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1. Introduction

A meromorphic function means meromorphic in the whole complex plane. Given a

meromorphic function f , recall that α is a small function with respect to f if T (r, α) =

S(r, f), where S(r, f) is used to denote any quantity satisfying S(r, f) = o(T (r, f)),

where r → ∞ outside of a possible exceptional set of finite logarithmic measure.

We use the notation σ(f) to denote the order of growth of f . We assume that

the reader is familiar with standard symbols and fundamental results of Nevanlinna

theory [9], [17].

Recently, difference version of Nevanlinna theory has been established [2], [6], [7],

[8], [10], including the lemma of difference analogue of logarithmic derivative, dif-

ference analogue of the Clunie lemma and the second main theorem in differences,

which are good tools in dealing with the value distributions of difference polynomi-

als [11], [12] and with the existence and growth of solutions of complex difference
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equations [10], [13], [16]. Yang and Laine [16] considered the existence of the non-

linear differential-difference equation of the form

(1.1) fn + L(z, f) = h,

where L(z, f) is a finite sum of the product of f , derivatives of f and their shifts

f(z + cj) with small meromorphic functions as the coefficients, cj are nonzero con-

stants, h is an entire function. They obtained some results in [16]. One of them can

be stated as follows.

Theorem A [16, Theorem 2.4]. Let P (z), Q(z) be polynomials. Then the non-

linear difference equation

f(z)2 + P (z)f(z + 1) = Q(z)

has no transcendental entire solutions of finite order.

Using a proof similar to [16, Theorem 2.4], Yang and Laine pointed out that if

the degree of the differential-difference polynomial L(z, f) is less than n and h is a

polynomial, then equation (1.1) has no transcendental entire solutions of finite order.

In this paper, we mainly investigate the existence of solutions of different types of

nonlinear difference equations.

We first investigate solutions of the nonlinear difference equation of the form (1.2),

where the special case can be seen as the Fermat type functional equation. We obtain

some results that partly answer the following question.

Question. What can we know about the solutions of nonlinear difference equation

(1.2) f(z)n + q(z)f(z + c1)f(z + c2) . . . f(z + cn) = p(z),

where p(z), q(z) are polynomials, cj , j = 1, 2, . . . , n, are constants?

Remark 1. If p(z) ≡ 0, then the equation f(z)n + q(z)f(z + c1)f(z + c2) . . .

f(z+cn) = 0may have entire solutions of infinite or finite order. For example, f(z) =

sin z solves the equation f(z)n+f(z+π)f(z+2π) . . . f(z+nπ) = 0, where n = 4k+1,

k ∈ N, and f(z) = eez

solves the equation f(z)n−f(z+c1)f(z+c2) . . . f(z+cn) = 0,

where ec1 + ec2 + . . .+ ecn = n.

For the existence of transcendental entire solutions of finite order of equation (1.2),

we have the following theorem.

Theorem 1.1. Equation (1.2) has no transcendental entire solutions of finite

order provided that at least one of cj satisfies cj = 0, where p(z), q(z) are nonzero

polynomials.
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Remark 2. If cj are distinct nonzero constants and n 6 2, then equation (1.2)

may have entire solutions of finite order. If n = 1, then f(z) = ez + 1
2 solves the

equation f(z)+ f(z+ c1) = 1, where c1 = iπ. If n = 2, then f(z) = sin z is a solution

of f(z)2 + f(z + c1)f(z + c2) = 1, where c1 = 1
2π, c1 = 5

2π. But we cannot succeed

in finding a transcendental solution of the equation (1.2) when n > 3.

Next, we will consider zeros of the difference polynomial of f(z)n − f(z + c1)×

f(z + c2) . . . f(z + cn). First, we give two examples.

Example 1. If f(z) = ez, then the difference polynomial f(z)2 − f(z + iπ)×

f(z + 2iπ) = 2e2z has no zeros.

Example 2. If f(z) = ez + 1, then the difference polynomial f(z)2 − f(z + iπ)×

f(z + 2iπ) = 2e2z + 2ez has infinitely many zeros.

From the above examples, we know that if f(z) is a transcendental entire func-

tion of finite order, we cannot definitely say that the difference polynomial f(z)n −

f(z+ c1)f(z+ c2) . . . f(z+ cn) must have infinitely many zeros. But if σ(f) < 1 and

n = 3, we obtain an affirmative result, the main idea being from [3]. Using a method

similar to the proof of Theorem 1.2 below, the result can be improved to the case of

n > 3.

Theorem 1.2. Let f(z) be a transcendental entire function with σ(f) < 1. Then

f(z)3 − f(z+ c1)f(z+ c2)f(z + c3) where c1 + c2 + c3 6= 0 has infinitely many zeros.

Corollary 1.3. The equation f(z)3 − f(z + c1)f(z + c2)f(z + c3) = p(z), where

c1 + c2 + c3 6= 0 and p(z) is a nonzero polynomial, has no transcendental entire

solutions of order less than 1.

The special case of equation (1.2) with cj = c, j = 1, 2, . . . , n and p(z) = q(z) ≡ 1,

can be viewed as the Fermat type functional equation

(1.3) f(z)n + f(z + c)n = 1.

It is well known that equation (1.3) has no transcendental entire solutions when

n > 3, which can be seen in [5]. We will investigate solutions of the difference

equation

(1.4) f(z)n + f(z + c)m = a(z),

where a(z) is a rational function, which is a completion of [13, Proposition 5.1]. We

get the following theorem.
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Theorem 1.4. If n(1 − 1/m) > 1, then equation (1.4) has no transcendental

entire solutions, if m 6= n, then equation (1.4) has no transcendental entire solutions

of finite order, where n,m ∈ N, a(z) is a nonzero rational function.

Remark 3. The equation f(z)2 + f(z + c) = a(z) may admit an entire solution

of infinite order, which can be seen by setting a(z) = 2, f(z) = −1/eez

− eez

and

ec = 2.

Denote ∆f = f(z + c) − f(z) and ∆sf = ∆(∆s−1f), where s ∈ N and c is a

nonzero constant. By using a method similar to the proof of Theorem 1.4, we also

get the next result.

Theorem 1.5. The equation

(1.5) f(z)n + (∆sf)m = a(z)

has no transcendental entire solutions if n(1 − 1/m) > 1, where n,m, s ∈ N, a(z) is

a rational function.

Finally, we consider zeros of the difference polynomial f(z)n−
m
∑

j=1

aj(z)f(z+ cj)−

s(z) and obtain the following result, which improves [11, Theorem 1.1 & 1.2].

Theorem 1.6. Let f be a transcendental entire function of finite order σ, let

s(z) be a small function of f(z), and let cj be complex constants. Then the difference

polynomial f(z)n −
m
∑

j=1

aj(z)f(z+ cj)− s(z) has infinitely many zeros provided that

n > 3,
m
∑

j=1

aj(z)f(z + cj) + s(z) 6≡ 0 or n > 2, s(z) ≡ 0,
m
∑

j=1

aj(z)f(z + cj) 6≡ 0.

Thus, we can obtain the non-existence of solutions of certain difference equations.

Corollary 1.7. The equation f(z)n −
m
∑

j=1

aj(z)f(z + cj) − s(z) = P (z)eQ(z) has

no transcendental entire solutions of finite order provided that n > 3, where aj(z),

P (z), Q(z) are nonzero polynomials, unless
m
∑

j=1

aj(z)f(z + cj) + s(z) ≡ 0.
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2. Some lemmas

In order to prove Theorem 1.2, we need the following lemma.

Lemma 2.1 ([1], Lemma 3.5). Let f be a transcendental meromorphic function

of order σ(f) < 1, let h > 0 be a constant. Then there exists an ε-set E such that

f(z + c) − f(z) = cf ′(z)(1 + o(1)) as z → ∞ in C \ E,

uniformly in c for |c| 6 h.

Lemma 2.2 ([9], Theorem 3.1). Let f(z) be an entire function of order σ, and

let ν(r) be the central index of f . Then

σ = lim sup
r→∞

log+ ν(r)

log r
.

The original Clunie lemma was given in [4], and the difference versions of Clunie

lemma [6, Corollary 3.3] or [10, Theorem 2.2] will take an important part in proving

Theorem 1.4. Here, we only give the following result.

Lemma 2.3 ([6], Corollary 3.3). Let f be a transcendental meromorphic solution

with finite order of

fnP (z, f) = Q(z, f),

where P (z, f), Q(z, f) are difference polynomials in f and its shifts with small mero-

morphic coefficients aλ, λ ∈ I. If the total degree of Q(z, f) as a polynomial in f

and its shifts are 6 n, then

m(r, P (z, f)) = S(r, f)

for all r outside of a possible exceptional set with finite logarithmic measure.
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3. Proofs of Theorems

P r o o f of Theorem 1.1. If n = 1, obviously, the equation (1.2) has no transcen-

dental solutions. Now assume that n > 2 and f is a transcendental finite order entire

solution of equation (1.2). Without loss of generality, let c1 = 0. Then we have

(3.1) q(z)f(z + c2)f(z + c3) . . . f(z + cn) =
p(z) − f(z)n

f(z)
.

Thus, from [2, Theorem 2.1], we get

T (r, f(z + c2)f(z + c3) . . . f(z + cn)) 6 (n− 1)T (r, f) + S(r, f).

From the Valiron-Mohon’ko theorem [14], we know that

T
(

r,
p(z) − f(z)n

f(z)

)

= nT (r, f) + S(r, f).

Hence, we get from (3.1) that

T (r, f) = S(r, f),

which is a contradiction. �

P r o o f of Theorem 1.2. Assume that f(z)3 − f(z + c1)f(z + c2)f(z + c3) has

finitely many zeros. From the Hadamard factorization theorem we get

(3.2) f(z)3 − f(z + c1)f(z + c2)f(z + c3) = p(z).

By Lemma 2.1, we know that there exists an ε-set E, such that z → ∞ in C \ E,

f(z + c1) − f(z) = c1f
′(z)(1 + o(1)),(3.3)

f(z + c2) − f(z) = c2f
′(z)(1 + o(1)),(3.4)

f(z + c3) − f(z) = c3f
′(z)(1 + o(1)).(3.5)

By (3.2)–(3.5), we obtain

c1c2c3

(f ′(z)

f(z)

)2

(1 + o(1)) + (c1c2 + c1c3 + c2c3)
f ′(z)

f(z)
(1 + o(1))(3.6)

+ (c1 + c2 + c3) =
−p(z)

f ′(z)f(z)2
.
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From the Wiman-Valiron theory, we see that there exists a subset F ⊂ (1,∞) of

finite logarithmic measure such that for large r 6∈ [0, 1] ∪ F ∪ E, for all z satisfying

|z| = r and |f(z)| = M(r, f) we have

f ′(z)

f(z)
=
ν(r)

z
(1 + o(1)).

Thus,

c1c2c3

(ν(r)

z

)2

(1 + o(1)) + (c1c2 + c1c3 + c2c3)
ν(r)

z
(1 + o(1))(3.7)

+
p(z)z

ν(r)f(z)3
= −(c1 + c2 + c3).

Since σ(f) < 1, and f is a transcendental entire function, then we get

(3.8)

∣

∣

∣

∣

ν(r)

z

∣

∣

∣

∣

→ 0, z → ∞,

and

(3.9)
∣

∣

∣

p(z)z

ν(r)f(z)3

∣

∣

∣
=

∣

∣

∣

p(z)r

ν(r)M(r, f)3

∣

∣

∣
→ 0, z → ∞.

Thus, from (3.7)–(3.9) and c1 + c2 + c3 6= 0 we get a contradiction. This completes

the proof of Theorem 1.2. �

P r o o f of Theorem 1.4. Assume that f is a transcendental entire function of

equation (1.4), then we get

nT (r, f(z)) = mT (r, f(z + c)) + S(r, f).

Combining the above with the second main theorem yields

nT (r, f(z)) 6 N(r, f(z)) +N
(

r,
1

f(z)

)

+N
(

r,
1

f(z)n − a(z)

)

+ S(r, f)(3.10)

6 N
(

r,
1

f(z)

)

+N
(

r,
1

f(z + c)

)

+ S(r, f)

6

(

1 +
n

m

)

T (r, f(z)) + S(r, f).

If n(1− 1/m) > 1, we get a contradiction from (3.10). Thus, if n(1− 1/m) 6 1, then

for any positive integers m, n one of the following four cases should be satisfied:

Case 1. m = n = 1. It is easy to give an entire solution of this case, such that

f(z) = z + sin z is a solution of the equation f(z) + f(z + π) = 2z + π.
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Case 2. n ∈ N\{1},m = 1. We get that f(z)n+f(z+c) = a(z) has no transcenden-

tal entire solutions with finite order. Otherwise, using Lemma 2.3, m(r, f) = S(r, f)

follows, which contradicts the fact that f is an entire function.

Case 3. n = 1, m ∈ N \ {1}. We obtain the same conclusion as that derived from

Case 2. Actually, we need to consider the equation f(z)m + f(z − c) = a(z − c).

Case 4. m = n = 2. In fact, we had investigated this case in [13, Proposition 5.1]

and obtained that if the equation

(3.11) f(z)2 + f(z + c)2 = b(z)2

has a transcendental entire solution with finite order, then f(z) = 1
2 (h1(z) + h2(z)),

where h1(z + c)/h1(z) = i, h2(z + c)/h2(z) = −i and h1(z)h2(z) = b(z)2, and b(z) is

a non-vanishing small entire function of f(z) with period c.

Based on the above result, we will give more details about the properties of the

solutions of (3.11). We first consider the solutions of the first order linear difference

equation

(3.12) h(z + c) = A(z)h(z),

where A(z) is a nonzero rational function. It is well known that the Gamma function

is a solution of equation (3.12) provided that c = 1 and A(z) ≡ z. If A(z) ≡ b (a

constant), then the solutions of equation (3.12) can be written in the form

h(z) = bz/cΠ(z),

where Π(z) is a periodic function with period c.

In addition, about the growth of solutions of equation (3.12), Whittaker [15]

showed that equation (3.12) admits a meromorphic solution f such that σ(A) 6

σ(f) 6 σ(A) + 1, provided that A(z) is a finite order meromorphic function. Fur-

thermore, Chiang and Feng [2, Corollary 9.3] showed that equation (3.12) admits

a meromorphic solution of order σ(f) = σ(A) + 1, provided that A(z) is an entire

function of finite order.

From the above discussion, since f is an entire solution of equation (3.11), its

general solutions can be given by

(3.13) f(z) =
1

2

(

(−i)z/cΠ1(z) + iz/cΠ2(z)
)

for c-periodic functions Π1(z) and Π2(z) with

(3.14) Π1(z)Π2(z) = b(z)2.
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Next, we prove that

{Π1(z),Π2(z)} = ±b(z)× {e2mπiz/c+k, e−2mπiz/c−k}

for an integer m and a constant k.

From equation (3.14), a zero of Πj(z) should be a zero of b(z). We note that the

finite-order zero-free c-periodic entire function can be written in the form e2mπiz/c+k,

so that there are two small c-periodic entire functions bj(z) with b1(z)b2(z) = b(z)2,

where

Πj(z) = bj(z)e
(−1)j(2mπiz/c+k) (j = 1, 2)

holds for an integer m and a constant k. This implies that f(z) must be of order at

most one, thus b(z), as well as b1(z) and b2(z), is a constant. �

P r o o f of Theorem 1.6. If
m
∑

j=1

aj(z)f(z + cj) ≡ 0 and s(z) 6≡ 0, then the result

follows by using the second main theorem. In fact, let ψ(z) = f(z)n − s(z). Then

nT (r, f) + S(r, f)(3.15)

= T (r, ψ) 6 N(r, ψ) +N
(

r,
1

ψ

)

+N
(

r,
1

ψ + s(z)

)

+ S(r, ψ)

6 N
(

r,
1

ψ

)

+N
(

r,
1

f

)

+ S(r, f).

Since n > 3, we get that ψ(z) has infinitely many zeros.

Consider now the case
m
∑

j=1

aj(z)f(z + cj) 6≡ 0, s(z) 6≡ 0 and
m
∑

j=1

aj(z)f(z + cj) +

s(z) 6≡ 0. Assume that f(z)n −
m
∑

j=1

aj(z)f(z + cj) − s(z) has finitely many zeros.

Then from the Hadamard factorization theorem we obtain

(3.16) f(z)n −

m
∑

j=1

aj(z)f(z + cj) − s(z) = P (z)eQ(z),

where P (z) is a nonzero polynomial, Q(z) is a nonconstant polynomial. Otherwise,

if Q(z) ≡ A, then by Lemma 2.3 we have m(r, f) = S(r, f), which is a contradiction.

Differentiating (3.16) and eliminating eQ(z), we obtain

f(z)n−1
[

nf ′(z) − f(z)ϕ(z)
]

(3.17)

=

m
∑

j=1

a′j(z)f(z + cj) +

m
∑

j=1

aj(z)f
′(z + cj)

− ϕ(z)

[ m
∑

j=1

aj(z)f(z + cj) + s(z)

]

+ s′(z),
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where

(3.18) ϕ(z) =
P ′(z)

P (z)
+Q′(z).

We infer that nf ′(z) − f(z)ϕ(z) 6≡ 0. Otherwise,

(3.19) n
f ′(z)

f(z)
=
P ′(z)

P (z)
+Q′(z).

Hence,

(3.20) f(z)n = P (z)eQ(z)+B

for a constant B. If eB 6= 1, from (3.16) we get

(3.21) (1 − e−B)f(z)n −

m
∑

j=1

aj(z)f(z + cj) − s(z) = 0.

Combining the above with Lemma 2.3 and n > 3, we obtain

(3.22) m(r, f) = S(r, f),

which is a contradiction. Hence, eB = 1. From (3.21) we get
m
∑

j=1

aj(z)f(z + cj) +

s(z) ≡ 0, which is also a contradiction. Hence, nf ′(z) − f(z)ϕ(z) 6≡ 0.

Since n > 3, by using Lemma 2.3 we obtain from (3.17) that

(3.23) m(r, nf ′(z) − f(z)ϕ(z)) = S(r, f),

and

(3.24) m(r, nf(z)f ′(z) − f(z)2ϕ(z)) = S(r, f).

Since f is an entire function, combining (3.23) and (3.24) we get T (r, f) = S(r, f),

which is a contradiction.

Suppose now that n = 2 and s(z) ≡ 0. Then (3.17) assumes the form

f(z)
(

2f ′(z) − ϕ(z)f(z)
)

(3.25)

=

m
∑

j=1

a′j(z)f(z + cj) +

m
∑

j=1

aj(z)f
′(z + cj) − ϕ(z)

m
∑

j=1

aj(z)f(z + cj).
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Similarly to the case n > 3, we can conclude that ψ := 2f ′ − ϕf 6= 0. From

Lemma 2.3 we have

(3.26) T (r, ψ(z)) = S(r, f).

Moreover,

(3.27) m
(

r,
ψ

f

)

= m
(

r, 2
f ′

f
− ϕ

)

= S(r, f).

Differentiating ψ(z), we obtain

2f ′′ − ϕf ′ − ϕ′f = ψ′ =
ψ′

ψ
ψ =

ψ′

ψ
(2f ′ − ϕf),

and so

2f ′′ −
(

ϕ+ 2
ψ′

ψ

)

f ′ −
(

ϕ′ − ϕ
ψ′

ψ

)

f = 0.

This can be written as

(3.28) 2
f ′′

f
−

(

ϕ+ 2
ψ′

ψ

)f ′

f
−

(

ϕ′ − ϕ
ψ′

ψ

)

= 0.

Suppose z0 is a zero of f with multiplicity at least 2. Then, by the expression of ψ,

z0 is also a zero of ψ, thus the contribution to N(r, 1/f) is S(r, f). If z0 is a simple

zero of f and ψ(z0) 6= 0, then by virtue of (3.28) and the Taylor expansion of f(z) =

a1(z− z0)+ a2(z− z0)
2 + a3(z− z0)

3 + . . ., z0 must be a zero of ϕ+ 2ψ′/ψ− 4a2/a1,

hence z0 makes a contribution of S(r, f) to N(r, 1/f). We get

(3.29) N
(

r,
1

f

)

= S(r, f).

Hence, combining (3.26), (3.27) and (3.29), we get

(3.30) T
(

r,
ψ

f

)

= S(r, f).

From the first main theorem, (3.26), (3.30), we know that T (r, f) = S(r, f), which

is a contradiction. We have completed the proof.

Acknowledgment. The authors thank Professor K. Tohge for giving some sug-

gestions for the solutions of equation (3.11), and thank the referees for valuable

suggestions improving the paper.
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