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Abstract. Identities for the curvature tensor of the Levi-Cività connection on an almost
para-cosymplectic manifold are proved. Elements of harmonic theory for almost product
structures are given and a Bochner-type formula for the leaves of the canonical foliation is
established.
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1. Introduction

The almost para-cosymplectic manifolds contain the class of weakly para-cosym-

plectic manifolds which are almost para-cosymplectic manifolds satisfying an addi-

tional curvature property. The latter were studied (for dimension 3) by P. Dacko and

Z. Olszak [2], who showed that if a 3-dimensional weakly para-cosymplectic mani-

fold is locally homogeneous as a Riemannian manifold, then it is para-cosymplectic

(which means that the 1- and 2-forms of the structure are parallel with respect to the

Levi-Cività connection of the metric) or is locally flat. They also gave a classification

for such manifolds.

In the present paper we deal with the almost para-contact hyperbolic metric struc-

tures and establish properties of the Levi-Cività connection associated to the pseudo-

Riemannian structure (Proposition 2.1 and Theorem 2.2).

Let M be a (2n + 1)-dimensional smooth manifold, ϕ a (1, 1)-tensor field called

the structure endomorphism, ξ a vector field called the characteristic vector field,

η a 1-form called the contact form and g a pseudo-Riemannian metric on M . In

this case, we say that (ϕ, ξ, η, g) defines an almost para-contact hyperbolic metric

structure on M [3] if
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(1) ϕ2 = I − η ⊗ ξ;

(2) η(ξ) = 1;

(3) g(ϕX, ϕY ) = −g(X, Y ) + η(X)η(Y ) for any X, Y ∈ Γ(TM).

The definition implies ϕξ = 0, η(ϕX) = 0, η(X) = g(X, ξ), g(ξ, ξ) = 1 and

g(ϕX, Y ) = −g(ϕY, X) for any X, Y ∈ Γ(TM). The fundamental 2-form ω(X, Y ) :=

g(ϕX, Y ), X, Y ∈ Γ(TM), defined by ϕ and g, is skew-symmetric. The 2n-

dimensional distribution D := ker η is called the canonical distribution associated

with the almost para-contact hyperbolic metric structure (ϕ, ξ, η, g) and the foli-

ation F generated by D , the canonical foliation on M . Note that the canonical

distribution is involutive and ϕ-invariant (as D = Im ϕ) and ξ is orthogonal to D .

The restrictions ϕα := ϕ|Fα
of ϕ and gα := g|Fα

of g to the leaves {Fα}α∈I of the

foliation F satisfy

ϕ2
αX = X, gα(ϕαX, ϕαY ) = −gα(X, Y )

for any X, Y ∈ Γ(TM) and α ∈ I, so they define an almost para-Hermitian structure

(ϕα, gα) on each leaf Fα of F .

If the 1-form η and the 2-form ω are closed, we say that M together with the al-

most para-contact hyperbolic metric structure (ϕ, ξ, η, g) is almost para-cosymplectic

manifold [2]. In this case, for any α ∈ I, ηα := η|Fα
is closed. The fundamental

2-form ωα(X, Y ) := gα(ϕαX, Y ), X, Y ∈ Γ(D), defined by ϕα and gα, is closed, too,

so each leaf (Fα, ϕα, gα) becomes an almost para-Kähler manifold for any α ∈ I [2].

Therefore, all almost product structures ϕα are integrable.

These properties yield the fact stated in the next proposition:

Proposition 1.1. Let (M, ϕ, ξ, η, g) be an almost para-cosymplectic manifold.

Assume that the Levi-Cività connection ∇α associated to gα is flat for any α ∈ I.

Then the leaves (Fα, ϕα,∇α) are special para-complex manifolds.

P r o o f. According to [8], (Fα, ϕα,∇α) is a special para-complex manifold if

ϕα is integrable, ϕ2
α = I, ϕα 6= I, ∇α is a torsion free, flat affine connection and

satisfies (∇αXηα)Y = (∇αY ηα)X for any X, Y ∈ Γ(TM). Taking into account that

ηα is closed and dηα(X, Y ) = (∇αXηα)Y − (∇αY ηα)X for any X, Y ∈ Γ(TM), we

get the conclusion. �
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2. Curvature properties

Let (M, ϕ, ξ, η, g) be an almost para-cosymplectic manifold. Relations and cur-

vature properties for the Levi-Cività connection ∇ associated with the pseudo-

Riemannian metric g, similar to those in the almost contact metric case studied

by Z. Olszak [6], can be found for almost para-cosymplectic manifolds.

From the condition dω = 0 we obtain

(2.1) (∇Xω)(Y, Z) + (∇Y ω)(Z, X) + (∇Zω)(X, Y ) = 0

for any X, Y, Z ∈ Γ(TM).

Proposition 2.1. Let (M, ϕ, ξ, η, g) be an almost para-cosymplectic manifold and

∇ the Levi-Cività connection associated with g. Then, for any X, Y, Z ∈ Γ(TM),

(∇Xω)(ϕY, ϕZ) − (∇Xω)(Y, Z) = η(Z)(∇Xη)(ϕY ) − η(Y )(∇Xη)(ϕZ);(2.2)

(∇Xω)(ϕY, Z) − (∇Xω)(Y, ϕZ) = −η(Z)(∇Xη)Y − η(Y )(∇Xη)Z;(2.3)

(∇Xω)(Z, Y ) − (∇ϕXω)(ϕZ, Y ) =
1

2
η(Z)(Lξg)(Y, ϕX).(2.4)

P r o o f. The first two relations follow from direct computation. Writing the

relation (2.1) for circular permutations −(X, ϕZ, ϕY )+(Y, ϕX, ϕZ)+(Z, ϕY, ϕX)−

(X, Z, Y ) and taking into account that (Lξg)(X, Y ) = (∇Xη)Y +(∇Y η)X , we obtain

the last relation. �

In particular, if we put X = ξ in (2.4), we get ∇ξω = 0. Moreover, ∇ξϕ = 0.

If we replace Z by ϕZ in the relation (2.3), we obtain

(2.5) g(ϕY,∇Xξ) = (∇Xη)(ϕY )

and

(2.6) g(Y, ϕ(∇Xξ)) = η(∇XϕY )

for any X, Y, Z ∈ Γ(TM).

We also have

(2.7) (∇ϕXϕ)ϕY = −ϕ((∇ϕXϕ)Y ) − η(Y )∇ϕXξ − (∇ϕXη)Y · ξ

for any X, Y ∈ Γ(TM).

From

(∇Xω)(Z, Y ) − (∇ϕXω)(ϕZ, Y ) = η(Z)(∇ϕXη)Y,
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we get

(2.8) (∇Xϕ)Y − (∇ϕXϕ)ϕY = η(Y )∇ϕXξ

for any X, Y ∈ Γ(TM).

Replacing (2.7) in (2.8), we obtain

(2.9) (∇Xϕ)Y + ϕ((∇ϕXϕ)Y ) + (∇ϕXη)Y · ξ = 0

for any X, Y ∈ Γ(TM).

Applying ϕ to (2.9), we have

(2.10) ϕ((∇Xϕ)Y ) + (∇ϕXϕ)Y + (∇ϕXη)ϕY · ξ = 0

for any X, Y ∈ Γ(TM).

For X = Y = ξ in the previous relation we deduce that ϕ(∇ξξ) = 0. But ∇ξξ =

η(∇ξξ)ξ and also g(∇ξξ, X) = (∇ξη)X for any X ∈ Γ(TM). In particular, for X = ξ

we have η(∇ξξ) = 0 and so ∇ξξ = 0.

From (2.8) we have (∇Xϕ)ξ = ∇ϕXξ and so

(2.11) ϕ(∇Xξ) = −∇ϕXξ

for any X ∈ Γ(TM). Then we obtain

(2.12) (∇ϕXη)Y = (∇Xη)(ϕY )

for any X, Y ∈ Γ(TM).

We have

(2.13) η(∇Xξ) = 0

for any X ∈ Γ(TM) and so

(2.14) (∇ϕXη)ϕY = (∇Xη)Y

for any X, Y ∈ Γ(TM).

Theorem 2.2. Let (M, ϕ, ξ, η, g) be an almost para-cosymplectic manifold and

∇ the Levi-Cività connection associated with g. Then the following identity holds:

RXY ϕZϕW − RϕXY ZϕW + RϕXϕY ϕZϕW − RXϕY ZϕW(2.15)

− RϕXY ϕZW + RϕXϕY ZW + RXY ZW − RXϕY ϕZW

+ η(W )[RϕXY ϕZξ − RϕXϕY Zξ − RXY Zξ + RXϕY ϕZξ]

+ g(∇[ϕX,ϕY ]+[X,Y ]ϕZ + ϕ(∇[ϕX,Y ]+[X,ϕY ]ϕZ), ϕW ) = 0

for any X, Y, Z, W ∈ Γ(TM).
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P r o o f. The proof follows the same lines as in [6], taking into account the

relations obtained above for the almost para-cosymplectic case. �

Proposition 2.3. Under the hypotheses of Theorem 2.2, we have:

RϕXY ϕZξ + RXϕY ϕZξ − RϕXϕY Zξ − RXY Zξ = 0

for any X, Y, Z ∈ Γ(TM).

P r o o f. Antisymmetrizing (2.15) with respect to Z and W and taking (W ↔ Z

and W → ξ), we get the required relation. �

The leaves Fα of constant and quasi-constant ϕα-sectional curvature

Consider the (0, 4)-tensor fields defined in [7]:

Rα
0 (X, Y, Z, W ) :=

1

4
[gα(X, Z)gα(Y, W ) − gα(X, W )gα(Y, Z)

− gα(X, ϕαZ)gα(Y, ϕαW ) + gα(X, ϕαW )gα(Y, ϕαZ)

− 2gα(X, ϕαY )gα(Z, ϕαW )]

and, respectively, in [1]:

Rα
1 (X, Y, Z, W ) := gα(Sα(X, Y, Z), W ) + gα(Sα(ϕαX, ϕαY, Z), W ),

for

Sα(X, Y, Z) := Pα(X, Y, Z)− Pα(Y, X, Z),

where

Pα(X, Y, Z) :=
1

8

{
ηα(Y )ηα(Z)X + ηα(X)ηα(ϕαZ)ϕαY

+ ηα(X)ηα(ϕαY )ϕαZ + gα(Y, Z)ηα(X)ξα

+ gα(X, ϕαZ)ηα(Y )ϕαξα

+
1

2
gα(X, ϕαY )[ηα(ϕαZ)ξα + ηα(Z)ϕαξα]

}

and

Rα
2 (X, Y, Z, W ) := [ηα(X)ηα(ϕαY ) − ηα(ϕαX)ηα(Y )]

× [ηα(ϕαZ)ηα(W ) − ηα(Z)ηα(ϕαW )].

Definition 2.4 ([1]). A para-Kähler manifold (M, ϕ, g) endowed with a unit

vector field ξ is said to be
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(1) of constant ϕ-sectional curvature if the sectional curvature of span{u, ϕu} is

constant for any x ∈ M and any u non-isotropic tangent vector in TxM ;

(2) of quasi-constant ϕ-sectional curvature if the sectional curvature of span{u, ϕu}

is constant for any x ∈ M , any θ ∈
[
0, π

2

]
and any u non-isotropic tangent vector

in TxM making the angle θ with span{ξx, ϕξx}.

According to Theorem 2.1 from [1], the following result holds:

Theorem 2.5. Let (M, ϕ, ξ, η, g) be an almost para-cosymplectic manifold. Then

the leaf (Fα, ϕα, gα)

(1) is of constant ϕα-sectional curvature if and only if there exists a function cα :

Fα → R such that the curvature tensor field Rα satisfies Rα = cαRα
0 ;

(2) is of quasi-constant ϕα-sectional curvature if and only if there exists three

functions c0
α, c1

α, c2
α : Fα → R such that the curvature tensor field Rα satisfies

Rα = c0
αRα

0 + c1
αRα

1 + c2
αRα

2 .

For the complex case, S. Funabashi, H. S. Kim, Y.-M. Kim, J. S. Pak [4] gave nec-

essary and sufficient conditions for a Kähler manifold to be of constant holomorphic

sectional curvature, involving certain spectral properties of the Laplace operator.

In the next section we will determine a relation between the curvature of the leaves

of the canonical foliation and the Hodge-Laplace operator (equation (3.3)).

3. Harmonic forms on the leaves of the canonical foliation

Let (M, ϕ, ξ, η, g) be an almost para-cosymplectic manifold of dimension 2n + 1.

Consider the exterior differential and codifferential operators defined for any tangent

bundle-valued p-form T ∈ Γ(ΛpT ∗M ⊗ TM) by

dT (X0, . . . , Xp) :=

p∑

i=0

(−1)i(∇Xi
T )(X0, . . . , X̂i, . . . , Xp)

and

δT (X1, . . . , Xp−1) := −

2n∑

i=0

(∇Ei
T )(Ei, X1, . . . , Xp−1),

for an orthonormal frame field {Ei}06i62n and the Hodge-Laplace operator on

Γ(ΛpT ∗M ⊗ TM)

(3.1) ∆ := d ◦ δ + δ ◦ d.
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W. Jianming studied in [5] some properties of harmonic complex structures. Simi-

lar results hold for the leaves of the canonical foliation of an almost para-cosymplectic

manifold. In our case, the leaves being almost para-Kähler manifolds, we shall deal

with harmonic almost product structures and give the following obvious definition:

Definition 3.1. An almost product structure E is called harmonic if ∆E = 0.

From the definition we infer that E is harmonic if and only if dE = 0 and

δE = 0 which is equivalent to (∇XE)Y = (∇Y E)X for any X, Y ∈ Γ(TM)

and trace(∇E) = 0 for ∇ the Levi-Cività connection associated with the pseudo-

Riemannian structure g.

Proposition 3.2. Any harmonic almost product structure E is integrable (that

is, it is a product structure).

P r o o f. Let X, Y ∈ Γ(TM). Then

(dE)(X, Y ) := (∇E)(X, Y ) − (∇E)(Y, X)

= [X, EY ] + ∇EY X − [Y, EX ]−∇EXY − E[X, Y ].

As ∆E = 0 implies dE = 0, we get

0 = (dE)(EX, Y ) + (dE)(X, EY )

= [EX, EY ] + [X, Y ] − E[EX, Y ] − E[X, EY ],

which shows the integrability of E. �

In particular, for any T ∈ Γ(Λ1T ∗M ⊗ TM) we have [9]

(3.2) ∆T = −∇2T − S,

where ∇2T :=
2n∑
i=0

∇Ei
∇Ei

T − ∇∇Ei
Ei

T and S(X) :=
2n∑
i=0

(REiXT )Ei, X ∈ Γ(TM),

for {Ei}06i62n an orthonormal frame field and RXY := ∇X∇Y − ∇Y ∇X − ∇[X,Y ],

X, Y ∈ Γ(TM), the Riemann curvature tensor field. We shall also use the notation

RXY Z =: RXY Z and RXY ZW =: g(RXY Z , Z), X, Y, Z, W ∈ Γ(TM). Then for T

equal to E and for any vector field X ,

S(X) :=

2n∑

i=0

(REiXE)Ei =

2n∑

i=0

REiXEEi
−

2n∑

i=0

E(REiXEi
)

=

2n∑

i=0

[REiXEEi
− E(REiXEi

)].
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Denote by e(E) :=
2n∑
i=0

1
2g(EEi, EEi) = 1

2 |E|2 the energy density of E (which does

not depend on the orthonormal frame field {Ei}06i62n). We can state the following

theorem:

Theorem 3.3. Let (M, ϕ, ξ, η, g) be an almost para-cosymplectic manifold and

assume that any ϕα is a harmonic product structure. Then on each leaf Fα, α ∈ I,

of the canonical foliation F , a Bochner-type formula

(3.3) ∆e(ϕα) = |∇ϕα|
2 −

∑

06i,j62n

(REα
i

Eα
j

ϕαEα
i

ϕαEα
j

+ REα
i

Eα
j

Eα
i

Eα
j
)

holds for an orthonormal frame field {Eα
i }06i62n on Fα with ∇Ei

Ei = 0, 0 6 i 6 2n.

P r o o f. A computation similar to that in [5] leads to

〈∇2ϕα, ϕα〉 =

2n∑

i=0

〈∇Eα
i
∇Eα

i
ϕα, ϕα〉 = ∆e(ϕα) − |∇ϕα|

2

and

〈S, ϕα〉 =

2n∑

j=0

〈SEα
j , ϕαEα

j 〉

=
∑

06i,j62n

g(REα
i

Eα
j

ϕαEα
i

, ϕαEα
j
) − g(ϕα(REα

i
Eα

j
Eα

i
), ϕαEα

j ).

Therefore, as ϕα is harmonic if ∆ϕα = 0, from (3.2) we obtain

0 = 〈∆ϕα, ϕα〉

= − 〈∇2ϕα, ϕα〉 − 〈S, ϕα〉

= − ∆e(ϕα) + |∇ϕα|
2

−
∑

06i,j62n

[g(REα
i

Eα
j

ϕαEα
i
, ϕαEα

j
) − g(ϕα(REα

i
Eα

j
Eα

i
), ϕαEα

j )]

= − ∆e(ϕα) + |∇ϕα|
2 −

∑

06i,j62n

(REα
i

Eα
j

ϕαEα
i

ϕαEα
j

+ REα
i

Eα
j

Eα
i

Eα
j
).

�
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