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DERIVATIONS WITH ENGEL CONDITIONS

IN PRIME AND SEMIPRIME RINGS
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Abstract. Let R be a prime ring, I a nonzero ideal of R, d a derivation of R andm, n fixed
positive integers. (i) If (d[x, y])m = [x, y]n for all x, y ∈ I , then R is commutative. (ii) If
CharR 6= 2 and [d(x), d(y)]m = [x, y]n for all x, y ∈ I , then R is commutative. Moreover,
we also examine the case when R is a semiprime ring.
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1. Introduction

In all that follows, unless stated otherwise, R will be an associative ring, Z(R)

the center of R, Q its Martindale quotient ring and U its Utumi quotient ring. The

center of U , denoted by C, is called the extended centroid of R (we refer the reader

to [1] for these objects).

For each x, y ∈ R and each n > 0, define [x, y]n inductively by [x, y]0 = x,

[x, y]1 = xy − yx and [x, y]k = [[x, y]k−1, y] for k > 2. The ring R is said to satisfy

an Engel condition if there exists a positive integer n such that [x, y]n = 0. Recall

that a ring R is prime if for any a, b ∈ R, aRb = {0} implies a = 0 or b = 0, and

is semiprime if for any a ∈ R, aRa = {0} implies a = 0. An additive mapping

d : R → R is called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. For

some fixed a ∈ R, the mapping Ia : R → R given by Ia(x) = [a, x] for all x ∈ R is

a derivation which is called an inner derivation. If R is a ring and S ⊆ R, a mapping

f : R → R is called strong commutativity-preserving(scp) on S if [f(x), f(y)] = [x, y]

for all x, y ∈ S.

During the past few decades, there has been an ongoing interest concerning the

relationship between the commutativity of a ring and the existence of certain specific
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types of derivations (see [2], where further references can be found). The Engel type

identity with derivation appeared in the well-known paper of Posner [17] who proved

that a prime ring admitting a nonzero derivation d such that [d(x), x] ∈ Z(R) for all

x ∈ R, must be commutative. Since then several authors have studied this kind of

Engel type identities with derivations acting on one-sided, two-sided and Lie ideals

of prime and semiprime rings (see [8] for a partial bibliography).

In the year 1992, Daif and Bell [7, Theorem 3] showed that if in a semiprime

ring R there exists a nonzero ideal I of R and a derivation d such that d[x, y] =

[x, y] for all x, y ∈ I, then I ⊆ Z(R). If R is a prime ring, this implies that R is

commutative. It is natural to ask what we can say about the commutativity of R

in case (d[x, y])m = [x, y]n for all x, y ∈ I. In this paper we investigate this identity

and obtain the commutativity of R. In 1994, Bell and Daif [3] initiated the study

of strong commutativity-preserving maps(for more information we refer to [13] and

references therein) and proved that a nonzero right ideal U of a semiprime ring is

central if R admits a derivation which is scp on U . Here we will examine what

happens in case R is a prime ring and [d(x), d(y)]m = [x, y]n for all x, y ∈ I, with I

a nonzero ideal of R and m, n fixed positive integers. In fact, we can also prove that

R is commutative under the assumption CharR 6= 2.

2. The case: R a prime ring

Theorem 2.1. Let R be a prime ring, I a nonzero ideal of R, and m, n fixed

positive integers. If R admits a derivation d such that (d[x, y])m = [x, y]n for all

x, y ∈ I, then R is commutative.

P r o o f. If d = 0, then [x, y]n = 0 = [Ix(y), y]n−1 for all x, y ∈ I. By Lanski [6,

Theorem 1] either R is commutative or Ix = 0, i.e., I ⊆ Z(R) in which case R is also

commutative by Mayne [15, Lemma 3].

Now we assume that d 6= 0 and (d[x, y])m = [x, y]n which can be rewritten as

[d(x), y] + [x, d(y)])m = [x, y]n for all x, y ∈ I. Following Kharchenko [12], we divide

the proof into two cases:

C a s e 1. If d is Q-outer, then I satisfies the polynomial identity ([s, y]+[x, t])m =

[x, y]n for all x, y, s, t ∈ I. In particular, for x = 0, I satisfies the blended component

[s, y]m = 0 for all s, y ∈ I, and R is commutative by Herstein [10, Theorem 2].

C a s e 2. Let now d be Q-inner induced by an element q ∈ Q, that is d(x) = [q, x]

for all x ∈ R. It follows that ([[q, x], y] + [x, [q, y]])m = [x, y]n for all x, y ∈ I.

By Chuang [4, Theorem 2], I and Q satisfy the same generalized polynomial iden-

tities (GPIs), hence we have ([[q, x], y] + [x, [q, y]])m = [x, y]n for all x, y ∈ Q.

In case the center C of Q is infinite, we have ([[q, x], y] + [x, [q, y]])m = [x, y]n
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for all x, y ∈ Q ⊗C C, where C is the algebraic closure of C. Since both Q

and Q ⊗C C are prime and centrally closed [9, Theorems 2.5 & 3.5], we may

replace R by Q or Q ⊗C C according as C is finite or infinite. Thus we may

assume that R is centrally closed over C (i.e., RC = R) which is either finite

or algebraically closed and ([[q, x], y] + [x, [q, y]])m = [x, y]n for all x, y ∈ R. By

Martindale [16, Theorem 3], RC (and so R) is a primitive ring having nonzero

socle H with C as the associated division ring. Hence by Jacobson’s theorem

[11, p. 75], R is isomorphic to a dense ring of linear transformations of some

vector space V over C and H consists of the finite rank linear transformations

in R.

Assume that dimC V > 3.

First of all, we want to show that v and qv are linearly C-dependent for all v ∈ V .

Since if qv = 0 then v, qv is C-dependent, suppose that qv 6= 0. If v and qv are

C-independent, since dimC V > 3, there exists w ∈ V such that v, qv, w are also C-

independent. By the density of R, there exist x, y ∈ R such that: xv = 0, xqv = w,

xw = v; yv = 0, yqv = 0, yw = v. This implies that v = ([[q, x], y] + [x, [q, y]])mv =

[x, y]nv = 0, which is a contradiction. So we conclude that v and qv are linearly

C-dependent for all v ∈ V .

Our next goal is to show that there exists b ∈ C such that qv = bv for all v ∈ V .

In fact, choose v, w ∈ V linearly independent. Since dimC V > 3, there exists

u ∈ V such that u, v, w are linearly independent, and so bu, bv, bw ∈ C such that

qu = buu, qv = bvv, qw = bww, that is q(u + v + w) = buu + bvv + bww. Moreover,

q(u + v + w) = bu+v+w(u + v + w) for a suitable bu+v+w ∈ C. Then 0 = (bu+v+w −

bu)u+(bu+v+w−bv)v+(bu+v+w−bw)w and because u, v, w are linearly independent,

bu = bv = bw = bu+v+w, that is, b does not depend on the choice of v. Hence now

we have qv = vb for all v ∈ V .

Now for r ∈ R, v ∈ V we have (rq)v = r(qv) = r(vb) = (rv)b = q(rv), that is

[q, R]V = 0. Since V is a left faithful irreducible R-module, hence [q, R] = 0, i.e.,

q ∈ Z(R) and so d = 0, a contradiction.

Suppose now that dimC V 6 2.

In this case R is a simple GPI-ring with 1, and so it is a central simple algebra

finite dimensional over its center. By Lanski [6, Lemma 2], it follows that there exists

a suitable filed F such that R ⊆ Mk(F ), the ring of all k × k matrices over F , and

moreover, Mk(F ) satisfies the same GPI as R.

Assume k > 3, then by the same argument as above we get a contradiction.

Obviously if k = 1, then R is commutative.

Thus we may assume that k = 2, i.e., R ⊆ M2(F ), where M2(F ) satisfies

([[q, x], y] + [x, [q, y]])m = [x, y]n.
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Denote by eij the usual unit matrix with 1 in (i, j)-entry and zero elsewhere. Let

[x, y] = [e21, e11] = e21. In this case we have (qe21− e21q)
m = e21. Right multiplying

by e21, we get (−1)m(e21q)
me21 = (qe21 − e21q)

me21 = e21e21 = 0.

Set q =
(

q11 q12

q21 q22

)

. By calculation we find that (−1)m
(

0 0

qm

12
0

)

= 0, which implies

that q12 = 0. Similarly we can see that q21 = 0. Therefore q is diagonal inM2(F ). Let

f ∈ Aut(M2(F )). Since ([[f(q), f(x)], f(y)] + [f(x), [f(q), f(y)]])m = [f(x), f(y)]n so

f(q) must be a diagonal matrix inM2(F ). In particular, let f(x) = (1−eij)x(1+eij)

for i 6= j, then f(q) = q +(qii − qjj)eij , that is qii = qjj for i 6= j. This implies that q

is central in M2(F ), which leads to d = 0, a contradiction. This completes the proof

of the theorem. �

Theorem 2.2. Let R be a prime ring with CharR 6= 2, I a nonzero ideal of R,

and m, n fixed positive integers. If R admits a derivation d such that [d(x), d(y)]m =

[x, y]n for all x, y ∈ I, then R is commutative.

P r o o f. If d = 0, then [x, y]n for all x, y ∈ I, and hence R is commuta-

tive by Herstein [10, Theorem 2]. Hence, onward we will assume that d 6= 0 and

[d(x), d(y)]m = [x, y]n for all x, y ∈ I. If d is not Q-inner then by Kharchenko [12]

we have from the assumption that [s, t]m = [x, y]n for all x, y, s, t ∈ I. In particular,

for s = 0 we have [x, y]n = 0 for all x, y ∈ I, and R is commutative by Herstein [10,

Theorem 2]. If d is a Q-inner derivation, say d(x) = [q, x] for all x ∈ R and q ∈ Q,

then we have [[q, x], [q, y]]m = [x, y]n for all x, y ∈ I. As in the proof Theorem 2.1,

we see that [[q, x], [q, y]]m = [x, y]n for all x, y ∈ R, where R is a primitive ring with

C as the associated division ring. If V is finite-dimensional over C then the density

of R implies that R ∼= Mk(C), where k = dimC V .

We assume that dimC V > 2, otherwise we are done. We claim that v and qv are

linearly C-dependent for all v ∈ V . Suppose that v and qv are linearly C-independent

for some v ∈ V . If q2v 6∈ SpanC{v, qv} then v, qv, q2v are linearly C-independent.

By the density of R there exist x, y ∈ R such that xv = v, xqv = 0, xq2v = 0; yv = 0,

yqv = v, yq2v = 3qv. Then qv = [[q, x], [q, y]]mv = [x, y]nv = 0, a contradiction.

If q2v ∈ SpanC{v, qv}, then q2v = αv + βqv for some α, β ∈ C. Since v and qv

are linearly C-independent, by the density of R there exist x, y ∈ R such that xv =

v, xqv = 0; yv = 0, yqv = v. Then (−1)m(2mqv−γv) = [[q, x], [q, y]]mv = [x, y]nv = 0

for some γ ∈ C, which implies that 2mqv = γv. The assumption of CharR 6= 2

ensures that γ 6= 0 and hence v and qv are linearly C-dependent, a contradiction.

So for each v ∈ V , qv = vαv for some αv ∈ C. By a standard argument, it is easy

to see that αv is independent of the choice of v ∈ V . Thus we can write qv = vα for

all v ∈ V and a fixed α ∈ C. Reasoning as in the proof of Theorem 2.1, we conclude

that d = 0, again a contradiction. �
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The following example demonstrates that R to be prime is essential in the hypoth-

esis.

Example 2.1. Let S be any ring, R =
{(

a b

0 0

)

: a, b ∈ S
}

and let I =
{(

0 a

0 0

)

:

a ∈ S
}

be a nonzero ideal of R. We define a map d : R → R by d(x) = e11x − xe11.

Then it is easy to see that d is a derivation. It is straightforward to check that d

satisfies the properties

(i) (d[x, y])m = [x, y]n

(ii) [d(x), d(y)]m = [x, y]n for all x, y ∈ I. However, R is not commutative.

3. The case: R a semiprime ring

Theorem 3.1. Let R be a semiprime ring and m, n fixed positive integers. If

R admits a derivation d such that (d[x, y])m = [x, y]n for all x, y ∈ R, then R is

commutative.

P r o o f. By Beidar [1] any derivation of a semiprime ring R can be defined on

the whole U , the Utumi quotient ring of R. In view of Lee [14], R and U satisfy the

same differential identities, hence (d[x, y])m = [x, y]n for all x, y ∈ U .

Let B be the complete Boolean algebra of idempotents in C and let M be any

maximal ideal of B. Due to Chuang [5, p. 42] U is an orthogonal complete B-algebra

andMU is a prime ideal of U , which is d-invariant. Denote U = U/MU and let d be

the derivation induced by d on U , i.e., d(u) = d(u) for all u ∈ U . Therefore d has in

U the same property as d on U . In particular, U is prime and so, by Theorem 2.1,

U is commutative. This implies that, for any maximal ideal M of B, [U, U ] ⊆ MU

and hence [U, U ] ⊆ ∩MMU = 0, where MU runs over all prime ideals of U . In

particular, [R, R] = 0 and so R is commutative. �

Using arguments similar to those used in the proof of the above theorem, we can

prove

Theorem 3.2. Let R be a semiprime ring with CharR 6= 2 andm, n fixed positive

integers. If R admits a derivation d such that [d(x), d(y)]m = [x, y]n for all x, y ∈ R,

then R is commutative.
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