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Kaéanov - Galerkin Method and its Application
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A. KRATOCHVIL, J. NECAS
Institute of Mathematics, Czechoslovak Academy of Sciences, Prague

The Kacanov’s method on the convergence of approximants of the minimum of nonquadrat-
ical functionals is explained in the book by MICHLIN [4, pp. 369—370] and it was firstly applied
by L. M. KacaNov [2]. The proof of the convergence of this method was given by Roze [7], but
in [4] on p. 369 (footnote 2) it is remarked that the proof contains a mistake. The convergence of
this method for the solving of the magnetostatic field in nonlinear media has been proved in the
paper by KACUR, NECAs, PoLAK and SOUCEK [3]. The proof in the abstract scmng of the convergence
has been given in the authors’ paper [1].

This communication deals with the KACANOV-GALERKIN method and with the application
to the second and mixed problems for elastoplastic materials, where the deformation theory of
plasticity is used (see for example NECAs [6]).

Kaéanov-Galerkin Method

Let H be a Hilbert space with the inner product (.,.) and let H be a closed
subspace with the same inner product. Suppose that f : H > Ry is a functional
defined on H with the Gateaux derivative f'(x) in each point # € H which is con-
tinuous on H and f' takes the bounded subset in H onto bounded subsets.

Let ¢ € H and x*cH. Let ¢ > 0 and suppose that for each u € H and
heH itis
@) : (b f'(u + ) —f'(4)) = c1 ||l .

From the well-known theorem (see e.g. VAJNBERG [8, Thm. 9.2]) it follows that
there exists a uniquely determined xo, € H satisfying

flxo +x7) — (x0 +x°, 9) = nréig {flo +27)— @ + ", 9)} . 1)

The main goal of the Kacanov’s method is the introducing the functional
& :Hx Hx H- R, such that ®(u,.,.): Hx H-> R, is a bilinear and
symmetric form for each fixed » € H. Suppose that there exist cz, c3 > 0 such that
for each u, v, w €H and heH itis:

(ii) D(u, hy B) > ca |2,
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(iii) D(u, u, h) = (h,f'(w)),
(iv) % ®D(u, v, v) — —;— D(u, u, u) —f(v) +f(u) =0,

) D(u, v, w) < csjo]] . ||zl -

The reason for introducing the functional @ which approximates in the sense
(iii), (iv) our functional f is that ®D(u, v, v) is quadratic, so it is easy to find the
minimum of the functional }®(, v, v) — (v, @).

For the Kadanov-Galerkin method suppose that ¢, —>@, x, —x,

00 00
> llxp+1— %0, > llga+1r — @al| are the convergent series and {H,} is a sequence

n=1 n=1
of closed subspaces of H such that
(Vi) Hn < Hn+1 Py UHn = H.

Let x; € Hy. Then (again by [8, Thm. 9.2]) there exists a uniquely determined
sequence {x,} < H such that x, € H, and

1
5 D(xn + xp415 Xn+l + Xp41s Xns1 + Xp41) — (Xn41 + X4l Pri1) =

. 1 . . . .
= min {—— D(xn + x,41, v + Xp+l, U+ X, 41) —(v —+ x,+1, <Pn+1)} 5

vEHp 41
n=12,... @)

Theorem. lim |jx, — xo] = 0.

n—-oo

(The proof has the following steps:

(1) The sequence {||x||} is bounded.
@ lim [[xns1 — xall = 0.)
Application

Our Theorem can be applied to the variational problem:
I'(u,u)

min { f [k(x) 92(u) + 1 f u(x, o) da] dx — f wiFydx — f usgids‘ ,
uEW 2 2 J
u—u*€V  Q 0 9] r,

where 2 is a bounded domain in R3 with the boundary 92 =1 I U R,
IN nI's =@, I, I's are open sets in 92, I's # 0, two dimensional measure of R

is zero; W =[Wi(Q)3, V = [L?’/é(!))]‘*, (WiQ) and L(Y)/},(Q) are the Sobolev
spaces — see e.g. NECAs [5, Chapt. 1]); F; € La(Q) are the components of the body
force, gi € L2(I'1) are the components of the boundary force vector; k(x) € Lo(£2)
is the bulk modulus of the material; u(x,s) is the Lame’s coefficient, u(x,s) is
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measurable in x €2 for fixed s € (0, ) and continuously differentiable in the
variable s € (0, o) for almost all x €£2; u is the displacement vector; e;;(u) =
_ (0w | ow\ . P . ) _
== (aT, a_xz_> is the infinitesimal strain tensor; #(u) = e;(u) and
2
I'(u, v) = 2ey(u) e1j(v) — 3 HNu) o) .
Under the assumptions:

3
0<po<pxs) <5 kx)<h<+wo,

,u(x,s)+22'lf%—s)—.s>x>0,

ou
a—s(x,S)SO,

we can set in abstract Theorem:

I'(u,0)

j@=5 [ e+ [ woaa,
o 0
D(u, v, h) = f [k(x) F(v) ¥h) + p(x, I'(u, w)) . I'(v, b)} dx .
9
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