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PERIODIC SOLUTIONS FOR n-TH ORDER DELAY
DIFFERENTIAL EQUATIONS WITH DAMPING TERMS

Lijun Pan

Abstract. By using the coincidence degree theory of Mawhin, we study the
existence of periodic solutions for n th order delay differential equations with

damping terms x(n)(t) =
s∑
i=1

bi[x(i)(t)]2k−1 + f(x(t− τ(t))) + p(t). Some new

results on the existence of periodic solutions of the investigated equation are
obtained.

1. Introduction

In this paper, we are concerned with the existence of periodic solutions of the n
th order delay differential equation

(1.1) x(n)(t) =
s∑
i=1

bi[x(i)(t)]2k−1 + f
(
x(t− τ(t))

)
+ p(t) ,

where n is a positive integer, s ≤ n − 1 a positive integer, bi(i = 1, · · · , s) are
constants and k > 1 is an integer, f ∈ C(R,R) for ∀x ∈ R, p ∈ C(R,R) with
p(t+ T ) = p(t).

In recent years, some researchers used the coincidence degree theory of Mawhin
to study the existence of periodic solutions of first, second or third order differential
equations [5, 6], [9][15]–[19], [22, 23], [25, 26]. For example, in [16], Lu and Ge
studied the following delay differential equation

(1.2) x
′′
(t) = f

(
t, x(t), x(t− τ(t), x

′
(t))
)

+ e(t) .
The authors established the theorems of the existence of periodic solutions of Eq.
(1.2), one of the theorems was related to the deviating argument τ(t). In [26],
Zhang and Wang studied the following differential equation

(1.3) x
′′′

(t)+ax
′′2k−1(t)+bx

′2k−1(t)+cx2k−1(t)+g
(
t, x(t−τ1, x

′
(t−τ2))

)
= p(t) .

The authors established the existence of periodic solutions of Eq. (1.3) under
some conditions on a, b, c and 2k − 1.

Periodic solutions for n, 2n and 2n + 1 th order differential equations were
discussed in [1]–[4], [8] [11]–[14], [20, 21], [24]. For example, in [11], by means of
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the theory of topological degree, the authors obtained the existence of periodic
solutions of the following differential equation without delay

(1.4) x(n)(t) +
n−1∑
i=2

aix
(i)(t) + f1

(
x(t)

)
|x
′
(t)|2 + f2

(
x(t)

)
x
′
(t) + g

(
t, x(t)

)
= e(t) .

In [20, 1], the existence of periodic solutions of higher order differential equation of
the form

(1.5) x(n)(t) =
n−1∑
i=1

bix
(i)(t) + f

(
t, x(t), x(t− τ1(t)), . . . , x(t− τm(t))

)
+ p(t) ,

was studied. The authors obtained the results based on the damping terms x(i)(t)
and the delay τi(t). In [21], a class of n-th order functional differential equations
with damping terms [x(i)(t)]k (i = 1, . . . , s), k ≥ 1 were dicussed, but the results of
[21] were not related to the delay τ .

In the present paper, by using Mawhin’s continuation theorem, we will establish
some theorems on the existence of periodic solutions of Eq. (1.1). The results are
related not only to bi and f(x) but also to positive integers s, k. In addition, the
delay τ(t) plays an important role in our theorems. We also give an example to
illustrate our new results.

2. Some lemmas

We establish the theorems based on the following Lemmas.

Lemma 2.1 ([16]). Let n1 > 1, α ∈ [0,+∞) be constants, s ∈ C(R,R) with
s(t+T ) = s(t), and s(t) ∈ [−α, α], ∀t ∈ [0, T ]. Then ∀x ∈ C1(R,R) with x(t+T ) =
x(t), we have

(2.1)
∫ T

0
|x(t)− x(t− s(t))|n1 dt ≤ 2αn1

∫ T

0
|x′(t)|n1 dt .

Lemma 2.2 ([10]). Suppose x ∈ C1(R,R), and x(t+T ) = x(t). Then for ξ ∈ [0, T ],
we have

(2.2) |x(t)|∞ ≤ |x(ξ)|+ 1
2

∫ T

0
|x
′
(t)| dt .

Lemma 2.3 ([10]). Suppose x ∈ C2(R,R), and x(t+ T ) = x(t). Then

(2.3) |x
′
(t)|∞ ≤

1
2

∫ T

0
|x
′′
(t)| dt .

Lemma 2.4. If k ≥ 1 is an integer, x ∈ Cn(R,R), and x(t+ T ) = x(t). Then
(2.4)(∫ T

0
|x′(t)|k dt

) 1
k ≤ T

2

(∫ T

0
|x′′(t)|k dt

) 1
k ≤ · · · ≤ Tn−1

2n−1

(∫ T

0
|x(n)(t)|k dt

) 1
k

.
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Proof. From Lemma 2.3, using the Hölder inequality, we obtain
(2.5)(∫ T

0
|x′(t)|kdt

) 1
k ≤ T 1

k |x′(t)|∞ ≤
1
2T

1
k

∫ T

0
|x′′(t)| dt ≤ T

2

(∫ T

0
|x′′(t)|k dt

) 1
k

.

By induction, we have
(2.6)(∫ T

0
|x
′
(t)|k dt

) 1
k ≤ T

2

(∫ T

0
|x′′(t)|k dt) 1

k ≤ · · · ≤ Tn−1

2n−1

(∫ T

0
|x(n)(t)|k dt

) 1
k

.

We first introduce Mawhin’s continuation theorem.
Let X and Y be Banach spaces, L : D(L) ⊂ X → Y be a Fredholm operator

of index zero, here D(L) denotes the domain of L. P : X → X, Q : Y → Y be
projectors such that

ImP = KerL, KerQ = ImL, X = KerL⊕KerP , Y = ImL⊕ ImQ .

It follows that
L|D(L)∩KerP : D(L) ∩KerP → ImL

is invertible, we denote the inverse of that map by Kp. Let Ω be an open bounded
subset of X, D(L) ∩ Ω 6= ‰, the map N : X → Y will be called L-compact in Ω,
if QN(Ω) is bounded and Kp(I −Q)N : Ω→ X is compact. �

Lemma 2.5 ([7]). Let L be a Fredholm operator of index zero and let N be
L-compact on Ω. Assume that the following conditions are satisfied:

(i) Lx 6= λNx, ∀x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);
(ii) QNx 6= 0, ∀x ∈ ∂Ω ∩KerL;
(iii) deg{QNx,Ω

⋂
KerL, 0} 6= 0.

Then the equation Lx = Nx has at least one solution in Ω
⋂
D(L).

Now, we define Y = {x ∈ C(R,R) | x(t + T ) = x(t)} with the norm |x|∞ =
maxt∈[0,T ]{|x(t)|} and X = {x ∈ Cn−1(R,R) | x(t + T ) = x(t)} with norm
‖x‖ = max{|x|∞, |x

′ |∞ . . . , |x(n−1)|∞}, we can easily see that X, Y are two Banach
spaces. We also define the operators L and N as follows:

(2.7)
L : D(L) ⊂ X → Y , Lx = x(n) ,

D(L) = {x|x ∈ Cn(R,R), x(t+ T ) = x(t)}

(2.8) N : X → Y , Nx =
n−1∑
i=1

bi[x(i)(t)]k + f
(
x(t− τ(t))

)
+ p(t) .

It is easy to see that Eq. (1.1) can be converted to the abstract equation Lx = Nx.
Moreover, from the definition of L, we see that kerL = R, dim(kerL) = 1,
ImL = {y|y ∈ Y,

∫ T
0 y(s) ds = 0} is closed, and dim(Y \ ImL) = 1, we have

codim(ImL) = dim(kerL). So L is a Fredholm operator with index zero. Let

P : X −→ KerL, Px = x(0), Q : Y −→ Y \ ImL, Qy = 1
T

∫ T

0
y(t) dt
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and let
L|D(L)∩KerP : D(L) ∩KerP → ImL .

Then L|D(L)∩KerP has a unique continuous inverse Kp. One can easily find that N
is L-compact in Ω, where Ω is an open bounded subset of X.

3. Main results

Let

A(s) =


∑s−2
i=1 |bi|

(
T s−i

2s−i

)2k−1
, s > 2

0 , s = 2

B(s) = 1

T
1

2k γ
1

2k−1
1

s∑
i=1
|bi|

1
2k−1

T s−i

2s−i + T s−
1

2k

2s

C(s) = T s−
1
k

2s−2+ 1
2k

(2k − 1)β|τ(t)|∞

We will need several conditions on f(x):
(H1) there exist constants γ ≥ 0, γ1 > 0 and D > 0 such that

|f(x)| ≥ γ + γ1|x|2k−1 , |x| > D ,

(H2) there exists a constant β > 0 such that

|f(x)− f(y)| ≤ β|x2k−1 − y2k−1| ,

(H3) f ∈ C1(R,R), and there exists a constant γ2 > 0 such that

lim
x→∞

∣∣∣ f ′(x)
x2k−2

∣∣∣ ≤ γ2 .

Theorem 3.1. Suppose that n = 2m, m > 0 an integer, s > 1 an odd, and
conditions (H1)–(H3) hold. If

(3.1) A(s) +B2k−2(s)C(s) + γ2B
2k−2(s)T

s− 1
k

2s < |bs| ,

then Eq. (1.1) has at least one T -periodic solution.

Proof. Consider the equation

Lx = λNx , λ ∈ (0, 1),

where L and N are defined by (2.7) and (2.8). Let

Ω1 = {x ∈ D(L)/KerL,Lx = λNx for some λ ∈ (0, 1)} .

For x ∈ Ω1, we have

(3.2) x(n)(t) = λ

s∑
i=1

bi[x(i)(t)]2k−1 + λf(x(t− τ(t))) + λp(t), λ ∈ (0, 1).
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Integrating (3.2) on [0, T ], we have

(3.3)
s∑
i=1

bi

∫ T

0

[
x(i)(t)

]2k−1
dt+

∫ T

0
f
(
x(t− τ(t))

)
, dt+

∫ T

0
p(t) dt = 0 .

We will prove that there exists t1 ∈ [0, T ] such that

(3.4) |x(t1)| ≤ 1

T
1

2k γ
1

2k−1
1

s∑
i=1
|bi|

1
2k−1

Tn−i

2n−i
(∫ T

0
|x(s)(t)|2k dt

) 1
2k +D∗ ,

where D∗ = max
{
D,
( ||p(t)|∞−γ|

γ1

) 1
2k−1

}
. In fact, if there exists some ξ ∈ [0, T ] such

that |x(ξ − τ(ξ))| ≤ D, since ξ − τ(ξ) ∈ R, then there exist some integer j and
some t1 ∈ [0, T ] such that ξ − τ(ξ) = jT + t1. So we have

|x(t1)| = |x(ξ − τ(ξ))| ≤ D

≤ 1

T
1

2k γ
1

2k−1
1

s∑
i=1
|bi|

1
2k−1

Tn−i

2n−i
(∫ T

0
|x(s)(t)|2k dt

) 1
2k +D∗ .(3.5)

If ∀t ∈ [0, T ], |x(t − τ(t))| > D, then from (3.3) and applying Lemma 2.4, there
exists a ξ ∈ [0, T ] such that

|f
(
x(ξ − τ(ξ))

)
| ≤ 1

T

s∑
i=1
|bi|
∫ T

0
|x(i)(t)|2k−1 dt+ 1

T

∫ T

0
|p(t)|

≤ 1
T

s∑
i=1
|bi|
(T s−i

2s−i
)2k−1 ∫ T

0
|x(s)(t)|2k−1 dt+ |p(t)|∞ .(3.6)

In view of condition (H1), it follows that

γ + γ1|x(ξ − τ(ξ))|2k−1 ≤ |f(x(ξ − τ(ξ)))|

≤ 1
T

s∑
i=1
|bi|(

T s−i

2s−i )2k−1
∫ T

0
|x(s)(t)|2k−1 dt+ |p(t)|∞ .(3.7)

So

(3.8) |x(ξ − τ(ξ))|2k−1

≤ 1
Tγ1

s∑
i=1
|bi|(

T s−i

2s−i )2k−1
∫ T

0
|x(s)(t)|2k−1 dt+ ||p(t)|∞ − γ|

γ1
.

Using inequality

(3.9) (a+ b)l ≤ al + bl for a ≥ 0, b ≥ 0 and 0 ≤ l ≤ 1 ,
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it follows from (3.8) that

|x(ξ − τ(ξ))| ≤
( 1
Tγ1

) 1
2k−1

s∑
i=1
|bi|

1
2k−1

T s−i

2s−i
(∫ T

0
|x(s)(t)|2k−1 dt

) 1
2k−1

+
( ||p(t)|∞ − γ|

γ1

) 1
2k−1

.(3.10)

Using inequality

(3.11)
( 1
T

∫ T

0
|x(t)|r|

) 1
r ≤

( 1
T

∫ T

0
|x(t)|l|

) 1
l for 0 ≤ r ≤ l and ∀x ∈ R ,

from (3.10), we obtain

(3.12) |x(ξ − τ(ξ))| ≤ 1

T
1

2k γ
1

2k−1
1

s∑
i=1
|bi|

1
2k−1

T s−i

2s−i
(∫ T

0
|x(s)(t)|2k dt

) 1
2k +D∗ .

Then there exist some integer j and some t1 ∈ [0, T ] such that ξ − τ(ξ) = jT + t1.
So we have

(3.13) |x(t1)| = |x(ξ − τ(ξ))|

≤ 1

T
1

2k γ
1

2k−1
1

s∑
i=1
|bi|

1
2k−1

T s−i

2s−i
(∫ T

0
|x(s)(t)|2k dt

) 1
2k +D∗ .

From Lemma 2.2 and Lemma 2.4, using the Hölder inequality, we obtain

|x(t)|∞ ≤ |x(t1)|+ 1
2

∫ T

0
|x
′
(t)| dt ≤ |x(t1)|+ 1

2T
1− 1

2k

∫ T

0
(|x
′
(t)|2kdt) 1

2k

≤
[ 1

T
1

2k γ
1

2k−1
1

s∑
i=1
|bi|

1
2k−1

T s−i

2s−i + T s−
1

2k

2s
]( ∫ T

0
|x(s)(t)|2k dt) 1

2k+D∗

= B(s)
(∫ T

0
|x(s)(t)|2k dt

) 1
2k +D∗ .(3.14)

On the other hand, multiplying both sides of (3.2) by x(s)(t), and integrating
on [0, T ], we have∫ T

0
x(n)(t)x(s)(t) dt = λ

s∑
i=1

bi

∫ T

0
[x(i)(t)]2k−1x(s)(t) dt

+ λ

∫ T

0
f(x(t− τ(t)))x(s)(t) dt+ λ

∫ T

0
p(t)x(s)(t) dt .(3.15)

Since n = 2m and s is odd, then

(3.16)
∫ T

0
x(2m)(t)x(s)(t) dt = 0 ,

∫ T

0
[x(s−1)(t)]2k−1x(s)(t) dt = 0 .
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It follows from (3.15) that

bs

∫ T

0
|x(s)(t)|2k dt = −

s−2∑
i=1

bi

∫ T

0
[x(i)(t)]2k−1x(s)(t) dt

−
∫ T

0
f(x(t− τ(t)))x(s)(t) dt−

∫ T

0
p(t)x(s)(t) dt

= −
s−2∑
i=1

bi

∫ T

0
[x(i)(t)]2k−1x(s)(t) dt

+
∫ T

0
[f(x(t))− f(x(t− τ(t)))]x(s)(t) dt

−
∫ T

0
f(x(t))x(s)(t) dt−

∫ T

0
p(t)x(s)(t) dt .(3.17)

Noting that

(3.18)
∫ T

0
f(x(t))x(s)(t) dt = −

∫ T

0
f
′
(x(t))x(s−1)(t)x

′
(t) dt ,

by using the Hölder inequality and Lemma 2.4, we have

|bs|
∫ T

0
|x(s)(t)|2k dt ≤

∫ T

0
|x(s)(t)|

[ s−2∑
i=1
|bi| |x(i)(t)|2k−1

+ |f(x(t))− f(x(t− τ(t)))|+ |p(t)|] dt+
∣∣∣ ∫ T

0
f(x(t))xs(t) dt

∣∣∣
≤
(∫ T

0
|x(s)(t)|2k dt

) 1
2k
[
A(s)

(∫ T

0
|x(s)(t)|2k dt

)1− 1
2k

+
(∫ T

0
|f(x(t))− f(x(t− τ))|

2k
2k−1 dt

)1− 1
2k

+ |p(t)|∞T 1− 1
2k

]
+
∫ T

0
|f
′
(x(t))| |x(s−1)(t)| |x

′
(t)| dt .(3.19)

Set s(t) = [x(t)]2k−1, then s′(t) = (2k − 1)[x(t)]2k−2x′(t). Hence applying Lemma
2.1 and from condition (H2), we have

∫ T

0
|f(x(t))− f(x(t− τ(t)))|

2k
2k−1 dt

≤ β
2k

2k−1

∫ T

0
|[x(t)]2k−1 − [x(t− τ(t))]2k−1|

2k
2k−1 dt
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= β
2k

2k−1

∫ T

0
|s(t)− s(t− τ(t))|

2k
2k−1 dt

≤ 2(β|τ(t)|∞)
2k

2k−1

∫ T

0
|s
′
(t)|

2k
2k−1 dt

= 2[(2k − 1)β|τ(t)|∞]
2k

2k−1

∫ T

0
|[x(t)]2k−2x

′
(t)|

2k
2k−1 dt

≤ 2[(2k − 1)β|τ(t)|∞]
2k

2k−1 |x(t)|
(4k−4)k

2k−1
∞

∫ T

0
|x
′
(t)|

2k
2k−1 dt .(3.20)

Hence, using inequality (3.11) and Lemma 2.4, we get(∫ T

0
|f(x(t))− f(x(t− τ))|

2k
2k−1 dt

)1− 1
2k

≤ 21− 1
2k (2k − 1)β|τ(t)|∞|x(t)|2k−2

∞

(∫ T

0
|x
′
(t)|

2k
2k−1 dt

)1− 1
2k

≤ 21− 1
2k T 1− 1

k (2k − 1)β|τ(t)|∞|x(t)|2k−2
∞

(∫ T

0
|x
′
(t)|2k dt

) 1
2k

≤ T s−
1
k

2s−2+ 1
2k

(2k − 1)β|τ(t)|∞|x(t)|2k−2
∞

(∫ T

0
|x(s)(t)|2k dt

) 1
2k

= C(s)|x(t)|2k−2
∞

(∫ T

0
|x(s)(t)|2k dt

) 1
2k
.(3.21)

Choose a constant ε > 0 such that

(3.22) A(s) +B2k−2(s)C(s) + (γ2 + ε)B2k−2(s)T
s+1− 1

k

2s < |bs| .

For the above constant ε > 0, we see from condition (H3) that there is a constant
δ > 0 such that

(3.23) |f
′
(x(t))| < (γ2 + ε)|x(t)|2k−2 , for |x(t)| > δ, t ∈ [0, T ] .

Denote

(3.24) ∆1 = {t ∈ [0, T ] : |x(t)| ≤ δ} , ∆2 = {t ∈ [0, T ] : |x(t)| > δ} .

Applying Lemma 2.4 and the Hölder inequality, we have∫ T

0
|f
′
(x(t))| |x(s−1)(t)||x

′
(t)| dt ≤ |x

′
(t)|∞

∫ T

0
|f
′
(x(t))| |x(s−1)(t)| dt

≤ |x
′
(t)|∞

(∫ T

0
|f
′
(x(t))|

2k
2k−1 dt

)1− 1
2k
(∫ T

0
|x(s−1)(t)|2k dt

) 1
2k

≤ T

2 |x
′
(t)|∞

(∫ T

0
|f
′
(x(t))|

2k
2k−1 dt

)1− 1
2k
(∫ T

0
|x(s)(t)|2k dt

) 1
2k
.(3.25)
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Since(∫ T

0
|f ′(x(t))|

2k
2k−1 dt

)1− 1
2k ≤

[ ∫
∆1

|f ′(x(t))|
2k

2k−1 dt+
∫

∆2

|f ′(x(t))|
2k

2k−1 dt
]1− 1

2k

≤ f ′δT 1− 1
2k + T 1− 1

2k (γ2 + ε)|x(t)|2k−2
∞ ,(3.26)

where f ′δ = max|x|≤δ |f ′(x)|, using the Hölder inequality and Lemma 2.3, we have

|x′(t)|∞ ≤
1
2

∫ T

0
|x′′(t)| dt ≤ 1

2T
1− 1

2k

(∫ T

0
|x′′(t)|2k dt

) 1
2k

≤ T s−1− 1
2k

2s−1

(∫ T

0
|x(s)(t)|2k dt

) 1
2k
.(3.27)

Hence we obtain∫ T

0
|f ′(x(t))||x(s−1)(t)||x′(t)| dt ≤ T s+1− 1

k

2s f ′δ

(∫ T

0
|x(s)(t)|2k dt

) 1
k

+ (γ2 + ε)T
s+1− 1

k

2s |x(t)|2k−2
∞

(∫ T

0
|x(s)(t)|2k dt

) 1
k

.(3.28)

Substituting the above formula and (3.21) into (3.19), we have

|bs|
∫ T

0
|x(s)(t)|2k dt ≤

(∫ T

0
|x(s)(t)|2k dt

) 1
2k
[
A(s)

(∫ T

0
|x(s)(t)|2k dt

)1− 1
2k

+ C(s)|x(t)|2k−2
∞

(∫ T

0
|xs(t)|2k dt

) 1
2k + |p(t)|∞T 1− 1

2k

]
+ T s+1− 1

k

2s f ′δ

(∫ T

0
|x(s)(t)|2k dt

) 1
k

+ (γ2 + ε)T
s+1− 1

k

2s |x(t)|2k−2
∞

(∫ T

0
|x(s)(t)|2k dt

) 1
k

.(3.29)

Then, we have

[|bs| −A(s)]
(∫ T

0
|x(s)(t)|2k dt

)1− 1
2k

≤
[
C(s) + (γ2 + ε)T

s+1− 1
k

2s
]
|x(t)|2k−2

∞

(∫ T

0
|x(s)(t)|2k dt

) 1
2k

+ T s+1− 1
k

2s f ′δ

(∫ T

0
|x(s)(t)|2k dt

) 1
2k + u1 ,(3.30)

where u1 is a positive constant. We can prove that there is a constant M1 > 0 such
that

(3.31)
∫ T

0
|x(s)(t)|2kdt ≤M1 .

For some nonnegative integer l, there is a constant 0 < h < 1 such that
(3.32) (1 + x)l < 1 + (l + 1)x , x ∈ (0, h) .
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For the above h, if
( ∫ T

0 |x
(s)(t)|2k dt

) 1
2k ≤ D∗

B(s)h , then it is easy to see that there
is a constant N1 > 0 such that

(3.33)
∫ T

0
|x(s)(t)|2k dt ≤ N1 .

If
( ∫ T

0 |x
(s)(t)|2k dt

) 1
2k > D∗

B(s)h , from (3.14), we get

|x(t)|2k−2
∞ ≤

[
D∗ +B(s)

(∫ T

0
|x(s)(t)|2k dt

) 1
2k ]2k−2

= B2k−2(s)
(∫ T

0
|x(s)(t)|2k dt

)1− 1
k
[
1 + D∗

B(s)(
∫ T

0 |x(s)(t)|2k dt) 1
2k

]2k−2

≤ B2k−2(s)
(∫ T

0
|x(s)(t)|2k dt

)1− 1
k
[
1 + D∗(2k − 1)

B(s)(
∫ T

0 |x(s)(t)|2k dt) 1
2k

]
= B2k−2(s)

(∫ T

0
|x(s)(t)|2k dt

)1− 1
k

+B2k−3(s)D∗(2k − 1)
(∫ T

0
|x(s)(t)|2k dt

)1− 3
2k
.(3.34)

Substituting the above formula into (3.30), we have[
|bs| −A(s)−B2k−2(s)C(s)− (γ2 + ε)B2k−2(s)T

s+1− 1
k

2s
]

×
(∫ T

0
|x(s)(t)|2k dt

)1− 1
2k ≤

[
C(s) + (γ2 + ε)T

s+1− 1
k

2s
]

×B2k−3(s)D∗(2k − 1)
(∫ T

0
|x(s)(t)|2k dt

)1− 1
k

+ T s+1− 1
k

2s f
′

δ

(∫ T

0
|x(s)(t)|2k dt

) 1
k + u1 .(3.35)

So there is a constant N2 > 0 such that

(3.36)
∫ T

0
|x(s)(t)|2k dt ≤ N2 .

Let M1 = max{N1, N2}. Then from (3.33) and (3.36), we have

(3.37)
∫ T

0
|x(s)(t)|2kdt ≤M1 .

From (3.14), there is a constant M2 > 0 such that

(3.38) |x(t)|∞ ≤M2 .
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Integrating (3.2) on [0, T ], using the Hölder inequality and Lemma 2.4, we have∫ T

0
|x(n)(t)| dt ≤

s∑
i=1
|bi|
∫ T

0
|x(i)(t)|2k−1 dt

+
∫ T

0
|f(x(t− τ(t)))| dt+

∫ T

0
|p(t)| dt

≤
[ s∑
i=1
|bi|T (s−i)(2k−1)+ 1

2k

]( ∫ T

0
|x(s)(t)|2k dt)1− 1

2k + (|p(t)|∞ + fM2)T

≤
[ s∑
i=1
|bi|T (s−i)(2k−1)+ 1

2k

]
(M1)

2k−1
2k

+ (|p(t)|∞ + fM2)T = M .(3.39)

where fM2 = max|x|≤M2 |f(x)|, M is a positive constant. We claim that

(3.40) |x(i)(t)|∞ ≤
Tn−i−1

2n−i

∫ T

0
|x(n)(t)| dt , i = 1, 2, . . . , n− 1 .

In fact, applying Lemma 2.3, we obtain

(3.41) |x(n−1)(t)|∞ ≤
1
2

∫ T

0
|x(n)(t)| dt .

Similarily, applying Lemma 2.3 again, it follows that

|x(n−2)(t)|∞ ≤
1
2

∫ T

0
|x(n−1)(t)| dt ≤ 1

2T |x
(n−1)(t)|∞

≤ T

22

∫ T

0
|x(n)(t)| dt .(3.42)

By induction, we have

(3.43) |x(i)(t)|∞ ≤
Tn−i−1

2n−i

∫ T

0
|x(n)(t)| dt , i = 1, 2, . . . , n− 1 .

Furthermore, we have

(3.44) |x(i)(t)|∞ ≤
Tn−i−1

2n−i

∫ T

0
|x(n)(t)| dt ≤ Tn−i−1

2n−i M , i = 1, 2, . . . , n− 1 .

It follows that there is a constant A > 0 such that ‖x‖ ≤ A, Thus Ω1 is bounded. �

Let Ω2 = {x ∈ KerL,QNx = 0}. Suppose x ∈ Ω2, then x(t) = d ∈ R and
satisfies

(3.45) QNx = 1
T

∫ T

0
[f(d) + p(t)] dt = 0 .

We will prove that there exists a constant B > 0 such that |d| ≤ B. If |d| ≤ D,
taking D = B, we get |d| ≤ B. If |d| > D, from (3.1), we have

(3.46) γ + γ1|d|2k−1 ≤ |f(d)| ≤ |p(t)|∞ .
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Thus

(3.47) |d| ≤
[ ||p(t)|∞ − γ|

γ1

] 1
2k−1

.

Taking
[ ||p(t)|∞−γ|

γ1

] 1
2k−1 = B, we have |d| ≤ B, which implies Ω2 is bounded. Let

Ω be a non-empty open bounded subset of X such that Ω ⊃ Ω1 ∪ Ω2 ∪ Ω3, where
Ω3 = {x ∈ X, |x| < max{D + 1, [ ||p(t)|∞−γ|γ1

]
1

2k−1 + 1}. We can easily see that L is
a Fredholm operator of index zero and N is L-compact on Ω. Then by the above
argument we have

(i) Lx 6= λNx, ∀x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(ii) quad QNx 6= 0, ∀x ∈ ∂Ω ∩KerL.

At last we will prove that condition (iii) of Lemma 2.5 is satisfied. We take

(3.48)
H : (Ω ∩KerL)× [0, 1]→ KerL

H(x, µ) = µx+ 1− µ
T

∫ T

0
[f(x) + p(t)] dt

From assumptions (H1), we can easily obtain H(x, µ) 6= 0, ∀(x, µ) ∈ ∂Ω ∩KerL×
[0, 1], which results in

deg{QN,Ω ∩KerL, 0} = deg{H(x, 0),Ω ∩KerL, 0}

= deg{H(x, 1),Ω ∩KerL, 0} 6= 0 .(3.49)

Hence, by using Lemma 2.5, we know that Eq. (1.1) has at least one T -periodic
solution.

Theorem 3.2. Suppose that n = 2m, m > 0 an integer, s = 1, and the conditions
(H1)–(H2) hold. If

(3.50) B2k−2(1)C(1) < |b1| ,

then Eq. (1.1) has at least one T -periodic solution.

Proof. From the proof of Theorem 3.1, we have

(3.51) |x(t)|∞ ≤ B(1)
(∫ T

0
|x′(t)|2k dt

) 1
2k +D∗ .

Multiplying both sides of (3.2) by x′(t), and integrating on [0, T ], we have∫ T

0
x(n)(t)x′(t) dt = λb1

∫ T

0
[x′(t)]2k−1x′(t) dt

+ λ

∫ T

0
f(x(t− τ(t)))x

′
(t) dt+ λ

∫ T

0
p(t)x

′
(t) dt .(3.52)
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Since
∫ T

0 f(x(t))x′(t) dt = 0 and
∫ T

0 x(2m)(t)x′(t) dt = 0, we obtain

|b1|
∫ T

0
|x
′
(t)|2k dt ≤

∫ T

0
|x
′
(t)|
[
|f(x(t))− f(x(t− τ(t)))|+ |p(t)|

]
dt

≤
(∫ T

0
|x
′
(t)|2kdt

) 1
2k
[(∫ T

0
|f(x(t))− f(x(t− τ(t)))|

2k
2k−1 dt

)1− 1
2k

+ |p(t)|∞T 1− 1
2k

]
.(3.53)

Applying the above method, we have

(|b1| −B2k−2(1)C(1))
(∫ T

0
|x
′
(t)|2k dt

)1− 1
2k

≤ B2k−3(1)C(1)D∗(2k − 1)
(∫ T

0
|x
′
(t)|2k dt

)1− 1
k

+
(∫ T

0
|x
′
(t)|2k dt

) 1
2k + u2 ,(3.54)

where u2 is a positive constant. Hence there is a constant M3 > 0 such that

(3.55)
∫ T

0
|x
′
(t)|2kdt ≤M3 .

The remainder can be proved in the same way as in the proof of Theorem 3.1. �

Theorem 3.3. Suppose that n = 4m, m > 0 an integer, s = 4l, l > 0 an integer,
and conditions (H1)–(H3) hold. If

(3.56) A(s) +B2k−2(s)C(s) + γ2B
2k−2(s)T

s− 1
k

2s < −bs ,

then Eq. (1.1) has at least one T -periodic solution.
Theorem 3.4. Suppose that n = 4m, m > 0 an integer, s = 4l − 2, l > 0 an
integer, and conditions (H1)–(H3) hold. If

(3.57) A(s) +B2k−2(s)C(s) + γ2B
2k−2(s)T

s− 1
k

2s < bs ,

then Eq. (1.1) has at least one T -periodic solution.
Theorem 3.5. Suppose that n = 4m+ 2, m > 0 an integer, s = 4l + 2, l > 0 an
integer, and conditions (H1)–(H3) hold. If

(3.58) A(s) +B2k−2(s)C(s) + γ2B
2k−2(s)T

s− 1
k

2s < −bs ,

then Eq. (1.1) has at least one T -periodic solution.
Theorem 3.6. Suppose that n = 2m + 1, m > 0 an integer, s = 2l, l > 0 an
integer, and conditions (H1)–(H3) hold. If

(3.59) A(s) +B2k−2(s)C(s) + γ2B
2k−2(s)T

s− 1
k

2s < |bs|,

then Eq. (1.1) has at least one T -periodic solution.
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Theorem 3.7. Suppose that n = 4m+ 1, m > 0 an integer, s = 4l + 1, l > 0 an
integer, and conditions (H1)–(H3) hold. If

(3.60) A(s) +B2k−2(s)C(s) + γ2B
2k−2(s)T

s− 1
k

2s < −bs ,

then Eq. (1.1) has at least one T -periodic solution.

Theorem 3.8. Suppose that n = 4m + 1, m > 0 an integer, s = 1, and the
conditions (H1)–(H2) hold. If

(3.61) B2k−2(1)C(1) < −b1 ,
then Eq. (1.1) has at least one T -periodic solution.

Theorem 3.9. Suppose that n = 4m+ 1, m > 0 an integer, s = 4l − 1, l > 0 an
integer, and conditions (H1)–(H3) hold. If

(3.62) A(s) +B2k−2(s)C(s) + γ2B
2k−2(s)T

s− 1
k

2s < bs,

then Eq. (1.1) has at least one T -periodic solution.

Theorem 3.10. Suppose that n = 4m+ 3, m > 0 an integer, s = 4l + 1, l > 0 an
integer, and conditions (H1)–(H3) hold. If

(3.63) A(s) +B2k−2(s)C(s) + γ2B
2k−2(s)T

s− 1
k

2s < bs,

then Eq. (1.1) has at least one T -periodic solution.

Theorem 3.11. Suppose that n = 4m + 3, m ≥ 0 an integer, s = 1, and the
conditions (H1) and (H2) hold. If

(3.64) B2k−2(1)C(1) < b1,

then Eq. (1.1) has at least one T -periodic solution.

Theorem 3.12. Suppose that n = 4m+ 3, m > 0 an integer, s = 4l + 3, l ≥ 0 an
integer, and conditions (H1)–(H3) hold. If

(3.65) A(s) +B2k−2(s)C(s) + γ2B
2k−2(s)T

s− 1
k

2s < −bs,

then Eq. (1.1) has at least one T -periodic solution.

The proof of Theorems 3.3–3.7, 3.9–3.10, 3.12 are similar to that of Theorem
3.1, and the proof of Theorems 3.8, 3.10 are similar to that of Theorem 3.2, which
are omited here.

Example 1. Consider the following equation

x(4)(t) + 1000[x′′′(t)]3 + 1
50[x′′(t)]3 + 1

100 [x′(t)]3

+ 1
300 [x(t− 1

100 sin t)]3 = cos t ,(3.66)
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where n = 4, s = 3, k = 2, b3 = 1000, b2 = 1
50 , b1 = 1

100 , f(x) = 1
300x

3, p(t) = cos t,
τ(t) = 1

100 sin t. Thus, T = 2π, f(x) satisfies conditions (H1)–(H3), T = 2π,
γ1 = β = 1

300 , γ2 = 1
100 , and

(3.67) A(3) +A2
1(3)A2(3) + γ2A

2
1(3)T

3− 1
2

23 < |b3| .

By Theorem 3.1, we know that Eq. (3.66) has at least one 2π-periodic solution.
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