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Kaéanov - Galerkin Method and its Application
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Department of Mathematical Analysis, Charles University, Prague

A. KRATOCHVIL, J. NECAS
Institute of Mathematics, Czechoslovak Academy of Sciences, Prague

The Kacanov’s method on the convergence of approximants of the minimum of nonquadrat-
ical functionals is explained in the book by MICHLIN [4, pp. 369—370] and it was firstly applied
by L. M. KacaNov [2]. The proof of the convergence of this method was given by Roze [7], but
in [4] on p. 369 (footnote 2) it is remarked that the proof contains a mistake. The convergence of
this method for the solving of the magnetostatic field in nonlinear media has been proved in the
paper by KACUR, NECAs, PoLAK and SOUCEK [3]. The proof in the abstract scmng of the convergence
has been given in the authors’ paper [1].

This communication deals with the KACANOV-GALERKIN method and with the application
to the second and mixed problems for elastoplastic materials, where the deformation theory of
plasticity is used (see for example NECAs [6]).

Kaéanov-Galerkin Method

Let H be a Hilbert space with the inner product (.,.) and let H be a closed
subspace with the same inner product. Suppose that f : H > Ry is a functional
defined on H with the Gateaux derivative f'(x) in each point # € H which is con-
tinuous on H and f' takes the bounded subset in H onto bounded subsets.

Let ¢ € H and x*cH. Let ¢ > 0 and suppose that for each u € H and
heH itis
@) : (b f'(u + ) —f'(4)) = c1 ||l .

From the well-known theorem (see e.g. VAJNBERG [8, Thm. 9.2]) it follows that
there exists a uniquely determined xo, € H satisfying

flxo +x7) — (x0 +x°, 9) = nréig {flo +27)— @ + ", 9)} . 1)

The main goal of the Kacanov’s method is the introducing the functional
& :Hx Hx H- R, such that ®(u,.,.): Hx H-> R, is a bilinear and
symmetric form for each fixed » € H. Suppose that there exist cz, c3 > 0 such that
for each u, v, w €H and heH itis:

(ii) D(u, hy B) > ca |2,
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(iii) D(u, u, h) = (h,f'(w)),
(iv) % ®D(u, v, v) — —;— D(u, u, u) —f(v) +f(u) =0,

) D(u, v, w) < csjo]] . ||zl -

The reason for introducing the functional @ which approximates in the sense
(iii), (iv) our functional f is that ®D(u, v, v) is quadratic, so it is easy to find the
minimum of the functional }®(, v, v) — (v, @).

For the Kadanov-Galerkin method suppose that ¢, —>@, x, —x,

00 00
> llxp+1— %0, > llga+1r — @al| are the convergent series and {H,} is a sequence

n=1 n=1
of closed subspaces of H such that
(Vi) Hn < Hn+1 Py UHn = H.

Let x; € Hy. Then (again by [8, Thm. 9.2]) there exists a uniquely determined
sequence {x,} < H such that x, € H, and

1
5 D(xn + xp415 Xn+l + Xp41s Xns1 + Xp41) — (Xn41 + X4l Pri1) =

. 1 . . . .
= min {—— D(xn + x,41, v + Xp+l, U+ X, 41) —(v —+ x,+1, <Pn+1)} 5

vEHp 41
n=12,... @)

Theorem. lim |jx, — xo] = 0.

n—-oo

(The proof has the following steps:

(1) The sequence {||x||} is bounded.
@ lim [[xns1 — xall = 0.)
Application

Our Theorem can be applied to the variational problem:
I'(u,u)

min { f [k(x) 92(u) + 1 f u(x, o) da] dx — f wiFydx — f usgids‘ ,
uEW 2 2 J
u—u*€V  Q 0 9] r,

where 2 is a bounded domain in R3 with the boundary 92 =1 I U R,
IN nI's =@, I, I's are open sets in 92, I's # 0, two dimensional measure of R

is zero; W =[Wi(Q)3, V = [L?’/é(!))]‘*, (WiQ) and L(Y)/},(Q) are the Sobolev
spaces — see e.g. NECAs [5, Chapt. 1]); F; € La(Q) are the components of the body
force, gi € L2(I'1) are the components of the boundary force vector; k(x) € Lo(£2)
is the bulk modulus of the material; u(x,s) is the Lame’s coefficient, u(x,s) is
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measurable in x €2 for fixed s € (0, ) and continuously differentiable in the
variable s € (0, o) for almost all x €£2; u is the displacement vector; e;;(u) =
_ (0w | ow\ . P . ) _
== (aT, a_xz_> is the infinitesimal strain tensor; #(u) = e;(u) and
2
I'(u, v) = 2ey(u) e1j(v) — 3 HNu) o) .
Under the assumptions:

3
0<po<pxs) <5 kx)<h<+wo,

,u(x,s)+22'lf%—s)—.s>x>0,

ou
a—s(x,S)SO,

we can set in abstract Theorem:

I'(u,0)

j@=5 [ e+ [ woaa,
o 0
D(u, v, h) = f [k(x) F(v) ¥h) + p(x, I'(u, w)) . I'(v, b)} dx .
9
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