZ(G)/Z(G) =_/f, L-^77) = 1. If A is infinite, 
then the result follows from (i) and (ii). If A is finite (and non-trivial), then 
hz^A) ¥" 1 by a well known result of Ito (1]. However, then L ^ Z(G) and we can 
use (i) again. 

3.24 Lemma. Let H be a subgroup of G such that [G : H] *% 3 and 
H n Hu n Hv = 1 whenever u, v ~ G - H and uv ~l ' G - H. If A, B are 
H-connected pseudotransversals to H in G and if there exists an element 
e ' A n B with e 5* 1, then A = B is a transversal to H in G. 

Proof. Clearly, L,G(H) = 1, so that A, B are transversals and A n H = {1} = 
= B n / / . 

Let a ' A, b ' B and a _ 1b € / / . Then aH = bH and a~lb e # n //«~ ! ( s ee 
the proof of 3.20). Further, e~1a~1ea ' H, e~1b~1eb ' H and consequently 
b~le~lba~lea e / / , 6a _ 1 E ebHa~le~x = eaHa~le~l = // ( e f l ) 1 and a _ 1 6 e 
e ff(a~lea)~\ 

We have proved that a _ 1 6 e / / n / / f l l n H{a"ea)~\ Assume that a ^ b. If 
a"1 e // , then a = 1 = b, a contradiction. If ( a - 1 e a ) - 1 ' H, then e = 
= a~~xeaa~xe~l ' H, and so e = 1, a contradiction. Finally, if ( a - 1 e a ) - 1 a e H, 
then e - 1 a = e~la~xea • a~le~laa ' H, and so e = a, e = b and a = b, again 
a contradiction. 

3.25 Lemma. Let H be a subgroup of G. 
(i) If G' ~\ H and A, B are (pseudo)transversals to H in G, then A, B are 

H-connected. 
(ii) IfK is an abelian subgroup ofG such thatHK = G, then Kis an H-self con­

nected pseudotransversal to H in G; it is a transversal iffHn K = 1. 
(iii) If H = 1 and A, B are H-connected pseudotransversals to H in G, then 

A ~~ B = G is an abelian group. 
(iv) If H is normal in G and A, B are H-connected pseudotransversals to H in 

G, then G' & H. 
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3.26 Corollary. Let H be a subgroup of a group G. Then G ~\ H iff H is 
normal in G and there exist H-connected transversals to H in G. 

4. S e m i c o n n e c t e d transversa l s 

4.1 Let H be a subgroup of a group G and A, B subsets of G. We shall say that 
A, B are H-semiconnected if for all u £ A and v £ B there exists x e G such that 
[Au~x, Bv~x] £ Hx (i.e., Au~x, Bv~x are //'-connected). 

4.2 Lemma. Let H be a subgroup of G and A, B subsets of G. 
(i) If A, B are H-connected, then [Au~x, Bv~x] Q H^uv)~x for allu' A, v ' B. 

In particular, A, B are H-semiconnected. 
(ii) If A, B are H-connected, then Ax, Bx are Hx-connected for every x ' G. 

(iii) If A, B are H-semiconnected, then Ax, Bx are H-semiconnected for every 
x' G. 

(iv) / / A, B are H-semiconnected, then A, B are IT-semiconnected for every 
x' G. 

(v) / / A, B are H-semiconnected, then Ax, Bx are Hy-semiconnected for all 
x,y'G. 

(vi) / / A, B are H-semiconnected, then Ax, By are H-semiconnected for all 
x,yeG. 

vii) If A, B are H-semiconnected, then xA, xB are H-semiconnected for every 
x* G. 

(viii) If A, B are H-semiconnected, then (xAy)u, (xBz)u are Hv-semiconnected for 
all x, y, z, u, v ' G. 

Proof, (i) [au~x, bv~x] = ua~xvb~xau~xbv~x = uv • v~xa~xva • a~~xb~xab • 
b~xu~xbw u~xv~xuvv~xu-x ' uvHv~xu~x = H<uv)~l for all a e A, b ' B. 
The remaining assertions are clear. 

4.3 Lemma. Let H be a subgroup of a group G. Subsets A, B of G are 
H-semiconnected iff there exist u ' A, v e B and x £ G such that 
[Au~x, Bv~x] ~\ Hx. 

Proof. This follows easily from 4.2. 
4.4 Lemma. Let H be a subgroup of a group G. The following conditions are 

equivalent: 
(i) There exist H-connected pseudotransversals to H in G. 

(ii) There exist H-connected transversals to H in G. 
(iii) There exist H-semiconnected stable transversals to H in G. 
(iv) There exist H-semiconnected stable pseudotransversals to H in G. 

Proof, (i) implies (ii) by 3.7, (ii) implies (iii) and (iii) implies (iv) trivially, 
(iv) implies (i). Let A, B be //-semiconnected stable pseudotransversals to H in 
G. Take u ' A, b ' B. Then [Au~x, Bv~x] ~\ Hx for some x ' G. Since A, B are 
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stable, Au~l and Bv~l are left pseudotransversals, and so Au~l, Bv~l are 
//""-connected pseudotransversals. But then^w"1)*"1, (Bv~l)x~l are //-connected 
pseudotransversals. 

4.5 Lemma. Let A, B be H-semiconnected stable pseudotransversals to a sub­
group H in a group G. IfLG(H) = 1, then A, B are stable transversals. 

Proof. Let u ' A, v ' B and x ' G be such that [Au~\ Bv~l] ~\ Hx. Then 
Au~l, Bv~l are stable pseudotransversals. Of course, LG(HX) = 1, and therefore 
Au~l, Bv~l are stable transversals by 3.9 and 3.3. By 2.15, A and B are stable 
transversals to H in G. 

5. Stable transversals and graphs 

5.1 Here, by a graph we mean a non-empty set R together with a binary relation 
r i R{2) (the case r = 0 being also allowed) which is symmetric and antirefelxive. 

If 0 ?-= S Q R, then S together with s = r n $2) is also a graph and it is called 
the subgraph induced by S. 

If s = 0, then S is said to be an independent subset. 
5.2 Let & = (R, r) be a graph. 

(i) Put dis(^) = max{card(5); 0 ^ S ~\ R, S independent}, provided that such 
a cardinal number exists. 
(ii) For each a ' R, let deg(a) = deg(a,^) = card({x ' R; (a, x) ' r}). 

The graph ffl is said to be regular if deg(«) = deg(b) for all a, b ' R. In that 
case, we put deg(^) = deg(a), a ' R. 
(iii) The graph ffi is said to be discrete if r = 0. Then dis(^) = card(/?) and 
deg(^) = 0. 
(iv) The graph 3t is said to be complete if r = /^2) — id^. Then dis(R) = 1 and 
deg(-R) = card(/?) — 1 ( = card(-R) if this cardinal number is infinite). 

5.3 Let G be a group and A a subset of G such that A~l = A. Now, define 
a graph ^ = ^(G, rA) on G by (*, y) ' rA iff x, y ' G, x ^ y, xy"1 e cn(A) (see 
1.5). We put dis(G, A) = dis(^(G, r^)). 

5.4 Lemma. Let A be a subset of a group G such that A~l = A and let 
B = cn(A). Then: 
(0 rA = rB. 
(ii) (x, y) ' r A iff x = ya (or x = ay, y = ax, y = xa) for some a'B. 

Proof. Since A [5 B, we have rA ~\ rB. If (x, y) ~ rB, then xy~l ' cn(B) = 
= B = cn(.<4), so that (JC, y) ' rA. 

5.5 Corollary. Let A, B be subsets of a group G such that A~l = A and 
B~l = B. Then rA = rB iff cn(A) = cn(B). 

5.6 Lemma. Let A be a subset of a group G such that A'1 = A. Then: 
(i) ^ = $(G, rA) is a regular graph and deg(^) = card(cn(A) - {1}). 
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(ii) deg(^) = card(cn(A)) if\ i A. 
(iii) deg(<?) = card(cn(.A)) - 1 if\ e A. 
(iv) The following permutations are automorphisms of the graph (S: All the 

translation Jf(G, u), &(G, u), u e G; the permutation x -* x~l; all auto­
morphisms f of G withf(cn(A)) = cn(A) (or f(A) = A). 

Proof. Easy. 

5.7 Lemma. Let H be a subgroup of a group G and & = &(G, rA). Then: 
(i) A subset A of G is independent in & iff A is a stable partial transversal to 

H in G. 
(ii) / / dis(G, H) exists, then dis(G, //) ^ [G : / / ] . 

(iii) IfH is normal in G, then dis(G, //) = [G : / / ] . 
Proof, (i) See 2.3(i). 

(ii) and (iii). Easy. 
5.8 Lemma. Let H, K be subgroups of a group G. 

(i) / / HK = G and H n K = 1, tfien dis(G, //) = [G: //] = card(K) and 
dis(G, K) = [G: K] = card(//). 

(ii) IfH~\K andK is normal in G, then dis( G, //) = [ G: K] • dis(K, cnG(//)) = 
= dis(G, K) • dis(K, en G(//)) and&s(K, cnG(//)) iS dis(K, #)• 

(iii) IfH & KandH is normal in G, then dis(G, K) = dis(G///, K///). 
(iv) //card(//) < card(K), cn(//) = cn(K) a«d G w //wte, then dis(G, //) < 

< [ G : / / ] . 
Proof, (i) This follows from 5.7(i) and 2.20. 

(ii) First, let A be a left transversal to K in G; then A is a stable transversal and 
card(i4) = [G: K]. Let B be a subset of K independent in &(K, rR), R = 
= cnG(H). We are going to show that AB is independent in "S(G, rR). For, let 
a,c* A, 5,d£B and abd~lc~l = ab • (cd) _1 e /?. Then abd~lc~x = JC_1WJC 

for some JC e G, u e //, so that JCAJC"1 • jcftd_1jc_1 • JCC-1JC-1 e //. But H ~\ K, 
K is normal in G, hence JCW" 1*" 1 e K and JCAJC"1 • JCC_1JC_1 = jcac_1jc_1 e K, 
ac~l € K, a = c, bd~l = fl^jc^wjea e fl and, finally, b = d. We have proved 
that .A/? is independent in &(G,rR) and that card(A-B) ^ card(.<4) • card(_B). 
From this, dis(G, //) ^ [G: K] • dis(K, R). Since c%(//) li cnG(//), we have 
dis(K, R) ^ dis(K, / /) . 

Now, let C be a subset of G such that C is independent in "S(G, rR). The set 
C is divided in pair-wise disjoint blocks of elements congruent modulo K. The 
nujnber of all such blocks is at most [ G : K]. Let D be one of these blocks, d e D 
and E = Dd~x. Then E ~\ K and £ is independent in ff(K, r*). Consequently, 
card(E) ^ dis(K, /?) and we see that card(C) ^ [G : K] dis(K, K). 
(iii) Easy, 
(iv) We have rH = rK and dis(G, //) = dis(G, K) ^ [G: K] < [G : / / ] . 

5.9 Corrollary. Let H be a subgroup of a finite group G. Then dis(G, //) = 
= [G : H] iff there exists a stable transversal to H in G. 
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