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Abstract. Let ϕ be an analytic self-mapping of D and g an analytic function on D. In this
paper we characterize the bounded and compact Volterra composition operators from the
Bergman-type space to the Bloch-type space. We also obtain an asymptotical expression
of the essential norm of these operators in terms of the symbols g and ϕ.
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1. Introduction

Let D be the open unit disk in the complex plane C and H(D) the set of all

analytic functions on D. If u is a positive continuous function on [0, 1) and there

exist positive numbers δ ∈ [0, 1), s and t, 0 < s < t, such that u(r)/(1 − r)s is

decreasing on [δ, 1) and lim
r→1−

u(r)/(1 − r)s = 0, u(r)/(1 − r)t is increasing on [δ, 1)

and lim
r→1−

u(r)/(1− r)t = ∞, then u is called a normal weight function (see [5]). For

such normal weights, one can consider the following examples:

u(r) = (1 − r2)α, α ∈ (0,∞);

u(r) = (1 − r2)α{log 2(1 − r2)−1}β , α ∈ (0, 1), β ∈
[α − 1

2
log 2, 0

]

;

and

u(r) = (1 − r2)α{log log e2(1 − r2)−1}γ , α ∈ (0, 1), γ ∈
[α − 1

2
log 2, 0

]

.

This paper is supported by the Science Foundation of Sichuan Province (Grant number
09ZC115) and the Scientific Research Fund of School of Science SUSE.
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For 0 < p < ∞ and a normal weight function u, the Bergman-type space Ap
u is

defined by

Ap
u =

{

f ∈ H(D) : ‖f‖p =

∫

D

|f(z)|p
u(|z|)p

1 − |z|
dA(z) < ∞

}

.

When 1 6 p < ∞, Ap
u is a Banach space with the norm ‖ · ‖. If 0 < p < 1, it is

a Fréchet space with the translation invariant metric

d(f, g) = ‖f − g‖p.

Let ν be a radial bounded continuous positive function on the open unit disk D.

Recall that the Bloch-type space is defined by

βν =
{

f ∈ H(D) : ‖f‖ν = sup
z∈D

ν(z)|f ′(z)| < ∞
}

and the little Bloch-type space by

βν,0 =
{

f ∈ βν : lim
|z|→1−

ν(z)|f ′(z)| = 0
}

.

The Bloch-type space and the little Bloch-type space play an important role in the

theory of Bergman-type spaces as the BMOA does in Hardy spaces. When normed

by ‖f‖ = |f(0)| + ‖f‖ν, the Bloch-type space βν is a Banach space and the little

Bloch-type space βν,0 is a closed subspace of βν .

Let ϕ be an analytic self-mapping of D. Then the composition operator on H(D)

is given by

Cϕf = f ◦ ϕ.

Composition operators acting on various spaces of analytic functions have been the

object of study for recent several years, especially the problems of relating the

operator-theoretic properties of Cϕ to function theoretic properties of ϕ. See the

books written by Cowen and MacCluer [4] and by Shapiro [8] for discussions of

composition operators on classical spaces of analytic functions.

For an analytic function g : D → C, the Volterra-type operator Jg on H(D) is

defined as

Jgf(z) =

∫ z

0

f(ξ)g′(ξ) dξ, z ∈ D.

The Volterra-type operators have been studied in [1]–[3], [9] and [11]. In this paper,

we consider the Volterra composition operator Jg,ϕ which is defined by

Jg,ϕf(z) =

∫ z

0

(f ◦ ϕ)(ξ)(g ◦ ϕ)′(ξ) dξ, z ∈ D.
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Li has characterized the bounded and compact Volterra composition operators be-

tween a weighted Bergman space and a Bloch space in [6]. Recently, Wolf has also

characterized the boundedness and compactness of the Volterra composition opera-

tors from a Bergman-type space with an analytic weight to a Bloch-type space in [10].

Let X and Y be topological vector spaces whose topologies are given by trans-

lation-invariant metrics dX and dY , respectively, and let T : X → Y be a linear

operator. Recall that T is metrically bounded if there exists a positive constant K

such that

dY (Tf, 0) 6 KdX(f, 0)

for all f ∈ X . When X and Y are Banach spaces, the metrical boundedness coincides

with the usual definition of bounded operators between Banach spaces. If Y is

a Banach space, then the quantity ‖T ‖Ap
u→Y is given by

‖T ‖Ap
u→Y := sup

‖f‖61

‖Tf‖Y .

It is easy to see that this quantity is finite if and only if the operator T : Ap
u → Y is

metrically bounded. For the case p > 1 this is the standard definition of the norm

of the operator T : Ap
u → Y between two Banach spaces. If we say that an operator

is bounded it means that it is metrically bounded.

Recall that T : X → Y ismetrically compact if it maps bounded sets into relatively

compact sets. If X and Y are Banach spaces then metrical compactness becomes

usual compactness. If we say that an operator is compact it means that it is metrically

compact.

In this paper, we characterize the boundedness and compactness of the Volterra

composition operator from the Bergman-type space to the Bloch-type space and the

little Bloch-type space. We also obtain an asymptotical expression of the essential

norm for these operators. This paper can be considered a continuation of investiga-

tions of these operators.

Throughout this paper, constants are denoted by C, they are positive and may

differ from one occurrence to another. The notation a ≍ b means that there is

a positive constant C such that a/C 6 b 6 Ca.

2. Boundedness and compactness of Volterra

composition operators

To deal with the compactness of Volterra composition operators, we need the fol-

lowing lemma which characterizes the compactness of Volterra composition operators

in terms of sequential convergence.
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Lemma 2.1. Let ϕ be an analytic self-mapping of D and g ∈ H(D). Then

the bounded operator Jg,ϕ : Ap
u → βν is compact if and only if for every bounded

sequence {fn} in Ap
u which converges to zero uniformly on compact subsets of D, it

follows that ‖Jg,ϕfn‖ → 0 as n → ∞.

P r o o f. Suppose that for a bounded sequence {fn} in Ap
u which converges to

zero uniformly on compact subset of D, it follows that ‖Jg,ϕfn‖ → 0 as n → ∞. For

a fixed point z0 ∈ D and r > 0, taking z ∈ D with |z − z0| 6 r, by [7] or Lemma 2.2

we can find a positive constant C such that |fn(z)| 6 C for each n ∈ N. Since every

compact subsetK of D is contained in {z : |z−z0| 6 r} for some r > 0, it follows that

{fn} is uniformly bounded on every compact subset of D. Montel’s theorem allows us

to pick out a subsequence {fnk
} of {fn} which converges uniformly on every compact

subset of D to an analytic function f . It is easy to see that f must be in Ap
u. Then

{fnk
− f} is a bounded sequence in Ap

u and fnk
− f → 0 uniformly on every compact

subset of D. The hypothesis of the lemma guarantees that ‖Jg,ϕ(fnk
−f)‖ → 0. This

shows that Jg,ϕ : Ap
u → βν is compact.

Conversely, suppose Jg,ϕ : Ap
u → βν is compact. Let B be the closed unit ball

in Ap
u. The compactness of Jg,ϕ : Ap

u → βν means that {Jg,ϕ(B)} is a relatively

compact subset of βν . Hence we are given a sequence {fn} that lies in rB and

converges to zero uniformly on every compact subset of D. We wish to show that

‖Jg,ϕfn‖ → 0. For this goal it is enough to prove that the zero function is the unique

limit point of the sequence {Jg,ϕfn}. Since {Jg,ϕfn} is relatively compact, there

must be a function f ∈ βν such that ‖Jg,ϕfn − f‖ → 0 as n → ∞. This implies that

for each z ∈ D,

(2.1) |f(0)| + ν(z)|fn(ϕ(z))g′(ϕ(z))ϕ′(z) − f ′(z)| → 0

as n → ∞. By (2.1) and since {fn} converges to zero uniformly on every compact

subset of D, we have |f(0)| + ν(z)|f ′(z)| = 0 for each z ∈ D, which means f ≡ 0.

This completes the proof. �

Similarly to the proof of Lemma 2.1, we can show that Lemma 2.1 is true for

Jg,ϕ : Ap
u → βν,0, and so we omit its proof here. The following lemma was obtained

in [7].

Lemma 2.2. There is a positive constant C independent of f ∈ Ap
u such that for

every z ∈ D, the following inequality holds:

|f(z)| 6
C‖f‖

u(|z|)(1 − |z|2)1/p
.

Now we formulate and prove one of the main results of this section.
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Theorem 2.3. Let ϕ be an analytic self-mapping of D and g ∈ H(D). Then we

have the following statements:

(i) The operator Jg,ϕ : Ap
u → βν is bounded if and only if

(2.2) M1 := sup
z∈D

ν(z)|g′(ϕ(z))||ϕ′(z)|

u(|ϕ(z)|)(1 − |ϕ(z)|2)1/p
< ∞.

(ii) The operator Jg,ϕ : Ap
u → βν,0 is bounded if and only if g ◦ ϕ ∈ βν,0 and

(2.3) M2 := sup
z∈D

ν(z)|g′(ϕ(z))||ϕ′(z)|

u(|ϕ(z)|)(1 − |ϕ(z)|2)1/p
< ∞.

P r o o f. Suppose that Jg,ϕ : Ap
u → βν is bounded. For fixed w ∈ D, taking the

function

fw(z) =
(1 − |w|2)t+1

u(|ϕ(w)|)(1 − wz)1/p+t+1
, z ∈ D,

by Theorem 3.1 in [7] we have fw ∈ Ap
u and ‖fw‖ 6 C. By the boundedness of

Jg,ϕ : Ap
u → βν , we obtain

C‖Jg,ϕ‖ > ‖Jg,ϕfw‖ν >
ν(w)|g′(ϕ(w))||ϕ′(w)|

u(|ϕ(w)|)(1 − |ϕ(w)|2)1/p
.

This implies that

sup
z∈D

ν(z)|g′(ϕ(z))||ϕ′(z)|

u(|ϕ(z)|)(1 − |ϕ(z)|2)1/p
< ∞,

from which the desired condition (2.2) follows.

Conversely, suppose that condition (2.2) holds. For f ∈ Ap
u, by Lemma 2.2 we

have

‖Jg,ϕf‖ = sup
z∈D

ν(z)|f(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

6 C sup
z∈D

ν(z)|g′(ϕ(z))||ϕ′(z)|

u(|ϕ(z)|)(1 − |ϕ(z)|2)1/p
.

From this inequality and condition (2.2) we deduce that Jg,ϕ : Ap
u → βν is bounded.

The result (ii) is proved similarly and we omit its proof. �

Theorem 2.4. Let ϕ be an analytic self-mapping of D and g ∈ H(D). Then we

have the following statements:

(i) The bounded operator Jg,ϕ : Ap
u → βν is compact if and only if

(2.4) lim
|ϕ(z)|→1−

ν(z)|g′(ϕ(z))||ϕ′(z)|

u(|ϕ(z)|)(1 − |ϕ(z)|2)1/p
= 0.
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(ii) The bounded operator Jg,ϕ : Ap
u → βν,0 is compact if and only if g ◦ ϕ ∈ βν,0

and

(2.5) lim
|ϕ(z)|→1−

ν(z)|g′(ϕ(z))||ϕ′(z)|

u(|ϕ(z)|)(1 − |ϕ(z)|2)1/p
= 0.

P r o o f. First we prove that the function 1 belongs to Ap
u. Since

‖1‖p =

∫

D

u(|z|)p

1 − |z|
dA(z) =

∫ 2π

0

∫ 1

0

u(r)p

1 − r
r dr dθ(2.6)

= 2π

∫ 1

0

u(r)p

1 − r
r dr = 2π

∫ 1

0

u(r)p

1 − r
dr − 2π

∫ 1

0

u(r)p dr

and
∫ 1

0
u(r)p dr < ∞, to prove 1 ∈ Ap

u it is enough to prove that the first integral on

the right of (2.6) is finite. Since u(r)/(1 − r)s is decreasing on [δ, 1),

∫ 1

0

u(r)p

1 − r
dr =

∫ δ

0

u(r)p

1 − r
dr +

∫ 1

δ

u(r)p

(1 − r)sp

(1 − r)sp

1 − r
dr

6

∫ δ

0

u(r)p

1 − r
dr +

u(δ)p

(1 − δ)sp

∫ 1

δ

(1 − r)sp

1 − r
dr

=

∫ δ

0

u(r)p

1 − r
dr +

u(δ)p

sp
< ∞,

which shows that the first integral on the right of (2.6) is finite and thus 1 ∈ Ap
u.

Suppose that the bounded operator Jg,ϕ : Ap
u → βν is compact. Let {zn} be

a sequence with |ϕ(zn)| → 1 as n → ∞. For every z ∈ D, set

fn(z) =
(1 − |ϕ(zn)|2)t+1

u(|ϕ(zn)|)(1 − ϕ(zn)z)1/p+t+1
.

We know that fn ∈ Ap
u, ‖fn‖ 6 C for each n ∈ N, and {fn} converges uniformly to

zero on compact subset of D. Since Jg,ϕ : Ap
u → βν is compact, by Lemma 2.1 we

get

lim
n→∞

ν(zn)|g′(ϕ(zn))||ϕ′(zn)|

u(|ϕ(zn)|)(1 − |ϕ(zn)|2)1/p
= 0.

From this and the arbitrariness of the sequence {zn} it follows that condition (2.4)

holds.

Now suppose that condition (2.4) is satisfied. Let {fn} be a bounded sequence

in Ap
u such that ‖fn‖ 6 C and {fn} converges uniformly to zero on the compact

subset of D. In view of Lemma 2.1, it is enough to show ‖Jg,ϕfn‖ → 0 as n → ∞. By
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condition (2.4), for every ε > 0 we can choose r0, 0 < r0 < 1, such that |ϕ(z)| > r0,

and it follows that

(2.7)
ν(z)|g′(ϕ(z))||ϕ′(z)|

u(|ϕ(z)|)(1 − |ϕ(z)|2)1/p
< ε.

Since Jg,ϕ : Ap
u → βν is bounded and 1 ∈ Ap

u, we get g ◦ ϕ ∈ βν . Then by the

definition of βν we can choose M > 0 such that

sup
|ϕ(z)|6r0

ν(z)|g′(ϕ(z))||ϕ′(z)| 6 M.

Since {fn} converges uniformly to zero on the compact subset of D, there is some

N0 > 0 such that sup
|ϕ(z)|6r0

|fn(ϕ(z))| < ε for n > N0. By combining these facts and

Lemma 2.2, it follows that for all n > N0,

‖Jg,ϕfn‖ = ‖Jg,ϕfn‖ν

= sup
z∈D

ν(z)|fn(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

6 sup
|ϕ(z)|6r0

ν(z)|fn(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

+ sup
|ϕ(z)|>r0

ν(z)|fn(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

6 sup
|ϕ(z)|6r0

ν(z)|g′(ϕ(z))||ϕ′(z)| sup
|ϕ(z)|6r0

|fn(ϕ(z))|

+ ε sup
|ϕ(z)|>r0

|fn(ϕ(z))|u(|ϕ(z)|)(1 − |ϕ(z)|2)1/p

6 (M + C)ε.

This shows that ‖Jg,ϕfn‖ → 0 as n → ∞, and the proof of (i) is complete.

We are ready to prove (ii). Suppose the bounded operator Jg,ϕ : Ap
u → βν,0

is compact. Since 1 ∈ Ap
u and a constant function is in βν,0, we have g ◦ ϕ =

Jϕ,g1 + g ◦ ϕ(0) ∈ βν,0. By the compactness of Jg,ϕ : Ap
u → βν,0 and since βν,0 is

a closed subspace of βν , this implies that Jg,ϕ : Ap
u → βν is compact. Hence by (i)

of this theorem, the desired condition (2.5) follows.

Conversely, suppose that g ◦ ϕ ∈ βν,0 and condition (2.5) holds. Let {fn} be a

bounded sequence in Ap
u such that ‖fn‖ 6 C and {fn} converges uniformly to zero

on the compact subset of D. By Lemma 2.1, we only need to show that ‖Jg,ϕfn‖ → 0

as n → ∞. By condition (2.5), for every ε > 0 there exists r0, 0 < r0 < 1, such that

|ϕ(z)| > r0, and it follows that

ν(z)|g′(ϕ(z))||ϕ′(z)|

u(|ϕ(z)|)(1 − |ϕ(z)|2)1/p
< ε.
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Since {fn} converges uniformly to zero on the compact subset of D, there is N > 0

such that

sup
|ϕ(z)|6r0

|fn(ϕ(z))| < ε

for all n > N . Since g ◦ ϕ ∈ βν,0 implies that g ◦ ϕ ∈ βν , we have

M := sup
|ϕ(z)|6r0

ν(z)|g′(ϕ(z))||ϕ′(z)| = sup
|ϕ(z)|6r0

ν(z)|(g ◦ ϕ)′(z)| < ∞.

Once again using Lemma 2.2, we see that for every n > N ,

‖Jg,ϕfn‖ = ‖Jg,ϕfn‖ν = sup
z∈D

ν(z)|fn(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

6 sup
|ϕ(z)|6r0

ν(z)|fn(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

+ sup
|ϕ(z)|>r0

ν(z)|fn(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

6 sup
|ϕ(z)|6r0

ν(z)|g′(ϕ(z))||ϕ′(z)| sup
|ϕ(z)|6r0

|fn(ϕ(z))|

+ ε sup
|ϕ(z)|>r0

|fn(ϕ(z))|u(|ϕ(z)|)(1 − |ϕ(z)|2)1/p

6 (M + C)ε,

which shows that ‖Jg,ϕfn‖ν → 0 as n → ∞, and the proof of (ii) is complete. �

3. The essential norm of Volterra composition operators

In this section we are dealign with calculating the essential norms of Volterra

composition operators. First we recall the definition of the essential norm of the

bounded linear operators.

Let X and Y be Banach spaces and T : X → Y a bounded linear operator. The

essential norm of the operator T : X → Y is defined by

‖T ‖e,X→Y = inf{‖T − K‖ : K ∈ K},

where K denotes the set of all compact linear operators from X to Y . From this

definition it is easy to check that a bounded linear operator T : X → Y is compact

if and only if ‖T ‖e,X→Y = 0.
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Theorem 3.1.

(i) Let 1 6 p < ∞ and let Jg,ϕ : Ap
u → βν be bounded. Then

(3.1) ‖Jg,ϕ‖e,Ap
u→βν

≍ lim sup
n→∞

ν(zn)|g′(ϕ(zn))||ϕ′(zn)|

u(|ϕ(zn)|)(1 − |ϕ(zn)|2)1/p
.

(ii) Let 1 6 p < ∞ and let Jg,ϕ : Ap
u → βν,0 be bounded and let g ◦ ϕ ∈ βν,0. Then

(3.2) ‖Jg,ϕ‖e,Ap
u→βν,0

≍ lim sup
n→∞

ν(zn)|g′(ϕ(zn))||ϕ′(zn)|

u(|ϕ(zn)|)(1 − |ϕ(zn)|2)1/p
.

P r o o f. Suppose that {ϕ(zn)} is a sequence in D such that |ϕ(zn)| → 1 as

n → ∞. For this sequence {ϕ(zn)}, we define

fn(z) =
(1 − |ϕ(zn)|2)t+1

u(|ϕ(zn)|)(1 − ϕ(zn)z)1/p+t+1
.

By the proof of Theorem 3.1 in [7] we know that ‖fn‖ 6 C and {fn} converges to zero

uniformly on compact subset of D. Hence for every compact operator K : Ap
u → βν ,

we have ‖Kfn‖ → 0 as n → ∞. Thus it follows that

‖Jg,ϕ − K‖ = sup
‖f‖=1

‖(Jg,ϕ − K)f‖ > lim sup
n→∞

‖(Jg,ϕ − K)fn‖

‖fn‖
(3.3)

> lim sup
n→∞

‖Jg,ϕfn‖ − ‖Kfn‖

‖fn‖

> C−1 lim sup
n→∞

ν(zn)|fn(ϕ(zn))||g′(ϕ(zn))||ϕ′(zn)|

= C−1 lim sup
n→∞

ν(zn)|g′(ϕ(zn))||ϕ′(zn)|

u(|ϕ(zn)|)(1 − |ϕ(zn)|2)1/p
.

By taking the infimum in (3.3) over the set of all compact operators K : Ap
u → βν ,

it follows that

(3.4) ‖Jg,ϕ‖e,Ap
u→βν

> C−1 lim sup
n→∞

ν(zn)|g′(ϕ(zn))||ϕ′(zn)|

u(|ϕ(zn)|)(1 − |ϕ(zn)|2)1/p
.

Now suppose that {rn} is a positive sequence which increasingly converges to 1.

For every rn we define the operator

Jg,rnϕf(z) =

∫ z

0

(f ◦ rnϕ)(ξ)(g ◦ ϕ)′(ξ) dξ, z ∈ D.

1001



Since Jg,ϕ : Ap
u → βν is bounded, by Theorem 2.3 (i) one can check that the operator

Jg,rnϕ : Ap
u → βν is also bounded. Since |rnϕ(z)| 6 rn < 1, by Theorem 2.3 (i) and

Lemma 2.1 we conclude that the operator Jg,rnϕ : Ap
u → βν is bounded and compact.

By using the definition of Ap
u, we get that ‖f − frn

‖ 6 2‖f‖. Hence we have

‖Jg,rnϕ − Jg,ϕ‖ = sup
‖f‖=1

sup
z∈D

ν(z)|g′(ϕ(z))||ϕ′(z)||f(rnϕ(z)) − f(ϕ(z))|(3.5)

6 sup
‖f‖=1

sup
|ϕ(z)|6r

ν(z)|g′(ϕ(z))||ϕ′(z)||f(rnϕ(z)) − f(ϕ(z))|

+ sup
‖f‖=1

sup
|ϕ(z)|>r

ν(z)|g′(ϕ(z))||ϕ′(z)||f(rnϕ(z)) − f(ϕ(z))|

6 ‖g ◦ ϕ‖βν
sup

‖f‖=1

sup
|ϕ(z)|6r

|f(rnϕ(z)) − f(ϕ(z))|

+ C sup
|ϕ(z)|>r

ν(z)|g′(ϕ(z))||ϕ′(z)|

u(|ϕ(z)|)(1 − |ϕ(z)|2)1/p

+ C sup
|ϕ(z)|>r

ν(z)|g′(ϕ(z))||ϕ′(z)|

u(rn|ϕ(z)|)(1 − rn|ϕ(z)|2)1/p
.

We consider

In = sup
‖f‖=1

sup
|ϕ(z)|6r

|f(rnϕ(z)) − f(ϕ(z))|.

By using the mean value theorem and the subharmonicity of the derivative of f and

Lemma 2.2 we have

In 6 sup
‖f‖=1

sup
|ϕ(z)|6r

(1 − rn)|ϕ(z)| sup
|w|6r

|f ′(w)|(3.6)

6
C(1 − rn)

min{u(t) : 0 6 t 6 r}(1 − r2)1/p+1
.

Letting n → ∞ in (3.6), we obtain that In → 0 as n → ∞. Since

‖Jg,ϕ‖e,Ap
u→βν

6 ‖Jg,rnϕ − Jg,ϕ‖,

by inequality (3.5) we get that

‖Jg,ϕ‖e,Ap
u→βν

6 ‖g ◦ ϕ‖βν
In + C sup

|ϕ(z)|>r

ν(z)|g′(ϕ(z))||ϕ′(z)|

u(|ϕ(z)|)(1 − |ϕ(z)|2)1/p

+ C sup
|ϕ(z)|>r

ν(z)|g′(ϕ(z))||ϕ′(z)|

u(rn|ϕ(z)|)(1 − rn|ϕ(z)|2)1/p
,

from which, letting n → ∞, we obtain that

(3.7) ‖Jg,ϕ‖e,Ap
u→βν

6 2C sup
|ϕ(z)|>r

ν(z)|g′(ϕ(z))||ϕ′(z)|

u(|ϕ(z)|)(1 − |ϕ(z)|2)1/p
.

From inequalities (3.4) and (3.7), the asymptotic relation in (3.1) is obtained. The

result (ii) in this theorem can be proved similarly and thus its proof is omitted. �
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Remark 3.2. From Theorem 3.1, we can obtain Theorem 2.4 for the case 1 6

p < ∞. However, on behalf of readers and completeness we have formulated and

proved it.

4. An appendix

In this appendix we show that the examples in the introduction are normal weight

functions.

Since α > 0, we can choose s such that 0 < s < α. For this fixed s, because

0 < s < α, it is clear that lim
r→1−

u(r)/(1 − r)s = lim
r→1−

(1 − r2)α/(1 − r)s = 0. Set

f(r) = (1 − r2)α/(1 − r)s. Then

f ′(r) = (1 + r)α−1(1 − r)α−s−1[(s − 2α)r + s].

Take δ = s/(2α−s). Because 0 < s < α, it follows that 0 < δ < 1. By the expression

of f ′(r), we can see that f ′(r) 6 0 on [δ, 1). This shows that f(r) is decreasing on

[δ, 1).

On the other hand, for an arbitrary number t with t > α, it is obvious that

lim
r→1−

u(r)/(1 − r)t = lim
r→1−

(1 − r2)α/(1 − r)t = ∞. If f(r) = (1 − r2)α/(1 − r)t,

then since 2t > (α − t)r for all r ∈ [δ, 1) implies that f ′(r) > 0, it follows that

f(r) is increasing on [δ, 1). By the definition of the normal weight, we conclude that

u(r) = (1 − r2)α with α > 0 is normal.

Now we show that u(r) = (1−r2)α{log 2(1−r2)−1}β is normal provided α ∈ (0, 1)

and β ∈ [ 12 (α − 1)/2 log 2, 0]. Because α > 0, we can choose a number s satisfying

0 < s < α. Using the L’Hospital rule, we see that lim
r→1−

u(r)/(1 − r)s = 0. Taking

f(r) = u(r)/(1 − r)s, we have

f ′(r) =
[

(1 + r)α−1(1 − r)α−s−1 logβ−1 2

1 − r2

][

((s − 2α)r + s) log
2

1 − r2
+ 2βr

]

.

Since (s − 2α)r + s 6 0 on [s/(2α − s), 1) and 2βr 6 0, f ′(r) 6 0 on [s/(2α − s), 1),

we conclude that f(r) is decreasing on [s/(2α − s), 1).

On the other hand, if we take t = α + 1, then lim
r→1−

u(r)/(1 − r)t = ∞. In order

to show the normality of u(r), we only need to prove that g(r) = u(r)/(1 − r)α+1 is

increasing on [s/(2α − s), 1). By a simple calculation, we have

g′(r) =
(1 + r)α−1{log 2(1 − r2)−1}β−1h(r)

(1 − r)2
,
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where h(r) = [(1 − α)r + α + 1] log 2(1 − r2)−1 + 2βr. By calculating h′(r), we see

that when α ∈ (0, 1) and β ∈ [12 (α− 1) log 2, 0], then h′(r) is increasing on [0, 1) and

h′(0) > 0. Hence h′(r) > 0 on [0, 1), and this implies that h(r) is increasing on [0, 1).

It is clear that h(0) = (α + 1) log 2 > 0, so that h(r) > 0 on [0, 1). This leads to

g′(r) > 0 on [0, 1). In particular, g′(r) > 0 on [s/(2α − s), 1), which implies that

g(r) is increasing on [s/(2α − s), 1).

In the end of this section we prove that u(r) = (1 − r2)α{log log e2(1 − r2)−1}γ

with α ∈ (0, 1) and γ ∈ [ 12 (α − 1) log 2, 0] is normal. Once again by the L’Hospital

rule, the limit lim
r→1−

u(r)/(1−r)s = 0 for fixed s, 0 < s < α. Let f(r) = u(r)/(1−r)s.

Then we have

f ′(r) = (1 − r)α−s−1(1 + r)α−1{log log e2(1 − r2)−1}γ−1

×
{

[(s − 2α)r + s] log log e2(1 − r2)−1 +
2γr

2 − log(1 − r2)

}

,

from which it is seen that f ′(r) 6 0 on [s/(2α − s), 1) and thus f(r) is decreasing

on this interval. Let t = α + 1 and h(r) = u(r)/(1 − r)α+1. Then lim
r→1−

h(r) = ∞.

Similarly to the proof of g′(r) > 0 on [s/(2α− s), 1), we can prove that when α and

γ satisfy conditions α ∈ (0, 1) and γ ∈ [12 (α − 1) log 2, 0], h′(r) is nonnegative on

[s/(2α − s), 1). Therefore, h(r) is increasing on [s/(2α − s), 1). By these facts we

deduce that u(r) is normal. This completes the proof. �
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