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Abstract
In this paper, we investigate the relationship between small func-

tions and differential polynomials gf (z) = d2f
′′ + d1f

′ + d0f , where
d0(z), d1(z), d2(z) are entire functions that are not all equal to zero with
ρ(dj) < 1 (j = 0, 1, 2) generated by solutions of the differential equation
f ′′ +A1(z)e

azf ′ +A0(z)e
bzf = F , where a, b are complex numbers that

satisfy ab(a − b) �= 0 and Aj(z) �≡ 0 (j = 0, 1), F (z) �≡ 0 are entire
functions such that max {ρ(Aj), j = 0, 1, ρ(F )} < 1.
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1 Introduction and statement of results

In this paper, we shall assume that the reader is familiar with the fundamental
results and the standard notations of the Nevanlinna value distribution theory
of meromorphic functions (see [12], [17]). In addition, we will use λ(f) and
λ(f) to denote respectively the exponents of convergence of the zero-sequence
and the sequence of distinct zeros of f , ρ(f) to denote the order of growth of
f . A meromorphic function ϕ(z) is called a small function with respect to f(z)
if T (r, ϕ) = o (T (r, f)) as r → +∞ except possibly a set of r of finite linear
measure, where T (r, f) is the Nevanlinna characteristic function of f .

Definition 1.1 ([12], [15]) Let f be a meromorphic function with order 0 <
ρ(f) <∞. Then the type of f is defined by

σ(f) = lim sup
r→+∞

T (r, f)

rρ(f)
. (1.1)
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If f is an entire function, then the type of f is defined by

σM (f) = lim sup
r→+∞

logM(r, f)

rρ(f)
,

where M(r, f) = max|z|=r |f(z)|.

Remark 1.1 There exist entire functions f which satisfy σM (f) �= σ(f). For
example, if f(z) = ez, then we have σM (f) = 1 and σ(f) = 1

π .

To give the precise estimate of fixed points, we define:

Definition 1.2 ([16], [19]) Let f be a meromorphic function and let z1, z2, . . .
(|zj | = rj , 0 < r1 ≤ r2 ≤ . . . ) be the sequence of the fixed points of f , each
point being repeated only once. The exponent of convergence of the sequence
of distinct fixed points of f is defined by

τ(f) = inf

{
τ > 0:

+∞∑
j=1

|zj |−τ < +∞
}
.

Clearly,

τ (f) = lim sup
r→+∞

logN
(
r, 1

f−z

)
log r

, (1.2)

where N
(
r, 1

f−z

)
is the counting function of distinct fixed points of f(z) in

{z : |z| < r}.

For the second order linear differential equation

f ′′ + e−zf ′ +B(z)f = 0, (1.3)

where B(z) is an entire function, it is well-known that each solution f of equa-
tion (1.3) is an entire function, and that if f1, f2 are two linearly independent
solutions of (1.3), then by [9], there is at least one of f1, f2 of infinite order.
Hence, “most” solutions of (1.3) will have infinite order. But equation (1.3)
with B(z) = −(1 + e−z) possesses a solution f(z) = ez of finite order.
A natural question arises: What conditions on B(z) will guarantee that

every solution f �≡ 0 of equation (1.3) has infinite order? Many authors, Frei
[10], Ozawa [18], Amemiya–Ozawa [1] and Gundersen [11], Langley [14] have
studied this problem. They proved that when B(z) is a nonconstant polynomial
or B(z) is a transcendental entire function with order ρ(B) �= 1, then every
solution f �≡ 0 of (1.3) has infinite order.
In 2002, Z. X. Chen [7] considered the question: What conditions on B(z)

when ρ(B) = 1 will guarantee that every nontrivial solution of (1.3) has in-
finite order? He proved the following results, which improved results of Frei,
Amemiya–Ozawa, Ozawa, Langley and Gundersen.
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Theorem A ([7]) Let Aj(z) ( �≡ 0), j = 0, 1, and Dj(z), j = 0, 1, be entire
functions with max {ρ (Aj) (j = 0, 1), ρ (Dj) (j = 0, 1)} < 1, and let a, b be com-
plex numbers that satisfy ab �= 0 and arg a �= arg b or a = cb, 0 < c < 1. Then
every solution f �≡ 0 of the equation

f ′′ + (D1(z) +A1(z)e
az) f ′ +

(
D0(z) +A0(z)e

bz
)
f = 0 (1.4)

is of infinite order.

Setting Dj ≡ 0, j = 0, 1, in Theorem A, we obtain the following result.

Theorem B Let Aj(z) ( �≡ 0), j = 0, 1, be entire functions with max
{
ρ(Aj),

j = 0, 1
}
< 1, and let a, b be complex numbers that satisfy ab �= 0 and

arg a �= arg b or a = cb, 0 < c < 1. Then every solution f �≡ 0 of the equation

f ′′ +A1(z)e
azf ′ +A0(z)e

bzf = 0 (1.5)

is of infinite order.

Theorem C ([7]) Let Aj(z) ( �≡ 0), j = 0, 1, be entire functions with ρ (Aj) < 1,
j = 0, 1, and let a, b be complex numbers that satisfy ab �= 0 and a = cb (c > 1).
Then every solution f �≡ 0 of equation (1.5) is of infinite order.

Combining Theorems B and C, we obtain the following result.

Theorem D Let Aj(z) ( �≡ 0), j = 0, 1, be entire functions with ρ (Aj) < 1,
j = 0, 1, and let a, b be complex numbers that satisfy ab �= 0 and a �= b. Then
every solution f �≡ 0 of equation (1.5) is of infinite order.

Consider the second order non-homogeneous linear differential equation

f ′′ +A1(z)e
azf ′ +A0(z)e

bzf = F, (1.6)

where a, b are complex numbers and Aj(z) ( �≡ 0), j = 0, 1, F (z) are entire
functions with max {ρ(Aj), j = 0, 1, ρ(F )} < 1. In [20], J. Wang and I. Laine
have investigated the growth of solutions of (1.6) and have obtained the following
result.

Theorem E ([20]) Let Aj(z) ( �≡ 0), j = 0, 1, and F (z) be entire functions with
max{ρ(Aj), j = 0, 1, ρ(F )} < 1, and let a, b be complex numbers that satisfy
ab �= 0 and a �= b. Then every nontrivial solution f of equation (1.6) is of
infinite order.

Remark 1.2 Independently in [4], the authors have studied equation (1.6) and
have obtained the same result as in Theorem E but the proof is quite different
(see [4]).
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Many important results have been obtained on the fixed points of general
transcendental meromorphic functions for almost four decades (see [21]). How-
ever, there are few studies on the fixed points of solutions of differential equa-
tions. It was in the year 2000 that Z. X. Chen first pointed out the relation
between the exponent of convergence of distinct fixed points and the rate of
growth of solutions of second order linear differential equations with entire coef-
ficients (see [6]). In [19], Wang and Yi investigated fixed points and hyper order
of differential polynomials generated by solutions of second order linear differ-
ential equations with meromorphic coefficients. In [13], Laine and Rieppo gave
an improvement of the results of [19] by considering fixed points and iterated
order. In [16], Liu and Zhang have investigated the fixed points and hyper order
of solutions of some higher order linear differential equations with meromorphic
coefficients and their derivatives. Recently, in [2], [3], Beläıdi gave an extension
of the results of [16].
We know that a differential equation bears a relation to all derivatives of its

solutions. Hence, linear differential polynomials generated by its solutions must
have special nature because of the control of differential equations.
The main purpose of this paper is to study the relation between small func-

tions and some differential polynomials generated by solutions of the second
order linear differential equation (1.6). We obtain some estimates of their dis-
tinct fixed points.

Theorem 1.1 Let Aj(z) ( �≡ 0), j = 0, 1, and F �≡ 0 be entire functions with
max {ρ(Aj), j = 0, 1, ρ(F )} < 1, and let a, b be complex numbers that sat-
isfy ab(a − b) �= 0. Let d0(z), d1(z), d2(z) be entire functions that are not all
equal to zero with ρ (dj) < 1, j = 0, 1, 2, and let ϕ(z) be an entire function
with finite order. If f is a solution of (1.6) then the differential polynomial
gf = d2f

′′ + d1f
′ + d0f satisfies λ (gf − ϕ) = λ (gf − ϕ) = ρ (f) = ∞.

Corollary 1.1 Let Aj(z), j = 0, 1, F (z), dj(z), j = 0, 1, 2, a, b satisfy the
additional hypotheses of Theorem 1.1. If f is a solution of (1.6), then the
differential polynomial gf = d2f

′′ + d1f
′ + d0f has infinitely many fixed points

and satisfies τ (gf ) = τ (gf ) = ∞.

Theorem 1.2 Let Aj(z), j = 0, 1, F (z), a, b, ϕ(z) satisfy the additional hy-
potheses of Theorem 1.1. If f is a solution of (1.6), then

λ (f − ϕ) = λ (f ′ − ϕ) = λ (f ′′ − ϕ) = ρ(f) = +∞. (1.7)

Remark 1.3 If ρ (F ) ≥ 1, then equation (1.6) can possesses solution of finite
order. For instance the equation

f ′′ + e−zf ′ + ezf = 1 + e2z

satisfies ρ (F ) = ρ
(
1 + e2z

)
= 1 and has a finite order solution f (z) = ez − 1.

Now, let us denote

α1 = d1 − d2A1e
az, α0 = d0 − d2A0e

bz, (1.8)
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β1 = d2A
2
1e

2az −
(
(d2A1)

′
+ ad2A1 + d1A1

)
eaz − d2A0e

bz + d0 + d′1, (1.9)

β0 = d2A0A1e
(a+b)z − ((d2A0) + bd2A0 + d1A0)e

bz + d′0, (1.10)

h = α1β0 − α0β1, (1.11)

ψ =
α1

(
ϕ′ − (d2F )

′ − α1F
)
− β1 (ϕ− d2F )

h
. (1.12)

Theorem 1.3 Let Aj(z), j = 0, 1, dj(z), j = 0, 1, 2, a, b satisfy the additional
hypotheses of Theorem 1.1, and F (z) be an entire function such that ρ (F ) ≥ 1.
Let ϕ(z) be an entire function with finite order such that ψ(z) is not a solution
of equation (1.6). If f(z) is a solution of (1.6), then the differential polynomial
gf = d2f

′′ + d1f
′ + d0f satisfies λ (gf − ϕ) = λ (gf − ϕ) = ∞ with at most one

finite order solution f0.

Next, we investigate the relation between small functions and differential
polynomials of a pair of non-homogeneous linear differential equations and we
obtain the following result.

Theorem 1.4 Let Aj(z), j = 0, 1, dj(z), j = 0, 1, 2, a, b satisfy the additional
hypotheses of Theorem 1.1. Let F1 �≡ 0 and F2 �≡ 0 be entire functions such that
max {ρ(Fj), j = 1, 2} < 1 and F1 − CF2 �≡ 0 for any constant C, and let ϕ(z)
be an entire function with finite order. If f1 is a solution of the equation

f ′′ +A1(z)e
azf ′ +A0(z)e

bzf = F1 (1.13)

and f2 is a solution of the equation

f ′′ +A1(z)e
azf ′ +A0(z)e

bzf = F2, (1.14)

then the differential polynomial

gf1−Cf2(z) = d2 (f
′′
1 − Cf ′′2 ) + d1 (f

′
1 − Cf ′2) + d0 (f1 − Cf2)

satisfies λ (gf1−Cf2 − ϕ) = λ (gf1−Cf2 − ϕ) = ∞ for any constant C.

2 Preliminary lemmas

Our proofs depend mainly upon the following lemmas.

Lemma 2.1 ([5]) Let A0, A1, . . . , Ak−1, F �≡ 0 be finite order meromorphic
functions. If f is a meromorphic solution with ρ(f) = +∞ of the equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F, (2.1)

then λ(f) = λ(f) = ρ(f) = +∞.
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Lemma 2.2 Let f, g be meromorphic functions with orders 0 < ρ(f), ρ(g) <∞
and types 0 < σ(f), σ(g) <∞. Then the following statements hold:
(i) If ρ (g) < ρ(f), then

σ(f + g) = σ(fg) = σ(f). (2.2)

(ii) If ρ(f) = ρ(g) and σ(g) �= σ(f), then

ρ(f + g) = ρ(fg) = ρ(f). (2.3)

Proof (i) By the definition of the type, we have

σ(f + g) = lim sup
r→+∞

T (r, f + g)

rρ(f+g)
≤ lim sup

r→+∞
T (r, f) + T (r, g) +O(1)

rρ(f+g)
. (2.4)

Since ρ(g) < ρ(f), then ρ(f + g) = ρ(f). Thus, from (2.4), we obtain

σ (f + g) ≤ lim sup
r→+∞

T (r, f)

rρ(f)
+ lim sup

r→+∞
T (r, g) +O(1)

rρ(f)
= σ(f). (2.5)

Since
ρ(f + g) = ρ(f) > ρ (g) , (2.6)

then by (2.5)
σ(f) = σ(f + g − g) ≤ σ(f + g). (2.7)

From (2.5) and (2.7), we obtain σ(f + g) = σ(f).
Now we prove σ(fg) = σ(f). Since ρ(g) < ρ(f), then ρ(fg) = ρ(f). By the

definition of the type, we have

σ(fg) = lim sup
r→+∞

T (r, fg)

rρ(fg)
≤ lim sup

r→+∞
T (r, f) + T (r, g)

rρ(f)

≤ lim sup
r→+∞

T (r, f)

rρ(f)
+ lim sup

r→+∞
T (r, g)

rρ(f)
= σ(f). (2.8)

Since

ρ(fg) = ρ(f) > ρ(g) = ρ

(
1

g

)
, (2.9)

then by (2.8)

σ(f) = σ

(
fg

1

g

)
≤ σ(fg). (2.10)

From (2.8) and (2.10), we obtain σ(fg) = σ(f).

(ii) Without lost of generality, we suppose that ρ(f) = ρ(g) and σ(g) < σ(f).
Then, we have

ρ(f + g) ≤ max {ρ(f), ρ(g)} = ρ(f) = ρ(g). (2.11)
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If we suppose that ρ(f + g) < ρ(f) = ρ(g), then by (2.2), we get

σ(g) = σ(f + g − f) = σ(f)

and this is a contradiction. Hence ρ(f + g) = ρ(f) = ρ(g).
Now, we prove that ρ(fg) = ρ(f) = ρ(g). Also we have

ρ(fg) ≤ max {ρ(f), ρ(g)} = ρ(f) = ρ(g). (2.12)

If we suppose that ρ(fg) < ρ(f) = ρ(g) = ρ
(

1
f

)
, then by (2.2), we can write

σ(g) = σ

(
fg

1

f

)
= σ

(
1

f

)
= σ(f)

and this is a contradiction. Hence ρ(fg) = ρ(f) = ρ(g). �

Lemma 2.3 ([8]) Let a, b be complex numbers such that ab �= 0 and arg a �=
arg b or a = cb, 0 < c < 1. We denote index set by Λ1 = {0, a, b, 2a, a+ b}. If
Hj, j ∈ Λ1, and H2b �≡ 0 are all meromorphic functions of orders that are less
than 1, setting Ψ1(z) =

∑
j∈Λ1

Hj(z)e
jz, then Ψ1(z) +H2be

2bz �≡ 0.

Lemma 2.4 Let a, b be complex numbers that satisfy ab �= 0 and a = cb, c > 1.
We denote index set by Λ2 = {0, a, b, a+ b, 2a, 2b}. Let Hj (j ∈ Λ2) be meromor-
phic functions of orders that are less than 1, setting Ψ2(z) =

∑
j∈Λ2

Hj(z)e
jz.

If there exists j ∈ Λ2 − {0} such that Hj �≡ 0 then Ψ2(z) �≡ 0.

Proof By Lemma 2.2, we have ρ (Ψ2) = 1. Hence, Ψ2(z) �≡ 0. �

Lemma 2.5 Let Aj(z) ( �≡ 0), j = 0, 1, and F �≡ 0 be entire functions with
max {ρ (Aj) , j = 0, 1, ρ(F )} < 1, and let a, b be complex numbers that satisfy
ab(a − b) �= 0. Let d0(z), d1(z), d2(z) be entire functions that are not all equal
to zero with ρ (dj) < 1, j = 0, 1, 2. If f is a solution of equation (1.6), then the
differential polynomial gf = d2f

′′ + d1f
′ + d0f satisfies ρ (gf ) = ρ(f) = ∞.

Proof Suppose that f(z) is a solution of the equation (1.6). Then by Theo-
rem E, we have ρ(f) = ∞. Now, we prove ρ (gf ) = ρ (d2f

′′ + d1f
′ + d0f) = ∞.

Suppose that arg a �= arg b or a = cb, 0 < c < 1. First we suppose that
d2 �≡ 0. Substituting f ′′ = F −A1e

azf ′ −A0e
bzf into gf , we get

gf − d2F = (d1 − d2A1e
az) f

′
+
(
d0 − d2A0e

bz
)
f. (2.13)

Differentiating both sides of the equation (2.13) and replacing f ′′ with

f ′′ = F −A1e
azf ′ −A0e

bzf,

we obtain

g′f − (d2F )
′ − (d1 − d2A1e

az)F

=
[
d2A

2
1e

2az −
(
(d2A1)

′ + ad2A1 + d1A1

)
eaz − d2A0e

bz + d0 + d′1
]
f ′

+
[
d2A0A1e

(a+b)z −
(
(d2A0)

′ + bd2A0 + d1A0

)
ebz + d′0

]
f. (2.14)
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Then by (2.13), (2.14), (1.8), (1.9) and (1.10), we have

α1f
′ + α0f = gf − d2F, (2.15)

β1f
′ + β0f = g′f − (d2F )

′ − (d1 − d2A1e
az)F. (2.16)

Set

h = α1β0 − α0β1

= (d1 − d2A1e
az)

[
d2A0A1e

(a+b)z − ((d2A0)
′ + bd2A0 + d1A0)e

bz + d′0
]

−
(
d0 − d2A0e

bz
) [
d2A

2
1e

2az−((d2A1)
′
+ad2A1+d1A1)e

az−d2A0e
bz+d0+d

′
1

]
.

(2.17)

Now check all the terms of h. Since the term d22A
2
1A0e

(2a+b)z is eliminated,
by (2.17) we can write h = Ψ1 (z) − d22A

2
0e

2bz, where Ψ1(z) is defined as in
Lemma 2.3. By d2 �≡ 0, A0 �≡ 0 and Lemma 2.3, we see that h �≡ 0.
Suppose now a = cb, c > 1. By (2.17), we can write

h = Ψ2(z) = H0 +Hae
az +Hbe

bz +Ha+be
(a+b)z +H2ae

2az +H2be
2bz ,

where H0, Ha, Hb, Ha+b, H2a, H2b are entire functions of orders less than 1. By
d2 �≡ 0, A0 �≡ 0 we have

H2b = −d22A2
0 �≡ 0.

Then by Lemma 2.4, we have h �≡ 0.
Now suppose d2 ≡ 0, d1 �≡ 0. Using a similar reasoning as above we get

h �≡ 0.
Finally, if d2 ≡ 0, d1 ≡ 0, d0 �≡ 0, then we have h = −d20 �≡ 0. Hence, h �≡ 0.

By (2.15), (2.16) and (2.17), we obtain

f =
α1

(
g′f − (d2F )

′ − α1F
)
− β1 (gf − d2F )

h
. (2.18)

If ρ (gf ) < ∞, then by (2.18) we get ρ(f) < ∞ and this is a contradiction.
Hence ρ (gf ) = ∞. �

3 Proof of Theorem 1.1

Suppose that f is a solution of equation (1.6). Then by Theorem E, we have
ρ(f) = ∞. Set w = d2f

′′ + d1f
′ + d0f − ϕ. Since ρ(ϕ) <∞, by Lemma 2.5 we

have ρ(w) = ρ (gf ) = ρ(f) = ∞. In order to prove λ (gf − ϕ) = λ (gf − ϕ) = ∞,
we need to prove λ(w) = λ(w) = ∞. By gf = w + ϕ, we get from (2.18)

f =
α1

(
w′ + ϕ′ − (d2F )

′ − α1F
)
− β1 (w + ϕ− d2F )

h
. (3.1)
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So,

f =
α1w

′ − β1w

h
+ ψ, (3.2)

where

ψ (z) =
α1

(
ϕ′ − (d2F )

′ − α1F
)
− β1 (ϕ− d2F )

h
.

Substituting (3.2) into equation (1.6), we obtain
α1

h
w′′′+ φ2w

′′+ φ1w
′+ φ0w = F −

(
ψ′′+A1(z)e

azψ′+A0(z)e
bzψ

)
= A,

where φj , j = 0, 1, 2, are meromorphic functions with ρ (φj) < ∞, j = 0, 1, 2.
Since ρ(ψ) < ∞, by Theorem E it follows that A �≡ 0. By α1 �≡ 0,
h �≡ 0 and Lemma 2.1, we obtain λ(w) = λ(w) = ρ(w) = ∞, i.e., λ (gf − ϕ) =
λ (gf − ϕ) = ∞.

4 Proof of Theorem 1.2

Suppose that f is a solution of equation (1.6). Then by Theorem E we have
ρ(f) = ρ (f ′) = ρ (f ′′) = ∞. Since ρ(ϕ) < ∞, then ρ(f − ϕ) = ρ (f ′ − ϕ) =
ρ (f ′′ − ϕ) = ∞. By using a proof similar to that of Theorem 1.1, we obtain
Theorem 1.2.

5 Proof of Theorem 1.3

Assume that f0 is a solution of (1.6) with ρ (f0) = ρ <∞. If f1 is a second finite
order solution of (1.6), then ρ (f1 − f0) < ∞, and f1 − f0 is a solution of the
corresponding homogeneous equation (1.5) of (1.6), but ρ (f1 − f0) = ∞ from
Theorem D. This is a contradiction. Hence (1.6) has at most one finite order
solution f0 and all other solutions f1 of (1.6) satisfy ρ (f1) = ∞. By hypothesis
of Theorem 1.3, ψ(z) is not a solution of equation (1.6). Then

F −
(
ψ′′ +A1(z)e

azψ′ +A0(z)e
bzψ

)
�≡ 0.

By reasoning similar to that in the proof of Theorem 1.1, we can prove Theo-
rem 1.3.

Remark 5.1 The condition “ψ(z) is not a solution of equation (1.6)” in The-
orem 1.3, is necessary because if ψ(z) is a solution of equation (1.6), then we
have F −

(
ψ′′ +A1(z)e

azψ′ +A0(z)e
bzψ

)
≡ 0.

6 Proof of Theorem 1.4

Suppose that f1 is a solution of equation (1.13) and f2 is a solution of equation
(1.14). Set w = f1 − Cf2. Then w is a solution of the equation

w′′ +A1(z)e
azw′ +A0(z)e

bzw = F1 − CF2.

By ρ (F1 − CF2) < 1, F1−CF2 �≡ 0 and Theorem E, we have ρ (w) = ∞. Thus,
by Theorem 1.1, we obtain that λ (gf1−Cf2 − ϕ) = λ (gf1−Cf2 − ϕ) = ∞.
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