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Abstract. Let Bk be the general Boolean algebra and T a linear operator onMm,n(Bk). If
for any A in Mm,n(Bk) (Mn(Bk), respectively), A is regular (invertible, respectively) if and
only if T (A) is regular (invertible, respectively), then T is said to strongly preserve regular
(invertible, respectively) matrices. In this paper, we will give complete characterizations
of the linear operators that strongly preserve regular (invertible, respectively) matrices
over Bk. Meanwhile, noting that a general Boolean algebra Bk is isomorphic to a finite
direct product of binary Boolean algebras, we also give some characterizations of linear
operators that strongly preserve regular (invertible, respectively) matrices over Bk from
another point of view.

Keywords: linear operator, invariant, regular matrix, invertible matrix, general Boolean
algebra

MSC 2010 : 15A04, 15A09, 16Y60

1. Introduction and preliminaries

A semiring means a type 〈2, 2, 0, 0〉 algebra (R, +, ·, 0, 1) satisfying the following

identities:

• x + (y + z) = (x + y) + z;

• x(yz) = (xy)z;

• x(y + z) = xy + xz, (x + y)z = xz + yz;

• x + 0 = x;

• x + y = y + x;
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• x · 1 = 1 · x = x;

• x0 = 0x = 0.

Semirings constitute a fairly natural generalization of rings and distributive lat-

tices.

Let Mm,n(R) denote the set of all m × n matrices with entries in a semiring R.

If m = n, we use the notation Mn(R) instead of Mn,n(R). Algebraic operations

onMm,n(R) and such notions as linearity are also defined as if the underlying scalars

were in a field.

The theory of matrices over semirings have broad applications in optimization

theory, models of discrete event networks and graph theory (refer to [9], [10], [11],

[17]). Regular matrices and invertible matrices are two special types of matrices,

they play a central role in the theory of matrices (refer to [1], [9], [11], [17], [19]).

Recall that a m × n matrix A over a semiring R is called regular if there is

a n × m matrix B over R such that ABA = A. A matrix A in Mn(R) is said to be

invertible if there is a matrix B in Mn(R) such that AB = BA = In, where In is the

n × n identity matrix.

Let T be a linear operator onMm,n(R) and R(R) denote the set of all the regular

matrices in Mm,n(R). We say that

(i) T preserves regularity (or T preserves R(R)) if T (A) ∈ R(R) whenever A ∈

R(R);

(ii) T strongly preserves regularity (or T strongly preserves R(R)) when T (A) ∈

R(R) if and only if A ∈ R(R) for all A ∈ Mm,n(R).

Let T be a linear operator onMn(R) and GLn(R) denote the set of all the invert-

ible matrices in Mn(R). We say that

(i) T preserves invertibility (or T preserves GLn(R)) if T (A) ∈ GLn(R) whenever

A ∈ GLn(R);

(ii) T strongly preserves invertibility (or T strongly preservesGLn(R)) when T (A) ∈

GLn(R) if and only if A ∈ GLn(R) for all A ∈ Mn(R).

During the past 100 years, one of the most active and fertile subjects in matrix

theory is the linear preserver problem (LPP for short), which concerns the charac-

terization of linear operators on matrix spaces that leave certain functions, subsets,

relations, etc., invariant. The first paper can be traced down to Frobenius’s work

in 1897. Since then, a number of works in the area have been published. Among

these works, although the linear operators concerned are mostly linear operators on

matrix spaces over some fields or rings, the same problem has been extended to

matrices over various semirings (refer to [2]–[8], [12]–[14], [16], [18], [21]–[26]).

In the last decades, a number of characterizations of idempotent, nilpotent, regu-

lar and invertible matrices over semirings are given (refer to [1], [10], [11], [14], [15],
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[17]–[20]). Also, the linear operators preserving a number of other invariants of ma-

trices over semirings (many of them are antinegative semirings without zero divisors)

have been characterized (refer to [2]–[8], [12]–[14], [21]–[26]). Among these papers,

Song, Kang and Beasley etc. studied the linear operators strongly preserving regular

matrices over antinegative commutative semirings with no zero divisors, including

the binary Boolean algebra, the nonnegative reals, the nonnegative integers and the

fuzzy scalars (refer to [12], [23], [25]); Li, Tan, and Tang [14] characterized the linear

operators strongly preserving invertible matrices over some antinegative commuta-

tive semirings with no zero divisors. Besides, Song, Kang, and Jun etc. (refer to [22],

[24], [26]) studied and characterized the linear operators that preserve (or strongly

preserve) column ranks, nilpotent matrices and idempotent matrices over general

Boolean algebras.

For a fixed positive integer k, let Bk be the general Boolean algebra of subsets

of a k-element set Sk and σ1, σ2, . . . , σk denote the singleton subsets of Sk. Union

is denoted by + and intersection by ·; the null set is denoted by 0 and the set Sk

by 1. Under these operations, Bk becomes a commutative semiring, i.e., a semiring

satisfying the additional identity xy = yx. In particular, if k = 1, B1 is called the

binary Boolean algebra. The matrices over general Boolean algebra Bk will be called

Boolean matrices.

In this paper we are going to study the linear operators strongly preserving regu-

lar matrices over Bk and the linear operators strongly preserving invertible matrices

over Bk, respectively. We will give complete characterizations of the linear operators

that strongly preserve regular matrices over Bk in Section 2. Noticing that a gen-

eral Boolean algebra Bk is isomorphic to a finite direct product of binary Boolean

algebras, we also give some other characterizations of linear operators that strongly

preserve regular matrices over Bk from another point of view, i.e., we will give the

characterizations of linear operators that strongly preserve regular matrices over the

finite direct product of binary Boolean algebras. In Section 3, we will firstly charac-

terize the linear operators that strongly preserve invertible matrices over Bk. Next,

we also give some other characterizations of linear operators that strongly preserve

invertible matrices over the finite direct product of binary Boolean algebras.

For notations and terminologies occurring but not mentioned in this paper, the

readers can refer to [10], [11], [23].
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2. Linear operators strongly preserving regular matrices over Bk

For any matrix A = [aij ] ∈ Mm,n(Bk), the lth constituent, Al, of A is the m ×

n binary Boolean matrix whose (i, j)th entry is 1 if and only if aij ⊇ σl. Via the

constituents, A can be written uniquely as

A =

k
∑

l=1

σlAl,

which is called the canonical form of A (refer to [13]).

It follows from the uniqueness of the above decomposition and the fact that the

singletons are mutually orthogonal idempotents that for all matrices A ∈ Mm,n(Bk),

B, C ∈ Mn,q(Bk) and all α ∈ Bk,

(AB)l = AlBl; (B + C)l = Bl + Cl; (αA)l = αlAl

for all 1 6 l 6 k.

Proposition 2.1. Let A be a matrix in Mm,n(Bk) with k > 1. Then A is regular

if and only if all constituents of A are regular in Mm,n(B1).

P r o o f. Assume that A ∈ Mm,n(Bk) and A is regular. Then there exists

X ∈ Mm,n(Bk) such that AXA = A. Since A and X have unique canonical forms

respectively, say A =
k
∑

l=1

σlAl and X =
k
∑

l=1

σlXl, we have that

( k
∑

l=1

σlAl

)( k
∑

l=1

σlXl

)( k
∑

l=1

σlAl

)

= AXA = A =

k
∑

l=1

σlAl.

That is,
k
∑

l=1

σl(AlXlAl) =
k
∑

l=1

σlAl. And then we have AlXlAl = Al for all 1 6 l 6 k.

Note that Xl ∈ Mm,n(B1), so Al is regular in Mm,n(B1) for all 1 6 l 6 k.

Conversely, assume that A =
k
∑

l=1

σlAl ∈ Mm,n(Bk) and all lth constituents of A

are regular in Mm,n(B1). Then for each 1 6 l 6 k, there exists Xl ∈ Mm,n(B1) such

that AlXlAl = Al. Now, take X =
k
∑

l=1

σlXl ∈ Mm,n(Bk), we have

AXA =

( k
∑

l=1

σlAl

)( k
∑

l=1

σlXl

)( k
∑

l=1

σlAl

)

=

k
∑

l=1

σlAl = A.

Hence, A is regular in Mm,n(Bk) with k > 1. �
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Lemma 2.2 ([24]). Let A be a matrix inMn(Bk) with k > 1. Then A is invertible

if and only if all its constituents are permutation matrices. In particular, if A is

invertible, then A−1 = At.

The above lemma also shows that A ∈ Mn(Bk) (k > 1) is invertible if and only if all

its constituents are invertible, since the permutation matrices are the only invertible

matrices in Mn(B1).

Now, assume that T is a linear operator on Mm,n(Bk) with k > 1. For each

1 6 l 6 k, its lth constituent operator, Tl, is defined (refer to [13], [26]) by

(∀B ∈ Mm,n(Bk)) Tl(B) = (T (B))l.

By the linearity of T , we have

T (A) =

k
∑

l=1

σlTl(Al)

for any matrix A ∈ Mm,n(Bk).

Proposition 2.3. Let T be a linear operator on Mm,n(Bk). Then T strongly

preserves regularity if and only if its each lth constituent operator, Tl, strongly

preserves regularity on Mm,n(B1).

P r o o f. (⇒) For any Al ∈ Mm,n(B1), assume that Al ∈ R(B1). Take A = Al =
k
∑

i=1

σiAl. Clearly, A ∈ R(Bk). Since T is a linear operator that strongly preserves

regularity on Mm,n(Bk), we have T (A) ∈ R(Bk). And then we get Tl(Al) ∈ R(B1)

by Proposition 2.1.

On the other hand, for any A ∈ Mm,n(B1), assume that Tl(A) ∈ R(B1) for l =

1, 2, . . . , k. Note that T (A) = T
( k

∑

i=1

σiAl

)

=
k
∑

i=1

σiTl(Al), we have T (A) ∈ R(Bk)

by Proposition 2.1. And then we can get A ∈ R(Bk) since T is a linear operator

that strongly preserves regularity on Mm,n(Bk). By Proposition 2.1 again, we have

A(= Al) ∈ R(B1).

(⇐) For any A =
k
∑

l=1

σlAl ∈ R(Bk), by Proposition 2.1, Al ∈ R(B1) for l =

1, 2, . . . , k. Since each lth constituent operator, Tl, strongly preserves regularity

on Mm,n(B1), we immediately have Tl(Al) ∈ R(B1). By Proposition 2.1 again,

T (A) = T
( k

∑

l=1

σlAl

)

=
k
∑

i=1

σlTl(Al) ∈ R(Bk).
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On the other hand, for any A =
k
∑

l=1

σlAl ∈ Mm,n(Bk), assume that T (A) =

T
( k

∑

l=1

σlAl

)

=
k
∑

i=1

σlTl(Al) ∈ R(Bk). By Proposition 2.1, we have Tl(Al) ∈ R(B1)

for l = 1, 2, . . . , k. Since Tl strongly preserves regularity on Mm,n(B1), we immedi-

ately get Al ∈ R(B1) for l = 1, 2, . . . , k. And then we have A =
k
∑

l=1

σlAl ∈ R(Bk) by

Proposition 2.1. �

For a given semiring R, the (factor) rank, fr(A), of a nonzero A ∈ Mm,n(R) is

defined as the least integer r for which there are B ∈ Mm,r(R) and C ∈ Mr,n(R)

such that A = BC (refer to [5], [6]). The rank of a zero matrix is zero. Also we can

easily obtain

(∗) 0 6 fr(A) 6 min{m, n} and fr(AB) 6 min{fr(A), fr(B)}

for all A ∈ Mm,n(R) and for all B ∈ Mn,q(R).

Lemma 2.4 ([23]). Let min{m, n} 6 2. If T is an operator (that need not be

linear) on Mm,n(B1), then T strongly preserves regularity.

Theorem 2.5. Let min{m, n} 6 2. If T is a linear operator on Mm,n(Bk) with

k > 1, then T strongly preserves regularity.

P r o o f. Assume that A ∈ Mm,n(Bk) is regular. By Proposition 2.1, all lth con-

stituents of A are regular in Mm,n(B1). Notice that T (A) =
k
∑

l=1

σlTl(Al), and

Tl strongly preserves regularity by Lemma 2.4, we immediately obtain that T (A) is

regular by Proposition 2.1.

Conversely, for any A ∈ Mm,n(Bk), assume that T (A) is regular. Since T (A) =
k
∑

l=1

σlTl(Al), by Proposition 2.1, all Tl(Al) are regular in Mm,n(B1). And then, it

follows from Lemma 2.4 that all Al are regular. So, by Proposition 2.1, A is regular.

Thus, summing up the above discussions, we have shown that T strongly preserves

regularity. �

In the following we will continue to characterize the linear operators that strongly

preserve regular matrices over Bk when min{m, n} > 3.

The proposition and lemma below are needed.

Proposition 2.6. Let A be a matrix in Mm,n(Bk) with k > 1. If U ∈ Mm(Bk)

and V ∈ Mn(Bk) are invertible, then the following are equivalent:

(i) A is regular in Mm,n(Bk);
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(ii) UAV is regular in Mm,n(Bk);

(iii) At is regular in Mn,m(Bk).

P r o o f. Since (i) ⇔ (iii) is clear, we only need to show that (i) ⇔ (ii).

(i) ⇒ (ii) Assume that A is regular inMm,n(Bk). Then there existsX ∈ Mn,m(Bk)

such that AXA = A. And then since U ∈ Mm(Bk) and V ∈ Mn(Bk) are invertible,

we have (UAV )(V −1XU−1)(UAV ) = UAV . This means that UAV is regular in

Mm,n(Bk).

(ii) ⇒ (i) Assume that UAV is regular in Mm,n(Bk). Then there exists

Y ∈ Mn,m(Bk) such that (UAV )Y (UAV ) = UAV . Since U ∈ Mm(Bk) and V ∈

Mn(Bk) are invertible, we immediately get A(V Y U)A = U−1(UAV )Y (UAV )V −1 =

U−1UAV V −1 = A. Hence, A is regular in Mm,n(Bk). �

Lemma 2.7 ([23]). Let T be a linear operator onMm,n(B1) with min{m, n} > 3.

Then T strongly preserves regularity if and only if there are permutation matrices P

and Q such that T (X) = PXQ for all X ∈ Mm,n(B1), or m = n and T (X) = PXtQ

for all X ∈ Mn(B1).

Theorem 2.8. Let min{m, n} > 3 and T be a linear operator on Mm,n(Bk)

with k > 1. Then T strongly preserves regularity if and only if there are invertible

matrices P and Q such that T (X) = PXQ for all X ∈ Mm,n(Bk), or m = n and

T (X) = P
( k

∑

l=1

σlYl

)

Q for all X =
k
∑

l=1

σlXl ∈ Mn(Bk), where Yl = Xl or Yl = Xt
l .

P r o o f. (⇒) Assume that T strongly preserves regularity. By Proposition 2.3,

it is known that each lth constituent operator, Tl, strongly preserves the regularity

onMm,n(B1) for l = 1, 2, . . . , k. Now, for any X =
k
∑

l=1

σlXl ∈ Mm,n(Bk), notice that

T (X) =
k
∑

l=1

σlTl(Xl) and by Lemma 2.7, each lth constituent operator, Tl, has the

form

Tl(Xl) = PlXlQl or m = n and Tl(Xl) = PlX
t
l Ql,

where Xl ∈ Mm,n(B1), and Pl and Ql are permutation matrices for l = 1, 2, . . . , k.

Thus we immediately get

T (X) =
k

∑

l=1

σlTl(Xl) =
k

∑

l=1

σlPlYlQl

=

( k
∑

l=1

σlPl

)( k
∑

l=1

σlYl

)( k
∑

l=1

σlQl

)

, PXQ
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for all X =
k
∑

l=1

σlXl ∈ Mm,n(Bk), or m = n and

T (X) =

k
∑

l=1

σlTl(Xl) =

k
∑

l=1

σlPlYlQl

=

( k
∑

l=1

σlPl

)( k
∑

l=1

σlYl

)( k
∑

l=1

σlQl

)

, P

( k
∑

l=1

σlYl

)

Q,

where Yl = Xl or Yl = Xt
l for l = 1, 2, . . . , k. Also, by Lemma 2.2, P =

k
∑

l=1

σlPl,

Q =
k
∑

l=1

σlQl are clearly invertible in Mn(Bk). Thus, we have shown the necessity.

(⇐) We will show the sufficiency as follows:

For any X =
k
∑

l=1

σlXl ∈ Mm,n(Bk), if X ∈ R(Bk), then by Proposition 2.6,

T (X) = PXQ is clearly regular.

For m = n, assume X =
k
∑

l=1

σlXl ∈ R(Bk), then by Proposition 2.1, we have

Xl ∈ R(B1) for l = 1, 2, . . . , k. And then,
k
∑

l=1

σlYl is also regular, where Yl = Xl or

Yl = Xt
l . Hence, by Proposition 2.6, T (X) = P

( k
∑

l=1

σlYl

)

Q ∈ R(Bk).

Assume that X =
k
∑

l=1

σlXl ∈ Mm,n(Bk) and T (X) ∈ R(Bk). Then T (X) = PXQ

is regular. By Proposition 2.6, X ∈ R(Bk).

For m = n, assume that X =
k
∑

l=1

σlXl ∈ Mn(Bk) and T (X) ∈ R(Bk). Note

that T (X) = P
( k

∑

l=1

σlYl

)

Q, where P and Q are invertible matrices, Yl = Xl or

Yl = Xt
l , by Proposition 2.6, we have Y =

k
∑

l=1

σlYl ∈ R(Bk), and then Yl ∈ R(B1)

for l = 1, 2, . . . , k. Since Yl = Xl or Yl = Xt
l , we immediately get Xl ∈ R(B1) for

l = 1, 2, . . . , k. It follows from Proposition 2.1 that X ∈ R(Bk). �

So we have obtained the characterizations of linear operators which strongly pre-

serve regular matrices over general Boolean algebras Bk.

Next, we will give two examples.
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Example 2.9. Let

P =





σ1 σ2 σ3

σ2 σ3 σ1

σ3 σ1 σ2



 ∈ M3(B3), Q =









1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1









∈ M4(B3).

By Lemma 2.2, P , Q are clearly invertible matrices. Now, define a linear operator T

on M3,4(B3) by

T (X) = PXQ

for all X ∈ M3,4(B3). Then it is not hard for us to check that T strongly pre-

serves R(B3).

Example 2.10. Let

P =





σ3 σ1 σ2

σ1 σ2 σ3

σ2 σ3 σ1,



 , Q =





0 1 0

1 0 0

0 0 1



 ∈ M3(B3).

By Lemma 2.2, P, Q ∈ GL3(B3). Define a linear operator T on M3(B3) by

T (X) = P (σ1X
t
1 + σ2X2 + σ3X

t
3)Q

for allX =
3

∑

l=1

σlXl. Then it is also routine to check that T strongly preservesR(B3).

Notice that a general Boolean algebra Bk is isomorphic to a finite direct product

of binary Boolean algebras B1. In the following, we will also give some other charac-

terizations of linear operators that strongly preserve regular matrices over Bk from

another point of view, i.e., we will study the characterizations of linear operators that

strongly preserve regular matrices over the finite direct product of binary Boolean

algebras B1.

The propositions below are needed.

Proposition 2.11. Let S =
k
∏

i=1

Si, where Si = B1. If T : Mm,n(S) → Mm,n(S) is

a linear operator, then for any i ∈ {1, 2, . . . , k}, there exists a unique linear operator

Ti : Mm,n(B1) → Mm,n(B1) such that T (A)i = Ti(Ai) for any A ∈ Mm,n(S).

P r o o f. For any B ∈ Mm,n(B1), define Ti(B) := T (C)i, where C ∈ Mm,n(S) is

such that Ci = B and Cj = O for any i 6= j. Let s ∈ S with si = 1 and sj = 0 for any

j 6= i. Then for any A ∈ Mm,n(S), T (A)i = siT (A)i = (sT (A))i = T (sA)i = Ti(Ai).
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For any A1, A2 ∈ Mm,n(Si), assume that Ti(A1) = T (Ā1)i, Ti(A2) = T (Ā2)i,

where (Ā1)i = A1, (Ā2)i = A2 and (Ā1)j = O, (Ā2)j = O for any j 6= i. And then

we have

Ti(A1) + Ti(A2) = T (Ā1)i + T (Ā2)i = (T (Ā1) + T (Ā2))i

= T (Ā1 + Ā2)i = Ti((Ā1 + Ā2)i)

= Ti((Ā1)i + (Ā2)i) = Ti(A1 + A2).

Also, for any a ∈ Si, there exists ā ∈ S such that (a)i = a. And then

aTi(A1) = (ā)iT (Ā1)i = (aT (Ā1))i = T (aĀ1)i = Ti((aĀ1)i) = Ti(aA1).

Thus, Ti is a linear operator.

Suppose that T i : Mm,n(Si) → Mm,n(Si) is also a linear operator such that

T (A)i = T i(Ai) for any A ∈ Mm,n(S). For any B ∈ Mm,n(Si), there exists

B ∈ Mm,n(S) such that (B)i = B. Then

T i(B) = T i((B)i) = T (B)i = Ti((B)i) = Ti(B).

Thus, T i = Ti. �

In the following, the linear operator Ti will be called ith constituent operator of

T for convenience.

Proposition 2.12. Let S =
k
∏

i=1

Si, where Si = B1. Then for any A, B ∈

Mm,n(S), A is regular if and only if Ai is regular for any i ∈ {1, 2, . . . , k}.

P r o o f. It is routine to check this proposition. �

Proposition 2.13. Let S =
k
∏

i=1

Si, where Si = B1. Let T be a linear operator

on Mm,n(S). Then T strongly preserves regularity if and only if its ith constituent

operator, Ti, strongly preserves regularity.

P r o o f. Let T be a linear operator on Mm,n(S) and Ti be its ith constituent

operator on Mm,n(B1).

(⇒) For any Al ∈ Mm,n(B1), assume that Al ∈ R(B1). Take A = (Al, Al, . . . ,

Al) ∈
k
∏

i=1

Mm,n(Si). We have A ∈ R(S) by Proposition 2.12. Since T is a lin-

ear operator that strongly preserves regularity on Mm,n(S), we have T (A) =

(T1(Al), . . . , Tl(Al), . . . , Tk(Al)) ∈ R(S). And then we get Ti(Al) ∈ R(B1).

178



On the other hand, for any Al ∈ Mm,n(B1), assume that Ti(Al) ∈ R(B1) for

i = 1, 2, . . . , k. Take A = (Al, Al, . . . , Al) ∈
k
∏

i=1

Mm,n(Si). We have

T (A) = (T1(Al), . . . , Tl(Al), . . . , Tk(Al)) ∈ R(S)

by Proposition 2.12. And then A ∈ R(Bk) since T is a linear operator that strongly

preserves regularity on Mm,n(Bk). By Proposition 2.12 again, we have Al ∈ R(B1).

(⇐) For any A = (A1, A2, . . . , Ak) ∈
k
∏

i=1

Mm,n(Si), by Proposition 2.12, Ai ∈

R(B1) for i = 1, 2, . . . , k. Since each ith constituent operator, Ti, strongly preserves

regularity on Mm,n(B1), we immediately have Ti(Ai) ∈ R(B1). And then

T (A) = (T1(A1), . . . , T2(A2), . . . , Tk(Ak)) ∈ R(S)

by Proposition 2.12 again.

On the other hand, for any A = (A1, A2, . . . , Ak) ∈
k
∏

i=1

Mm,n(Si), assume that

T (A) = (T1(A1), . . . , T2(A2), . . . , Tk(Ak)) ∈ R(S). By Proposition 2.12, we have

Ti(Ai) ∈ R(B1) for i = 1, 2, . . . , k. Since Ti strongly preserves regularity on

Mm,n(B1), we immediately get Ai ∈ R(Bi) for i = 1, 2, . . . , k. And then we have

A = (A1, A2, . . . , Ak) ∈ R(S) by Proposition 2.12. �

By virtue of Lemma 2.7, we can easily have the following result:

Theorem 2.14. Let S =
k
∏

i=1

Si, where Si = B1. Let min{m, n} 6 2. If T is

a linear operator on Mm,n(S), then T strongly preserves regularity.

In the following we will continue to characterize the linear operators that strongly

preserve regular matrices over S =
k
∏

i=1

B1 when min{m, n} > 3.

Theorem 2.15. Let S =
k
∏

i=1

Si, where Si = B1, and T be a linear operator

on Mm,n(S), where min{m, n} > 3. Then the following statements are equivalent:

(i) T strongly preserves regularity;

(ii) there exist invertible matrices P = (P1, P2, . . . , Pk) ∈ Mm(S), Q = (Q1, Q2, . . . ,

Qk) ∈ Mn(S) where Pi, Qi are permutation matrices such that either T (X) =

PXQ for any X ∈ Mm,n(S) or m = n and T (X) = P (s1X + s2X
t)Q for any

X ∈ Mn(S), where s1, s2 ∈ S satisfy (s1)i, (s2)i ∈ {0, 1} and (s1)i 6= (s2)i for

any i ∈ {1, 2, . . . , k}.
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P r o o f. (i) ⇒ (ii) Let S =
k
∏

i=1

Si, where Si = B1, and T be a linear operator on

Mm,n(S), where min{m, n} > 3. Suppose that T strongly preserves regularity. By

Proposition 2.11, Ti strongly preserves regularity for any i ∈ {1, 2, . . . , k}. It follows

from Lemma 2.7 that there exist permutation matrices Pi and Qi such that either

(1) Ti(Xi) = PiXiQi for any Xi ∈ Mm,n(Si)

or m = n and

(2) Ti(Xi) = PiX
t
i Qi for any Xi ∈ Mn(Si).

Take P = (P1, P2, . . . , Pk) ∈ Mm(S), Q = (Q1, Q2, . . . , Qk) ∈ Mn(S). Ifm 6= n, then

for any i ∈ {1, 2, . . . , k}, Ti(Xi) = PiXiQi for any Xi ∈ Mn(Si). Thus T (A) = PAQ

for any A ∈ Mm,n(S). If m = n, let

I1 := {i : Ti is the form of (1)},

I2 := {i : Ti is the form of (2)}.

It is clear that I1 ∩ I2 = ∅, I1 ∪ I2 = {1, 2, . . . , k}. Let s1, s2 ∈ S satisfy (s1)i = 1 if

i ∈ I1, 0 otherwise; (s2)i = 1 if i ∈ I2, 0 otherwise. It follows that

T (A) = P (s1A + s2A
t)Q

for any A ∈ Mm,n(S).

(ii) ⇒ (i) Assume that T (X) = PXQ for any X ∈ Mm,n(S). Since P and

Q are invertible, it is easy to see that T strongly preserves regularity in this case.

Another case is m = n and T (X) = P (s1X + s2X
t)Q for any X ∈ Mn(S). For any

i ∈ {1, 2, . . . , k} and Ai ∈ Mn(Si), there exists Ā ∈ Mn(S) such that Ai = (Ā)i,

Ti(Ai) = Ti((Ā)i) = T (Ā)i = (P (s1Ā + s2Ā
t)Q)i.

If (s1)i = 1, (s2)i = 0, then

Ti(Ai) = (P (s1Ā + s2(Ā)t)Q)i = PiAiQi

for any Ai ∈ Mn(Si). Otherwise,

Ti(Ai) = PiA
t
iQi

for any Ai ∈ Mn(Si). Noticing that Pi and Qi are permutation matrices, by

Lemma 2.7, Ti strongly preserves regularity, and then T strongly preserves regu-

larity by Proposition 2.13. �
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Hence, we have obtained characterizations of linear operators that strongly pre-

serve regular matrices over the finite direct product of binary Boolean algebras B1.

3. Linear operators strongly preserving invertible matrices over Bk

In this section, analogous with the discussions in Section 2, we will continue to

study the characterizations of the linear operators strongly preserving invertible ma-

trices over general Boolean algebras Bk.

First, we will introduce the following lemma and proposition.

Lemma 3.1 ([14]). Let T be a linear operator on Mn(B1). Then T strongly

preserves GLn(B1) if and only if there are permutation matrices P and Q such that

T (X) = PXQ for all X ∈ Mn(B1), or T (X) = PXtQ for all X ∈ Mn(B1).

Proposition 3.2. Let T be a linear operator on Mn(Bk) with k > 1. Then

T strongly preserves GLn(Bk) if and only if its each lth constituent operator, Tl,

strongly preserves GLn(B1).

P r o o f. (⇒) For any Al ∈ GLn(B1), take A = Al =
k
∑

i=1

σiAl. Clearly, A ∈

GLn(Bk). Since T strongly preservesGLn(Bk) with k > 1, we have T (A) ∈ GLn(Bk).

And then Tl(Al) ∈ GLn(B1) by Lemma 2.2.

On the other hand, for any A ∈ Mn(B1), assume that Tl(A) ∈ GLn(B1) for

l = 1, 2, . . . , k. Note that T (A) = T
( k

∑

i=1

σiAl

)

=
k
∑

i=1

σiTl(Al), so we have T (A) ∈

GLn(Bk) by Lemma 2.2. Since T is a linear operator that strongly preserves invert-

ibility on Mn(Bk), we have A ∈ GLn(Bk). And then it follows from Lemma 2.2 that

A(= Al) ∈ GLn(B1).

(⇐) For any A =
k
∑

l=1

σlAl ∈ GLn(Bk), by Lemma 2.2, Al ∈ GLn(B1) for l =

1, 2, . . . , k. Since each lth constituent operator, Tl, strongly preserves invertibility

onMn(B1), we have Tl(Al) ∈ GLn(B1). By Lemma 2.2 again, T (A) = T
( k

∑

l=1

σlAl

)

=
k
∑

i=1

σlTl(Al) ∈ GLn(Bk).

On the other hand, assume that for any A =
k
∑

l=1

σlAl ∈ Mm,n(Bk), T (A) =

T
( k

∑

l=1

σlAl

)

=
k
∑

i=1

σlTl(Al) ∈ GLn(Bk). Then by Lemma 2.2, we have Tl(Al) ∈

GLn(B1) for l = 1, 2, . . . ..., k. Noting that Tl strongly preserves invertibility

on Mn(B1), we immediately get Al ∈ GLn(B1) for l = 1, 2, . . . , k. And then by

Lemma 2.2, we have A =
k
∑

l=1

σlAl ∈ GLn(Bk). �
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Now, we will give the main theorem of this section.

Theorem 3.3. Let T be a linear operator onMn(Bk) with k > 1. Then T strongly

preserves GLn(Bk) if and only if there are invertible matrices P and Q such that

T (X) = P
( k

∑

l=1

σlYl

)

Q for all X =
k
∑

l=1

σlXl ∈ Mn(Bk), where Yl = Xl or Yl = Xt
l .

P r o o f. (⇒) Assume that T strongly preservesGLn(Bk). It follows from Propo-

sition 3.2 that its each lth constituent operator, Tl, also strongly preserves GLn(B1)

for l = 1, 2, . . . , k. Now, for any X =
k
∑

l=1

σlXl ∈ Mn(Bk), T (X) =
k
∑

l=1

σlTl(Xl). By

Lemma 3.1, each lth constituent operator, Tl, has the form

Tl(Xl) = PlXlQl or Tl(Xl) = PlX
t
l Ql,

where Pl and Ql are permutation matrices for all l = 1, 2, . . . , k, so we can immedi-

ately obtain that

T (X) =

k
∑

l=1

σlTl(Xl) =

k
∑

l=1

σlPlYlQl =

( k
∑

l=1

σlPl

)( k
∑

l=1

σlYl

)( k
∑

l=1

σlQl

)

where Yl = Xl or Yl = Xt
l for l = 1, 2, . . . , k. Take

k
∑

l=1

σlPl = P ,
k
∑

l=1

σlQl = Q, then

by Lemma 2.2, P , Q are clearly invertible in Mn(Bk). Hence, we have shown the

necessity.

(⇐) Assume that for any X =
k
∑

l=1

σlXl ∈ Mn(Bk), X ∈ GLn(Bk). By Lemma 2.2,

Xl ∈ GLn(B1) for l = 1, 2, . . . , k, and so Yl ∈ GLn(B1), where Yl = Xl or Yl = Xt
l .

By Lemma 2.2 again,
k
∑

l=1

σlYl ∈ GLn(Bk). Note that P and Q are invertible matrices,

so we immediately get T (X) = P
( k

∑

l=1

σlYl

)

Q ∈ GLn(Bk).

On the other hand, assume that X =
k
∑

l=1

σlXl ∈ Mn(Bk) and T (X) ∈ GLn(Bk).

Note that T (X) = P
( k

∑

l=1

σlYl

)

Q, where P and Q are invertible matrices, Yl = Xl

or Yl = Xt
l , so we have Y =

k
∑

l=1

σlYl ∈ GLn(Bk). And then Yl ∈ GLn(B1) for l =

1, 2, . . . , k. It follows from Yl = Xl or Yl = Xt
l that Xl ∈ GLn(B1) for l = 1, 2, . . . , k.

Consequently, we have X ∈ GLn(Bk) by Lemma 2.2. �

Thus, we have also obtained complete characterizations of the linear operators

that strongly preserve invertible matrices over Bk. An example will be given in the

following.
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Example 3.4. Let

P =





σ1 σ2 σ3

σ2 σ3 σ1

σ3 σ1 σ2



 , Q =





σ3 σ1 σ2

σ1 σ2 σ3

σ2 σ3 σ1



 ∈ M3(B3).

By Lemma 2.2, P, Q ∈ GL3(B3).

Now, define a linear operator T on M3(B3) by

T (X) = P (σ1X1 + σ2X
t
2 + σ3X3)Q

for all X =
3
∑

l=1

σlXl. Then it is easy to check that T is a linear operator that strongly

preserves GL3(B3).

In the following, we will also from another perspective give some other character-

izations of linear operators that strongly preserve invertible matrices over Bk. That

is, we will study the characterizations of linear operators that strongly preserve in-

vertible matrices over the finite direct product of binary Boolean algebras B1.

Proposition 3.5. Let S =
k
∏

i=1

Si, where Si = B1. Then for any A, B ∈ Mn(S),

A is invertible if and only if Ai is invertible for any i ∈ {1, 2, . . . , k}.

P r o o f. It is routine to check this proposition. �

Proposition 3.6. Let S =
k
∏

i=1

Si, where Si = B1. Let T be a linear operator

on Mn(S). Then T strongly preserves GLn(S) if and only if its ith constituent

operator, Ti, strongly preserves GLn(B1) for any i ∈ {1, 2, . . . , k}.

P r o o f. Let T be a linear operator on Mn(S) and Ti be its ith constituent

operator on Mn(B1).

(⇒) For any Al ∈ Mn(B1), assume that Al ∈ GLn(B1). Take A = (Al, Al, . . . ,

Al) ∈
k
∏

i=1

Mn(Si). We have A ∈ GLn(S) by Proposition 3.5. Since T is a lin-

ear operator that strongly preserves invertibility on Mn(S), we have T (A) =

(T1(Al), . . . , Tl(Al), . . . , Tk(Al)) ∈ GLn(S). And then we get Ti(Al) ∈ GLn(B1).

On the other hand, for any Al ∈ Mn(B1), assume that Ti(Al) ∈ GLn(B1) for

i = 1, 2, . . . , k. Take A = (Al, Al, . . . , Al) ∈
k
∏

i=1

Mn(Si). We have

T (A) = (T1(Al), . . . , Ti(Al), . . . , Tk(Al)) ∈ GLn(S)
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by Proposition 3.5. And then A ∈ GLn(S) since T is a linear operator that strongly

preserves invertibility on Mn(S). By Proposition 3.5 again, we have Al ∈ GLn(B1).

(⇐) For any A = (A1, A2, . . . , Ak) ∈
k
∏

i=1

Mn(Si), by Proposition 3.5, Ai ∈

GLn(B1) for i = 1, 2, . . . , k. Since each ith constituent operator, Ti, strongly pre-

serves the invertibility on Mn(B1), we immediately have Ti(Ai) ∈ GLn(B1). By

Proposition 3.5 again, T (A) = (T1(A1), . . . , T2(A2), . . . , Tk(Ak)) ∈ GLn(S).

On the other hand, for any A = (A1, A2, . . . , Ak) ∈
k
∏

i=1

Mn(Si), assume that

T (A) = (T1(A1), . . . , T2(A2), . . . , Tk(Ak)) ∈ GLn(S). By Proposition 3.5, we have

Ti(Ai) ∈ GLn(B1) for i = 1, 2, . . . , k. Since Ti strongly preserves invertibility

on Mn(B1), we immediately get Ai ∈ GLn(B1) for i = 1, 2, . . . , k. And then we

have A = (A1, A2, . . . , Ak) ∈ GLn(S) by Proposition 3.5. �

Theorem 3.7. Let S =
k
∏

i=1

Si, where Si = B1, and T be a linear operator

on Mn(S). Then the following statements are equivalent:

(i) T strongly preserves GLn(S);

(ii) there exist invertible matrices P = (P1, P2, . . . , Pk), Q = (Q1, Q2, . . . , Qk) ∈

Mn(S), where Pi, Qi are permutation matrices, such that T (X) = P (s1X +

s2X
t)Q for any X ∈ Mn(S), where s1, s2 ∈ S satisfy (s1)i, (s2)i ∈ {0, 1} and

(s1)i 6= (s2)i for any i ∈ {1, 2, . . . , k}.

P r o o f. (i) ⇒ (ii) Let S =
k
∏

i=1

Si, where Si = B1, and T be a linear oper-

ator on Mn(S). Suppose that T strongly preserves GLn(S). By Proposition 3.6,

Ti strongly preserves GLn(B1) for any i ∈ {1, 2, . . . , k}. It follows from Lemma 3.1

that there exist permutation matrices Pi and Qi such that either

(3) Ti(Xi) = PiXiQi

or

(4) Ti(Xi) = PiX
t
iQi

for any Xi ∈ Mn(Si). Take P = (P1, P2, . . . , Pk), Q = (Q1, Q2, . . . , Qk) ∈ Mn(S).

Let
I1 := {i : Ti is the form of (3)},

I2 := {i : Ti is the form of (4)}.
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It is clear that I1 ∩ I2 = ∅, I1 ∪ I2 = {1, 2, . . . , k}. Let s1, s2 ∈ S satisfy (s1)i = 1 if

i ∈ I1, 0 otherwise; (s2)i = 1 if i ∈ I2, 0 otherwise. It follows that

T (A) = P (s1A + s2A
t)Q

for any A ∈ Mn(S).

(ii) ⇒ (i) Assume that there exist invertible matrices P = (P1, P2, . . . , Pk), Q =

(Q1, Q2, . . . , Qk) ∈ Mn(S) with Pi, Qi are permutation matrices such that

T (X) = P (s1X + s2X
t)Q

for any X ∈ Mn(S). For any i ∈ {1, 2, . . . , k} and Ai ∈ Mn(Si), there exists

Ā ∈ Mn(S) such that Ai = (Ā)i. And then

Ti(Ai) = Ti((Ā)i) = T (Ā)i = (P (s1Ā + s2Ā
t)Q)i.

If (s1)i = 1, (s2)i = 0, then

Ti(Ai) = (P (s1Ā + s2(Ā)t)Q)i = PiAiQi

for any Ai ∈ Mn(Si). Otherwise,

Ti(Ai) = PiA
t
iQi

for any Ai ∈ Mn(Si). Noticing that Pi and Qi are permutation matrices, by

Lemma 3.1, Ti strongly preserves invertibility, and then T strongly preserves in-

vertibility by Proposition 3.6. �

Hence, we have obtained characterizations of linear operators that strongly pre-

serve invertible matrices over the finite direct product of binary Boolean algebras B1.

This also means that we get some other characterizations of linear operators that

strongly preserve invertible matrices over Bk from another point of view.
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