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Abstract. In this paper we study the existence of classical solutions for a class of abstract
neutral integro-differential equation with unbounded delay. A concrete application to partial
neutral integro-differential equations is considered.

Keywords: neutral equations, classical solution, analytic semigroup, unbounded delay

MSC 2010 : 34K30, 34K40, 35R10

1. Introduction

This paper is devoted to the study of the existence of classical solutions for a class

of neutral integro-differential equations with unbounded delay of the form

d

dt

[
u(t) +

∫ t

−∞

B(t, τ)u(τ) dτ

]
= Au(t) +

∫ t

−∞

C(t, τ)u(τ) dτ, t ∈ [0, a],(1.1)

u0 = ϕ,(1.2)

where A : D(A) ⊂ X → X is the infinitesimal generator of an analytic semigroup of

bounded linear operators (T (t))t>0 defined on a Banach space (X, ‖ · ‖), the history

xt : (−∞, 0] → X , xt(θ) := x(t + θ), belongs to an abstract phase space B defined

axiomatically and B(t, τ), C(t, τ), t > τ , are suitable bounded linear operators.

In this work we continue our recent developments in Hernández & O’Regan [16],

[17], [18] and Hernández & Balachandran [19] on the existence of solutions to abstract

neutral differential systems. As in the cited papers, our purpose is to establish

the existence of solutions without employing a strong technical restriction which is
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usually used to treat neutral systems. To clarify the above, we next make some

bibliographical comments related to the abstract neutral system of the form

d

dt
[x(t) + g(t, xt)] = Ax(t) + f(t, xt), t ∈ [0, a],(1.3)

x0 = ϕ ∈ C ,(1.4)

where C (the phase space) is a Banach space formed by functions defined from a

connected interval J ⊂ (−∞, 0] into X and f, g : [0, a]×C → X are given functions.

In Datko [12] and Adimy & Ezzinbi [1] some linear neutral systems similar

to (1.3)–(1.4) are studied under the strong assumption that the range of g(·) is

contained in D(A). If A is the generator of a C0-semigroup of bounded linear

operators (T (t))t>0 (the case studied by Datko), this assumption arises from the

treatment of the associated integral equation

u(t) = T (t)[ϕ(0) + g(0, ϕ)] − g(t, ut)

−

∫ t

0

AT (t− s)g(s, us) ds+

∫ t

0

T (t− s)f(s, us) ds,

since, except in trivial cases, the operator function AT (·) is not integrable in the

operator topology on [0, b] for b > 0. The same reason explains the use of a similar

assumption in Adimy & Ezzinbi [1] where the case in which A is a Hille-Yosida type

operator is studied.

In the papers [20], [21], [22] the system (1.3)–(1.4) is studied assuming that the

semigroup (T (t))t>0 is analytic and g has values in the domain of a fractional power

of A. The same assumption was later used in many papers, see for example [2], [5],

[9], [26], [27], [29].

We note that the restrictions cited above are particular cases of a more general

assumption which we call condition (Hg). In the condition (Hg) below, L (Y,X)

denotes the space of bounded linear operators from Y into X endowed with the norm

of operators.

Condition (Hg). There exists a Banach space (Y, ‖ · ‖Y ) continuously embedded

into X such that g ∈ C([0, a] × B, Y ) and AT (·) ∈ L1([0, a],L (Y,X)).

The condition (Hg) is verified in several situations, but it is a severe restriction.

To understand this fact, it is necessary to remark that the abstract formulation of

(1.3)–(1.4) is motivated by the interest in the applications to partial neutral differen-

tial equations, so that it is natural to think that A represents a differential operator.

In the applications in Datko [12], for example, X is the space formed by all uni-

formly continuous functions from [0,∞) into R endowed with the supremum norm,

D(A) = {x ∈ X : x′ ∈ X}, A : D(A) ⊂ X → X is given by Ax = x′ and the assump-
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tion (Hg) is verified with Y = [D(A)], where [D(A)] denotes the domain of A en-

dowed with the graph norm. In this case, the function g(·) has an unusual regularizing

effect since g(t, u) is of class C1 for all (t, u) ∈ [0,∞)×X . In the papers [20], [22], [21]

a similar situation occurs. In these works, X = L2([0, π]), D(A) = {x ∈ X : x(0) =

x(π) = 0, x′, x′′ ∈ X}, A : D(A) ⊂ X → X is given by Ax = x′′, Y = [D(−A)1/2] =

W 1
0 ([0, 1]) and g(·) is a continuous function from [0, a] ×X into W 1

0 ([0, 1]).

It is convenient to note that in the papers [4], [3], [6], [7], [13], among several other

works, an alternative assumption (which is really a particular case of condition (Hg))

has been used to treat neutral systems. In these works it is assumed that the semi-

group (T (t))t>0 is compact and the set of operators {AT (t) : t ∈ (0, b]} is bounded.

However, as was pointed out in [21], these conditions are valid if and only if A is

bounded and dimX < ∞, which restricts the applications to ordinary differential

equations. Moreover, if the compactness assumption is removed, it follows that A is

bounded, which remains a strong restriction.

The purpose of this paper is to study the existence of α-Hölder “classical” solutions

for (1.1)–(1.2) without using condition (Hg), and the novelty compared to [16], [17],

[18], [19] is that in the current work we consider a system with unbounded delay.

We observe that our results are based on some types of optimal regularity results for

abstract systems in the form

d

dt
(x(t) + ξ1(t)) = A(t)x(t) + ξ2(t), t ∈ [0, a].

We now consider a motivation for the study of abstract neutral systems as

(1.1)–(1.2). This type of systems arises, for example, in the theory of heat con-

duction in fading memory material. In the classical theory of heat conduction,

it is assumed that the internal energy and the heat flux depend linearly on the

temperature u and on its gradient ∇u. Under these conditions, the classical heat

equation describes sufficiently well the evolution of the temperature in different types

of materials. However, this description is not satisfactory in materials with fading

memory. In the theory developed in [14], [28], the internal energy and the heat flux

are described as functionals of u and ux. The next system, see [8], [10], [11], [25],

has been frequently used to describe this phenomenon:

d

dt

[
u(t, x) +

∫ t

−∞

k1(t− s)u(s, x) ds

]
= c∆u(t, x) +

∫ t

−∞

k2(t− s)∆u(s, x) ds,

u(t, x) = 0, x ∈ ∂Ω.

In this system, Ω ⊂ R
n is open, bounded and has smooth boundary, (t, x) ∈ [0,∞)×

Ω, u(t, x) represents the temperature in x at the time t, c is a physical constant and

ki : R → R, i = 1, 2, are the internal energy and the heat flux relaxation, respectively.
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By assuming the solution u(·) to be known on (−∞, 0] and k2 ≡ 0, we can transform

this system into the abstract form (1.1)–(1.2).

Next, we introduce some notation and technicalities needed to establish our results.

Let (Z, ‖·‖Z) and (W, ‖·‖W ) be Banach spaces. In this paper, we denote byL (Z,W )

the space of bounded linear operators from Z into W endowed with the norm of

operators denoted by ‖ · ‖L (Z,W ), and we write L (Z) and ‖ · ‖L (Z) when Z = W .

In addition, we write Z →֒ W when Z is continuously included in W . As usual,

C([0, b], Z) is the space of continuous functions from [0, b] into Z with the sup-norm

denoted by ‖ · ‖C([0,b],Z), and C
γ([0, b], Z), γ ∈ (0, 1), is the space formed by all γ-

Hölder Z-valued functions from [0, b] into Z provided with the norm ‖ξ‖Cγ([0,b],Z) =

‖ξ‖C([0,b],Z)+ |[ξ]|Cγ([0,b],Z) where [|ξ|]Cγ([0,b],Z) = sup
t,s∈[0,b], t6=s

‖ξ(s) − ξ(t)‖Z/|t− s|γ .

The notation C1+γ([0, b], Z) stands for the space formed by all C1 functions ξ such

that ξ′ ∈ Cγ([0, b], Z), endowed with the norm ‖ξ‖C1+γ([0,b],Z) = ‖ξ‖C([0,b],Z) +

‖ξ′‖Cγ([0,b],Z). In addition, B([0, b], Z) is the space of bounded measurable functions

from [0, b] into Z with the sup norm denoted by ‖ · ‖B([0,b],Z).

In this paper, (X, ‖ ·‖) is a Banach space and A : D(A) ⊂ X → X is the generator

of an analytic semigroup of bounded linear operators (T (t))t>0 on X . To simplify

our developments, we assume 0 ∈ ̺(A) and we use the notation (D , ‖ · ‖D) for the

space D(A) endowed with the norm ‖x‖D = ‖Ax‖. In addition, for η ∈ (0, 1) we

denote by (X,D)η,∞ the space

(X,D)η,∞ =

{
x ∈ X : [x]η,∞ =

∫ 1

0

t1−η‖AT (t)x‖ dt <∞

}

provided with the norm ‖x‖η,∞ = [x]η,∞+‖x‖. In the remainder of this paper, we will

assume that Ci, i = 0, 1, 2, and C1
α,∞ are positive constants such that ‖s

iAiT (s)‖ <

Ci, i = 0, 1, 2, and ‖s1−αAT (s)‖L ((X,D)α,∞,X) < C1
α,∞ for all s > 0.

For additional details on analytical semigroups we refer the reader to Lunardi [24].

Throughout this work, we use an axiomatic definition for the phase spaceB which

is similar to the one in [15], [23]. Specifically, B will be a linear space of functions

mapping (−∞, 0] into D endowed with a semi-norm ‖·‖B and satisfying the following

axioms:

(A) If x : (−∞, σ + b) → D , b > 0, σ ∈ R, is continuous on [σ, σ + b) and xσ ∈ B,

then for every t ∈ [σ, σ + b) the following conditions hold:

(i) xt is in B.

(ii) ‖x(t)‖ 6 H‖xt‖B.

(iii) ‖xt‖B 6 K(t − σ) sup{‖x(s)‖D : σ 6 s 6 t} + M(t − σ)‖xσ‖B, where

H > 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous,M is locally

bounded and H , K, M are independent of x(·).
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(A1) For the function x(·) in (A), the function t→ xt belongs to C([σ, σ + b),B).

(B) The space B is complete.

Example 1.1. The phase space Cr ×Lp(̺,D). Let r > 0, 1 6 p <∞ and let ̺ :

(−∞,−r] → R be a nonnegative measurable function which satisfies the conditions

(g-5), (g-6) in the terminology of [23]. Briefly, this means that ̺ is locally integrable

and there exists a non-negative, locally bounded function γ on (−∞, 0] such that

̺(ξ + θ) 6 γ(ξ)̺(θ) for all ξ 6 0 and θ ∈ (−∞,−r) \ Nξ, where Nξ ⊆ (−∞,−r) is

a set with Lebesgue measure zero. The space Cr ×Lp(̺,D) consists of all classes of

functions ϕ : (−∞, 0] → D such that ϕ ∈ C([−r, 0]; D), ϕ is Lebesgue-measurable

and ̺1/pϕ ∈ Lp((−∞,−r]; D). The seminorm in Cr × Lp(̺,D) is given by ‖ϕ‖B =

‖ϕ‖C([−r,0];D) + ‖̺1/pϕ‖Lp((−∞,−r];D).

The space B = Cr × Lp(̺,D) satisfies axioms (A), (A1) and (B). Moreover, for

r = 0 and p = 2, we can takeH = 1,M(t) = γ(−t)1/2 andK(t) = 1+
(∫ 0

−t ̺(θ) dθ
)1/2

for t > 0. See [23, Theorem 1.3.8] for details.

The paper has two main sections. In the next section, we study the existence

of α-Hölder classical solutions for the abstract neutral system (1.1)–(1.2). In the

last section, a concrete application to partial neutral integro-differential equations is

considered.

2. Existence of solutions

In this section we discuss the existence of α-Hölder classical solutions for the

abstract neutral integro-differential system (1.1)–(1.2). To simplify our next devel-

opments, it is convenient to introduce some additional notation. In the remainder of

this section, α ∈ (0, 1), ϕ ∈ B and y : R → X is the function defined by y(s) = ϕ(s)

for s 6 0 and y(s) = T (s)ϕ(0) for s > 0. In addition, G,F : [0, a] → L (B, X) are

the functions given by

G(t)ψ =

∫ ∞

0

B(t, t− s)ψ(−s) ds and F (t)ψ =

∫ ∞

0

C(t, t− s)ψ(−s) ds.

Let b ∈ (0, a] and let w : (−∞, b] → D be a function such that w0 ∈ B and w|[0,b]
∈

C([0, b],D). Next, we use the notation Gw, Fw and Pw for the functions Gw, Fw :

[0, b] → X and Pw : [0, b] → B defined by Gw(t) = G(t)wt, Fw(t) = F (t)wt and

Pw(t) = wt. In addition, C
α
B

(b) denotes the space

(2.5)

C
α
B(b) = {u : (−∞, b] → D : u0 ∈ B, u|[0,b]

∈ C([0, b],D), Pu ∈ Cα([0, b],B)},

endowed with the norm ‖u‖C α
B

(b) = ‖Pu‖Cα([0,b],B).
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We note that using the above notation, the integro-differential system (1.1)–(1.2)

can be represented in the abstract form as

d

dt
[x(t) +G(t)xt] = Ax(t) + F (t)xt, t ∈ [0, a],(2.6)

x0 = ϕ ∈ B.(2.7)

Definition 2.1. A function u : (−∞, b] → D , 0 < b 6 a, is called a classical

solution of the neutral system (1.1)–(1.2) on [0, b], if u0 = ϕ, u|[0,b]
∈ C([0, b],D),

the function t →
[
u(t) +

∫ t

−∞
B(t, τ)u(τ) dτ

]
belongs to C1([0, b], X) and the equa-

tion (1.1) is satisfied on [0, b].

To prove the main results of this section, Theorem 2.1, we need some preliminary

lemmas. The next results, Lemma 2.1 and Lemma 2.2, are proved in [17]. However,

we include the proof of them for completeness.

Lemma 2.1. Assume that ξ1 ∈ Cα([0, b],D), ξ2 ∈ Cα([0, b], X), x ∈ D and let

u : [0, b] → X be the function defined by

u(t) = T (t)(x+ ξ1(0)) − ξ1(t) −

∫ t

0

AT (t− s)ξ1(s) ds+

∫ t

0

T (t− s)ξ2(s) ds.

If Ax+ ξ2(0) ∈ (X,D)α,∞, then u ∈ Cα([0, b],D), d
dt(u + ξ1) ∈ B([0, b], (X,D)α,∞),

u+ ξ1 ∈ Cα([0, b],D) ∩ C1+α([0, b], X) and

d

dt
[u(t) + ξ1(t)] = Au(t) + ξ2(t), ∀ t ∈ [0, b].

Moreover,

[|u|]Cα([0,b],D) 6 Λ1([|ξ1|]Cα([0,b],D) + [|ξ2|]Cα([0,b],X)) +
C1

α,∞

α
‖Ax+ ξ2(0)‖α,∞,

‖u‖Cα([0,b],D) 6 C0‖Ax‖ + ([|ξ1|]Cα([0,b],D)[|ξ2|]Cα([0,b],X))
(
C0 +

C1

α

)
bα + 2C0‖ξ2‖,

where Λ1 = 2C1/α+ 3C0 + 2 + C2/α(1 − α).

P r o o f. Let v : [0, b] → X be the function defined by

v(t) = T (t)(x+ ξ1(0)) +

∫ t

0

T (t− s)(−Aξ1(s) + ξ2(s)) ds.

From [24, Theorem 4.3.1] we have that v ∈ Cα([0, b],D)∩C1+α([0, b], X) and v(·) is

the unique strict solution of

x′(t) = Ax(t) −Aξ1(t) + ξ2(t), ∀ t ∈ [0, a],

x(0) = x+ ξ1(0).
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Since v = u+ ξ1, we obtain u ∈ Cα([0, b],D) and

d

dt
[u(t) + ξ1(t)] = A(u(t) + ξ1(t)) −Aξ1(t) + ξ2(t) = Au(t) + ξ2(t), ∀ t ∈ [0, b].

On the other hand, from the proof of [24, Theorem 4.3.1] we obtain that

[|v|]Cα([0,b],D) 6 d([|ξ1|]Cα([0,b],D) + [|ξ2|]Cα([0,b],X)) +
C1

α,∞

α
‖Ax+ ξ2(0)‖α,∞,

where d = 2C1/α+ 3C0 + 1 + C2/α(1 − α). Now, from the definition of v(·) we get

[|u|]Cα([0,b],D) 6 Λ1([|ξ1|]Cα([0,b],D) + [|ξ2|]Cα([0,b],X)) +
C1

α,∞

α
‖Ax+ ξ2(0)‖α,∞.

Moreover, by re-writing u(·) in the form

u(t) = T (t)x+ T (t)(ξ1(0) − ξ1(t)) −

∫ t

0

T (t− s)[Aξ1(s) −Aξ1(t)] ds(2.8)

+

∫ t

0

T (t− s)(ξ2(s) − ξ2(t)) ds+

∫ t

0

T (t− s)ξ2(t) ds,

we have that

‖Au(t)‖ 6 ‖T (t)Ax‖ + C0‖Aξ1(0) −Aξ1(t)‖

+

∫ t

0

‖AT (t− s)[Aξ1(s) −Aξ1(t)]‖ ds

+

∫ t

0

‖AT (t− s)(ξ2(s) − ξ2(t))‖ ds+ ‖(T (t) − I)ξ2(t)‖

6 C0‖Ax‖ + C0[|ξ1|]Cα([0,b],D)t
α + [|ξ1|]Cα([0,b],D)

∫ t

0

C1

(t− s)1−α
ds

+ [|ξ2|]Cα([0,b],X)

∫ t

0

C1

(t− s)1−α
ds+ 2C0‖ξ2‖C([0,b],X)

6 C0‖Ax‖ + ([|ξ1|]Cα([0,b],D) + [|ξ2|]Cα([0,b],X))
(
C0 +

C1

α

)
bα

+ 2C0‖ξ2‖C([0,b],X),

which completes the proof. �

Lemma 2.2. If the conditions of Lemma 2.1 are satisfied and ξ2(0) ∈ (X,D)α,∞,

then

‖u‖C([0,b],D) 6 C0‖Ax‖ + Λ2([|ξ1|]Cα(D) + [|ξ2|]Cα(X))b
α +

C1
α,∞

α
‖ξ2(0)‖α,∞b

α,

where Λ2 = C0 + C1/α+ 1.
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P r o o f. By re-writing u(t) as in (2.8), we obtain

Au(t) = T (t)Ax+ T (t)(Aξ1(0) −Aξ1(t)) −

∫ t

0

AT (t− s)[Aξ1(s) −Aξ1(t)] ds

+

∫ t

0

AT (t− s)(ξ2(s) − ξ2(t)) ds+ T (t)ξ2(t) − ξ2(t).

Consequently,

‖Au(t)‖ 6 C0‖Ax‖ + C0[|ξ1|]Cα([0,b],D)b
α

+

∫ t

0

‖AT (t− s)[Aξ1(s) −Aξ1(t)]‖ ds

+

∫ t

0

‖AT (t− s)(ξ2(s) − ξ2(t))‖ ds+ ‖ξ2(0) − ξ2(t)‖

+ ‖T (t)ξ2(0) − ξ2(0)‖ + ‖T (t)(ξ2(t) − ξ2(0))‖

6 C0‖Ax‖ + C0[|ξ1|]Cα([0,b],D)b
α +

C1

α
[|ξ1|]Cα([0,b],D)b

α

+
C1

α
[|ξ2|]Cα([0,b],X)b

α + [|ξ2|]Cα([0,b],X)b
α

+

∥∥∥∥
∫ t

0

AT (s)ξ2(0) ds

∥∥∥∥ + C0[|ξ2|]Cα([0,b],X)b
α,

and hence,

‖u‖C([0,b],D) 6 C0‖Ax‖ + ([ξ1|]Cα([0,b],D)

+ [|ξ2|]Cα([0,b],X))
(
C0 +

C1

α
+ 1

)
bα +

C1
α,∞

α
‖ξ2(0)‖α,∞b

α.

�

Next, we establish some properties for the functions F (·) and G(·).

Lemma 2.3. Assume there are a measurable function LB : [0,∞) → R
+ and

ΛB > 0 such that

‖B(t, t− τ) −B(s, s− τ)‖LB(D) 6 LB(τ)|t − s|α, t, s ∈ [0, a], τ > 0,

sup
t∈[0,a]

∫ ∞

0

(LB(τ) + ‖B(t, t− τ)‖L (B,D))‖ψ(−τ)‖D dτ 6 ΛB‖ψ‖B, ψ ∈ B.

Then G ∈ Cα([0, a],L (B,D)) and ‖G‖Cα([0,a],L (B,D)) 6 2ΛB.
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P r o o f. From the assumptions, for ψ ∈ B we see that

‖G(t)ψ‖D 6

∫ ∞

0

‖B(t, t− s)‖L (B)‖ψ(−s)‖D ds 6 ΛB‖ψ‖B,

which implies that ‖G‖C([0,a],L (B,D)) 6 ΛB. Also, for 0 6 s < t 6 a and ψ ∈ B we

get

‖G(t)ψ −G(s)ψ‖D 6

∫ ∞

0

‖B(t, t− τ) −B(s, s− τ)‖L (D)‖ψ(−τ)‖D dτ

6 (t− s)α

∫ ∞

0

LB(τ)‖ψ(−τ)‖D dτ

6 (t− s)αΛB‖ψ‖B,

so that [|G|]Cα([0,a],L (B,D)) 6 ΛB. From the above it follows that G ∈ Cα([0, a],

L (B,D)) and ‖G‖Cα([0,a],L (B,D)) 6 ΛB. The proof is complete. �

The proof of the next lemma is similar to the proof of Lemma 2.3, so we omit it.

Lemma 2.4. Assume there are a measurable function LC : [0,∞) → R
+ and

ΛC > 0 such that

‖C(t, t− τ) − C(s, s− τ)‖L (D,X) 6 LC(τ)|t − s|α, t, s ∈ [0, a], τ > 0,

sup
t∈[0,a]

∫ ∞

0

(LC(τ) + ‖C(t, t− τ)‖L (D,X))‖ψ(−τ)‖ dτ 6 ΛC‖ψ‖B, ψ ∈ B.

Then F ∈ Cα([0, a],L (B, X)) and ‖F‖Cα([0,a],L (B,X)) 6 2ΛC .

In the application considered in the last section, it is possible to see that the as-

sumptions in the above lemmas are verified in many situations and are not restrictive.

Now, we consider some variants of the above lemmas.

Lemma 2.5. Assume B →֒ L1((−∞, 0],D)∩Lp((−∞, 0],D) for some p > 1, and

there are constants Λi
B, i = 1, 2, 3, such that

‖B(t, τ) −B(s, τ)‖D 6 Λ1
B|t− s|α, t, s ∈ [0, a], τ 6 min{t, s},

‖B(t, s) −B(t, τ)‖D 6 Λ2
B|s− τ |α, t ∈ [0, a], s, τ ∈ (−∞, t],

sup
t∈[0,a]

(∫ ∞

0

‖B(t, t− τ)‖p′

D
dτ

)1/p′

6 Λ3
B, where p′ =

p

p− 1
.

Then G ∈ Cα([0, a],L (B,D)) and

‖G‖Cα([0,a],L (B,D)) 6 (Λ1
B + Λ2

B)‖i‖L (B,L1) + Λ3
B‖i‖L (B,Lp),
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where i represents the inclusion map from B into the space Lj((−∞, 0],D), j = 1, p,

and

(2.9) ‖i‖L (B,Lj) = ‖i‖L (B,Lj(−∞,0],D).

For t ∈ [0, a] and ψ ∈ B we have that

‖G(t)ψ‖D 6

∫ ∞

0

‖B(t, t− τ)‖L (D)‖ψ(−τ)‖D

6 Λ3
B‖ψ‖Lp(−∞,0],D)

6 Λ3
B‖i‖L (B,Lp)‖ψ‖B,

and hence ‖G(t)‖L (B,D) 6 Λ3
B‖i‖L (B,Lp) for all t ∈ [0, a]. Also, for t > s, t, s ∈ [0, a]

and ψ ∈ B we see that

‖G(t)ψ −G(s)ψ‖D 6

∫ ∞

0

‖B(t, t− τ) −B(s, t− τ)‖L (D)‖ψ(−τ)‖D dτ

+

∫ ∞

0

‖B(s, t− τ) −B(s, s− τ)‖L (D)‖ψ(−τ)‖D dτ

6 (t− s)α(Λ1 + Λ2)

∫ ∞

0

‖ψ(−τ)‖D dτ,

which shows that

[|G|]Cα([0,a],L (B,D)) 6 (Λ1
B + Λ2

B)‖i‖L (B,L1), G ∈ Cα([0, a],L (B,D))

and (2.9) is satisfied. This completes the proof. �

The proof of Lemma 2.6 follows reasoning similar to that in the proof of Lemma 2.5.

Lemma 2.6. Assume B →֒ L1((−∞, 0], X)∩Lp((−∞, 0], X) for some p > 1, and

there are constants Λi
C , i = 1, 2, 3, such that

‖C(t, τ) − C(s, τ)‖L (D,X) 6 Λ1
C |t− s|α, t, s ∈ [0, a], τ 6 min{t, s},

‖C(t, s) − C(t, τ)‖L (D,X) 6 Λ2
C |s− τ |α, t ∈ [0, a], s, τ ∈ (−∞, t],

sup
t∈[0,a]

(∫ ∞

0

‖C(t, t− τ)‖p′

dτ

)1/p′

6 Λ3
C , where p′ =

p

p− 1
.

Then F ∈ Cα([0, a],L (B, X)) and

‖F‖Cα([0,a],L (B,X)) 6 +(Λ1
C + Λ2

C)‖i‖L (B,L1)Λ
3
C‖i‖L (B,Lp),

where i represents the inclusion map from B into the space Lj((−∞, 0], X), j = 1, p,

and ‖i‖L (B,Lj) = ‖i‖L (B,Lj(−∞,0],X).
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The proof of Lemma 2.7 below is a straightforward estimate argument.

Lemma 2.7. Let b ∈ (0, a], u, v ∈ C α
B

(b) with u0 = v0 and assume F ∈

Cα(L (B, X)) and G ∈ Cα(L (B,D)). Then Gu ∈ Cα([0, b],D), Fu ∈ Cα([0, b], X)

and

‖Gu‖Cα([0,b],D) 6 ‖G‖Cα([0,b],L (B,D))‖u‖C α
B

(b),

‖G(u−v)‖Cα([0,b],D) 6 ‖G‖Cα([0,b],L (B,D))(b
α + 1)‖u− v‖C α

B
(b),

‖Fu‖Cα([0,b],X) 6 ‖F‖Cα([0,b],L (B,X))‖u‖C α
B

(b),

‖F(u−v)‖Cα([0,b],X) 6 ‖F‖Cα([0,b],L (B,X))(b
α + 1)‖u− v‖C α

B
(b).

In the next theorem, the main result of this work, we use all the notation intro-

duced in this section. In addition, for b ∈ (0, a], we use the notationM b = sup
s∈[0,b]

M(s)

and Kb = sup
s∈[0,b]

K(s).

Theorem 2.1. Assume the conditions in Lemmas 2.3 and 2.4 are satisfied. Sup-

pose, in addition, y ∈ C α
B

(a), F (0)ϕ ∈ (X,D)α,∞, Aϕ(0) ∈ (X,D)α,∞ and there is

δ ∈ (0, a] such that 2(ΛB + ΛC)Kδ[M δΛ2 + Λ1] < 1. Then there exists a unique

solution u(·) of (1.1)–(1.2) in Cα([0, b],D) for some 0 < b 6 a.

P r o o f. Let 0 < b 6 a be such that 2(1 + bα)2(ΛB + ΛC)Kb[M bΛ2 + Λ1] < 1.

On the space

C
α
B(ϕ, b) = {u ∈ C

α
B(b) : u0 = ϕ},

endowed with the metric d(u, v) = ‖u− v‖C α
B

(b), we define the map Γ: C α
B

(ϕ, b) →

C α
B

(ϕ, b) by (Γu)0 = ϕ and

Γu(t) = T (t)(ϕ(0) +G(0)ϕ) −Gu(t)

−

∫ t

0

AT (t− s)Gu(s) ds+

∫ t

0

T (t− s)Fu(s) ds, t ∈ [0, b].

From Lemmas 2.1 and 2.7, it is easy to see that Γu|[0,b]
∈ Cα([0, b],D). In order

to prove that Γ is a contraction on C α
B

(ϕ, b), next we show that Γ has values in

C α
B

(ϕ, b). For u ∈ C α
B

(ϕ, b), t ∈ [0, b) and h > 0 such that t+ h ∈ [0, b], we get

‖PΓu(t+ h) − PΓu(t)‖B(2.10)

= ‖(Γu)(t+h) − (Γu)t‖B

6 M b‖(Γu)h − ϕ‖B +Kb sup
s∈[0,b]

‖Γu(s+ h) − Γu(s)‖D

6 M b‖yh − ϕ‖B +M b‖(Γu− y)h‖B +Kb[|Γu|]Cα([0,b],D)h
α

6 M b[|Py |]Cα([0,b],B)h
α +M b‖(Γu− y)h‖B

+Kb[|Γu|[0,b]
|]Cα([0,b],D)h

α.
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To estimate ‖(Γu − y)h‖B, we use Lemma 2.2 with x = 0. By noting that F (0)ϕ ∈

(X,D)α,∞ we conclude that

‖(Γu− y)h‖B 6 Kb sup
s∈[0,h]

‖(Γu− y)(s)‖D

6 KbΛ2([|Gu|]Cα([0,b],D) + [|Fu|]Cα([0,b],X))h
α

+
KbC1

α,∞

α
‖F (0)ϕ‖α,∞h

α.

Using this inequality in (2.10), we find that

[|PΓu|]Cα([0,b],B) 6 M b[|Py|]Cα([0,b],B) +M bKbΛ2([|Gu|]Cα([0,b],D)(2.11)

+ [|Fu|]Cα([0,b],X)) +M bKb
C1

α,∞

α
‖F (0)ϕ‖α,∞

+Kb[|Γu|[0,b]
|]Cα([0,b],D),

which proves that Γu ∈ C α
B

(ϕ, b). Thus, Γ has values in C α
B

(ϕ, b).

Let u, v ∈ C α
B

(ϕ, b). From the inequality (2.11) and Lemmas 2.7, 2.1, 2.3 and 2.4

we infer that

[|PΓu − PΓv|]C α([0,b],B) 6 M bKbΛ2([|Gu−v|]Cα([0,b],D) + [|Fu−v|]Cα([0,b],X))

+Kb[|Γ(u − v)|]Cα([0,b],D)

6 2M bKbΛ2(b
α + 1)(ΛB + ΛC)‖u− v‖C α

B
(b)

+KbΛ1([|Gu−v |]Cα([0,b],D) + [|Fu−v|]Cα([0,b],X))

6 2M bKbΛ2(b
α + 1)(ΛB + ΛC)‖u− v‖C α

B
(b)

+ 2KbΛ1(b
α + 1)(ΛB + ΛC)‖u− v‖C α

B
(b),

which implies that

(2.12) [|PΓu − PΓv|]Cα([0,b],B) 6 2(bα + 1)(ΛB + ΛC)Kb[M bΛ2 + Λ1]‖u− v‖C α
B

(b),

and

(2.13) ‖PΓu − PΓv‖C([0,b],B) 6 2(bα + 1)(ΛB + ΛC)Kb[M bΛ2 + Λ1]b
α[|u− v|]C α

B
(b),

since PΓu(0) = PΓv(0). Now, from (2.12) and (2.13) it follows that

d(Γu,Γv) 6 2(bα + 1)2(ΛB + ΛC)Kb[M bΛ2 + Λ1]d(u, v),

which shows that Γ(·) is a contraction on C α
B

(ϕ, b) and there exists a unique fixed

point u ∈ C α
B

(ϕ, b) of Γ. Finally, Lemma 2.1 implies that u(·) is a classical solution

of (1.1)–(1.2) in Cα([0, b],D). This completes the proof. �
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The proof of the next theorem follows reasoning similar to that in the proof of

Theorem 2.1. In this result we use the notation introduced in Lemmas 2.5 and 2.6.

Theorem 2.2. Assume the conditions in Lemmas 2.5 and 2.6 are verified. Sup-

pose y ∈ C α
B

(a), F (0)ϕ ∈ (X,D)α,∞, Aϕ(0) ∈ (X,D)α,∞ and there is δ ∈ (0, a]

such that (Λ̃B + Λ̃C)Kδ[M δΛ2 + Λ1] < 1, where Λ̃B = (Λ1
B + Λ2

B)‖i‖L (B,L1) +

Λ3
B‖i‖L (B,Lp) and Λ̃C = (Λ1

C + Λ2
C)‖i‖L (B,L1) + Λ3

C‖i‖L (B,Lp). Then there exists

a unique classical solution u(·) of (1.1)–(1.2) in Cα([0, b],D) for some 0 < b 6 a.

3. Application

In this section we consider an application of our abstract results. Specifically, we

study the existence of a classical solution for the partial neutral integro-differential

system

∂

∂t

[
u(t, ξ) +

∫ t

−∞

a1(t− s)u(s, ξ) ds

]
(3.14)

=
∂2

∂ξ2
u(t, ξ) +

∫ t

−∞

a2(t− s)u(s, ξ) ds,

u(t, 0) = u(t, π) = 0,(3.15)

u(θ, ξ) = ϕ(θ, ξ), θ 6 0, ξ ∈ [0, π],(3.16)

for (t, ξ) ∈ [0, a] × [0, π], where ai ∈ C([0,∞),R).

We note that this system appears in the theory of heat conduction in fading

memory materials, see our bibliographical comments in Section 1.

To study the integro-differential system (3.14)–(3.16), we consider the Banach

space X = L2([0, π]) and the operator A : D(A) ⊂ X → X given by Ax = x′′ with

the domain D(A) = {x ∈ X : x′′ ∈ X, x(0) = x(π) = 0}. It is well known that A is

the infinitesimal generator of an analytic semigroup (T (t))t>0 on X . Furthermore,

A has a discrete spectrum with eigenvalues of the form −n2, n ∈ N, and normalized

eigenfunctions given by zn(ξ) := (2/π)1/2 sin(nξ). The set of functions {zn : n ∈ N}

is an orthonormal basis for X , T (t)x =
∞∑

n=1
e−n2t〈x, zn〉zn for x ∈ X and Ax =

−
∞∑

n=1
n2〈x, zn〉zn for x ∈ D(A). From the above, it is easy to see that ‖T (t)‖ 6 e−t,

‖AT (t)‖ 6 e−tt−1 and ‖A2T (t)‖ 6 4e−tt−2 for every t > 0.

Next, [D((−A)β)] denotes the domain of the fractional power (−A)β , β ∈ (0, 1),

of A endowed with the graph norm ‖x‖Xβ
= ‖(−A)−βx‖, D is the domain of A with

the graph norm and (X,D)β,∞ is the space introduced in Section 1. We know from

Lunardi [24] that [(−A)β ] →֒ (X,D)β,∞ for all β ∈ (0, 1).
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As a phase space we selectB = C0×L
p(̺,D). Next, Kδ andM δ are the constants

given by Kδ = 1 +
(∫ 0

−δ ̺(θ) dθ
)1/2

and M δ = sup
s∈[0,δ]

√
γ(−s), see Example 1.1.

The proof of Proposition 3.1 below follows directly from Theorem 2.1. In this

result, we say that a function u(·) is a classical solution of (3.14)–(3.16) if u(·) is a

classical solution of the associated abstract system (1.1)–(1.2). In addition, y(·) and

C α
B

(a) are as in Section 2.

Proposition 3.1. Assume there are α ∈ (0, 1) and δ ∈ [0, a] such that y ∈ C α
B

(a),∫ ∞

0 a2(s)ϕ(−s) ∈ Xα, Aϕ(0) ∈ Xα and

Kδ
(
M δ

(
2 +

1

α

)
+

(
5 +

2

α
+

4

α(1 − α)

)) 2∑

i=1

(∫ 0

−∞

|ai(−s)|
2

̺(s)
ds

)1/2

< 1.

Then there exists a classical solution u(·) of (3.14)–(3.16) in Cα([0, b],D) for some

0 6 b 6 a.

P r o o f. Let B(t, s) : B → D and C(t, s) : B → X be defined by B(t, s)ψ =

a1(t−s)ψ and C(t, s)ψ = a2(t−s)ψ, and letG,F : [0, a] → L (B, X) be the operators

given by

G(t)ψ =

∫ ∞

0

B(t, t− s)ψ(−s) ds and F (t)ψ =

∫ ∞

0

C(t, t− s)ψ(−s) ds.

It is easy to see that the assumptions in Lemmas 2.3 and 2.4 are verified with LB =

LC = 0, ΛB = (
∫ ∞

0 (|a1(−s)|
2/̺(s)) ds)1/2 and ΛC = (

∫ ∞

0 (|a2(−s)|
2/̺(s)) ds)1/2.

Now, from Lemmas 2.3 and 2.4, we obtain that G ∈ Cα([0, a],L (B,D)), F ∈

Cα([0, a],L (B, X)), ‖G‖Cα([0,a],L (B,D)) 6 2ΛB and ‖F‖Cα([0,a],L (B,X)) 6 2ΛC .

Moreover, in this case, the constants Λ1 and Λ2 in Lemmas 2.1 and 2.2 are given by

Λ1 = 5 + 2/α+ 4/(α(1 − α)) and Λ2 = 2 + 1/α.

Finally, an application of Theorem 2.1 guarantees the existence of a unique classical

solution of (3.14)–(3.16) in Cα([0, b],D). The proof is now complete. �
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