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CONGRUENCE xk ≡ y (mod n)
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(Received December 3, 2009)

Abstract. We assign to each pair of positive integers n and k > 2 a digraph G(n, k)
whose set of vertices is H = {0, 1, . . . , n − 1} and for which there is a directed edge from
a ∈ H to b ∈ H if ak ≡ b (mod n). We investigate the structure of G(n, k). In particular,
upper bounds are given for the longest cycle in G(n, k). We find subdigraphs of G(n, k),
called fundamental constituents of G(n, k), for which all trees attached to cycle vertices are
isomorphic.
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MSC 2010 : 11A07, 11A15, 05C20, 20K01

1. Introduction

In this paper, we construct a digraph associated with the congruence xk ≡ y

(mod n). We will see that each component of this digraph contains a unique cycle.

Our main result given in Theorem 6.1 is to partition this digraph into sets of compo-

nents, called fundamental constituents, so that all trees attached to cycle vertices of

a particular fundamental constituent of the digraph are isomorphic. In Theorem 9.2

we obtain new results on the length of the longest cycle in this digraph extending

the results given in [7]. In Theorem 8.1, we obtain lower bounds for the number of

cycles of length one, while in Theorem 8.2, we count the number of isolated cycles

of length one. A major technique used in this paper is to decompose a digraph into

a product of digraphs.

This paper was supported by Institutional Research Plan nr. AV0Z 10190503 and Grant
nr. IAA 100190803 of the Academy of Sciences of the Czech Republic.
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The paper extends results given in the works [7], [10], [14], and [16], which provide

an interesting connection between number theory, graph theory, and group theory. In

the papers [10]–[13], we investigated properties of the iteration digraph representing

a dynamical system occurring in number theory. For related results also see [1].

For n > 1 let

H = {0, 1, . . . , n − 1}

and let f be a map of H into itself. The iteration digraph of f is a directed graph

whose vertices are elements of H and such that there exists exactly one directed

edge from x to f(x) for all x ∈ H . For a fixed integer k > 2 and for each x ∈ H let

f(x) be the remainder of xk modulo n, i.e.,

(1.1) f(x) ∈ H and xk ≡ f(x) (mod n).

From here on, whenever we refer to the iteration digraph of f , we assume that the

mapping f is as given in (1.1). Each pair of natural numbers n and k > 2 has a

specific iteration digraph corresponding to it.

2 6 3 5 7

4

0

1

Figure 1. The iteration digraph G(8, 2).

We identify the vertex a of H with its residue modulo n. We will also sometimes

identify the vertex 0 with the integer n. For brevity we will make statements such

as gcd(a, n) = 1, treating the vertex a as a number. Moreover, when we refer, for

instance, to the vertex ak, we identify it with the remainder f(a) ∈ H given by (1.1).

For particular values of n and k, we denote the iteration digraph of f by G(n, k),

see Figures 1–3.

Let ω(n) denote the number of distinct primes dividing n > 2 and let the prime

power factorization of n be given by

(1.2) n =

r
∏

i=1

pαi

i ,

where p1 < p2 < . . . < pr are primes and αi > 0, i.e., r = ω(n). For n = 1, we set

ω(1) = 0.

338



A component of the iteration digraph is a subdigraph which is a maximal con-

nected subdigraph of the associated nondirected graph.

The indegree of a vertex a ∈ H of G(n, k), denoted by indegn(a), is the number of

directed edges coming into a, and the outdegree of a is the number of directed edges

leaving the vertex a. We will frequently simply write indeg(a) when it is understood

that a is a vertex in G(n, k). By the definition of f , the outdegree of each vertex

of G(n, k) is equal to 1. It is obvious that G(n, k) with n vertices also has exactly

n directed edges. Thus, if bi, i = 1, 2, . . . , q, denote the indegrees of all the vertices

of G(n, k) having positive indegree, then

q
∑

i=1

bi = n.

It is clear that each component has exactly one cycle, since each vertex of the

component has outdegree 1 and the component has only a finite number of vertices.

It is also evident that cycle vertices have positive indegree. Cycles of length 1 are

called fixed points.

Note that 0 and 1 are always fixed points of G(n, k). Cycles of length t are called

t-cycles. Let At(G(n, k)) denote the number of t-cycles in G(n, k). Attached to each

cycle vertex c of G(n, k) is a tree T (c) whose root is c and whose additional vertices

are the noncycle vertices b for which bki

≡ c (mod n) for some i ∈ N = {1, 2, . . .},

but bki−1

is not congruent to a cycle vertex modulo n. Let J(n, k) be a component in

G(n, k) and let c be a cycle vertex in J(n, k). It is evident that b is a vertex in J(n, k)

if and only if bkh

≡ c (mod n) for some positive integer h. The height of a vertex b

in G(n, k) is the least nonnegative integer i such that bki

is congruent modulo n to

a cycle vertex in G(n, k). Note that cycle vertices have height equal to 0.

Further, we specify two particular subdigraphs of G(n, k). Let G1(n, k) be the

induced subdigraph of G(n, k) on the set of vertices which are coprime to n and

G2(n, k) the induced subdigraph on the remaining vertices not coprime with n.

If n > 1 we observe that G1(n, k) and G2(n, k) are disjoint, nonempty, and that

G(n, k) = G1(n, k) ∪ G2(n, k), that is, no edge goes between G1(n, k) and G2(n, k).

Since gcd(a, n) = 1 if and only if gcd(ak, n) = 1, it follows that both G1(n, k) and

G2(n, k) are unions of components of G(n, k). For example, the second component

of Figure 2 is G1(12, 2) whereas the remaining three components make up G2(12, 2).

6 5 7 11 2 8 10 3

0 1 4 9

Figure 2. The iteration digraph G(12, 2).
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It is clear that 0 is always a fixed point of G2(n, k). If n > 1, then 1 and n − 1 are

always vertices of G1(n, k). In Theorem 7.1, we show that if G2(n, k) contains a

t-cycle, then G1(n, k) also contains a t-cycle. Theorem 7.6 determines the height of

a vertex in G2(n, k).

16 22 29 35 3 9

0 13 26 1 14 27

11 20 2 32

5 8

24 33 6 15

18 21

37 7 19 28

31 34

30 36

12

4 10

25

17 23

38

Figure 3. The iteration digraph G(39, 3).

Let N(n, k, a) denote the number of incongruent solutions of the congruence

xk ≡ a (mod n).

Then obviously

(1.3) N(n, k, a) = indegn(a).

It follows from (1.3) and Theorem 2.20 in [9] that if n has the factorization given

in (1.2), then

(1.4) indegn(a) = N(n, k, a) =

r
∏

i=1

N(pαi

i , k, a) =

r
∏

i=1

indegqi
(a),

where qi = pαi

i .
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2. Properties of the Carmichael lambda-function

Before proceeding further, we need to review some properties of the Carmichael

lambda-function λ(n). Its definition is a modification of the definition of the Euler

totient function φ(n).

Definition 2.1. Let n be a positive integer. Then the Carmichael lambda-

function λ(n) is defined as follows (see [5, p. 21]):

λ(1) = 1 = φ(1),

λ(2) = 1 = φ(2),

λ(4) = 2 = φ(4),

λ(2k) = 2k−2 = 1
2φ(2k) for k > 3,

λ(pk) = (p − 1)pk−1 = φ(pk) for any odd prime p and k > 1,

λ(pk1

1 pk2

2 . . . pkr

r ) = lcm[λ(pk1

1 ), λ(pk2

2 ), . . . , λ(pkr

r )],

where p1, p2, . . . , pr are distinct primes and ki > 1 for all i ∈ {1, . . . , r}.

It immediately follows from Definition 2.1 that

λ(n) | φ(n)

for all n and that λ(n) = φ(n) if and only if n ∈ {1, 2, 4, qk, 2qk}, where q is an odd

prime and k > 1.

The following theorem generalizes the well-known Euler’s theorem which says

(see [5, p. 20]) that aφ(n) ≡ 1 (mod n) if and only if gcd(a, n) = 1. It shows that

λ(n) is the smallest possible universal order modulo n.

Theorem 2.2 (Carmichael). Let a, n ∈ N. Then

aλ(n) ≡ 1 (mod n)

if and only if gcd(a, n) = 1. Moreover, there exists an integer g such that

ordn g = λ(n),

where ordn g denotes the multiplicative order of g modulo n.

P r o o f. For a proof, see [5, p. 21]. �

3. Results on the indegree

We will need the following results concerning the indegrees of certain vertices in

G1(n, k) and G2(n, k) in order to prove our main results.
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Lemma 3.1. Let n have the factorization given in (1.2) and let a be a vertex of

positive indegree in G1(n, k). Then

indeg(a) = N(n, k, a) =

r
∏

i=1

εi gcd(λ(pαi

i ), k),

where εi = 2 if 2 | k and 8 | pαi

i , and εi = 1 otherwise.

P r o o f. This is proved in [16, pp. 231–232]. �

Lemma 3.2. Let p be a prime and let α > 1 and k > 2 be integers. Then

N(pα, k, 0) = pα−⌈α/k⌉.

P r o o f. This follows from the fact that ak ≡ 0 (mod pα) if and only if p⌈α/k⌉|a.

�

4. Digraph product

Let n = n1n2, where gcd(n1, n2) = 1. We show that we can represent G(n, k) as

a product of the two digraphs G(n1, k) and G(n2, k). By the Chinese Remainder

Theorem, we can uniquely represent each vertex a ∈ G(n, k) as the ordered pair

(a1, a2), where 0 6 a1 6 n1 − 1, 0 6 a2 6 n2 − 1, a ≡ a1 (mod n1), and a ≡ a2

(mod n2). For a = (a1, a2) define

(4.1) ak = (a1, a2)
k = (ak

1 , ak
2),

where we assume that ak, ak
1 , and ak

2 are all reduced modulo n, n1 and n2, respec-

tively.

Let G(n1, k) × G(n2, k) denote the digraph whose vertices are the ordered pairs

(a1, a2), where 0 6 a1 6 n1 − 1 and 0 6 a2 6 n2 − 1. In addition, 〈(a1, b1), (a2, b2)〉

is a directed edge of G(n1, k)×G(n2, k) if and only if a2 ≡ ak
1 (mod n1) and b2 ≡ bk

1

(mod n2) (see [4]).

From (4.1) it follows that G(n, k) is isomorphic to G(n1, k) × G(n2, k), i.e.,

G(n, k) ∼= G(n1, k) × G(n2, k)

and for simplicity we shall write further on

(4.2) G(n, k) = G(n1, k) × G(n2, k).
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If n has the factorization given in (1.2), it follows from (4.2) that

G(n, k) = G(pα1

1 , k) × G(pα2

2 , k) × . . . × G(pαr

r , k).

5. Results on cycles and components

Consider a digraph G(n, k) and let

(5.1) λ(n) = lw,

where l is the largest divisor of λ(n) relatively prime to k. We will need the following

theorems and lemmas to prove some of our major results.

Lemma 5.1. There exists a t-cycle in G1(n, k) if and only if

t = ordd k

for some factor d of l. Moreover, ordl k is the length of the longest cycle in G1(n, k).

P r o o f. Both statements are proved in [16, pp. 232–233]. �

Corollary 5.2. Every cycle in G1(n, k) is a fixed point if and only if k ≡ 1

(mod l), where l is defined as in (5.1).

Lemma 5.3. Let c1 and c2 be any two cycle vertices in G1(n, k) and let T (c1)

and T (c2) be the trees attached to c1 and c2, respectively. Then T (c1) ∼= T (c2).

P r o o f. This is proved in [16, p. 234]. �

Corollary 5.4. Let t > 1 be a fixed integer. Then any two components in

G1(n, k) containing t-cycles are isomorphic.

Lemma 5.5. The vertex c is a cycle vertex in G1(n, k) if and only if ordn c | l,

where l is defined as in (5.1). Moreover, any two vertices in the same cycle of G1(n, k)

have the same order modulo n.

P r o o f. These assertions are proved in [16, pp. 232–233]. �

By virtue of Lemma 5.5, we define the order of a cycle in G1(n, k) to be the order

of any vertex in the cycle.
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Lemma 5.6. Let n have the factorization given in (1.2) and let t be a positive

integer. Then

(5.2) At(G1(n, k)) =
1

t

[ r
∏

i=1

δi gcd(λ(pαi

i ), kt − 1) −
∑

d|t
d 6=t

dAd(G1(n, k))

]

and

(5.3) At(G(n, k)) =
1

t

[ r
∏

i=1

(δi gcd(λ(pαi

i ), kt − 1) + 1) −
∑

d|t
d 6=t

dAd(G(n, k))

]

,

where δi = 2 if 2 | kt − 1 and 8 | pαi

i , and δi = 1 otherwise.

P r o o f. Both (5.2) and (5.3) are proved in [13]. �

Lemma 5.7. If b is a noncycle vertex in G1(n, k) and c is a cycle vertex in

G1(n, k), then bc is a noncycle vertex in G1(n, k).

P r o o f. This is proved in [16, p. 234]. �

Lemma 5.8. Let c = (c1, c2) be a vertex in G(n, k) = G(n1, k)×G(n2, k), where

n = n1n2 and gcd(n1, n2) = 1. Then c is a cycle vertex in G(n, k) if and only if ci is

a cycle vertex in G(ni, k) for i = 1, 2. Moreover, if c = (c1, c2) is a vertex in a t-cycle

of G(n, k) and ci is a vertex in a ti-cycle of G(ni, k) for i = 1, 2, then t = lcm(t1, t2).

P r o o f. These assertions are proved in [13]. �

Lemma 5.9. Every vertex in G1(n, k) is a cycle vertex if and only if

gcd(λ(n), k) = 1.

Moreover, every vertex in G1(n, k) is a fixed point if and only if k ≡ 1 (mod λ(n)).

Further, every vertex in G(n, k) is a fixed point if and only if n is square-free and

k ≡ 1 (mod λ(n)).

P r o o f. The first assertion is proved in [16, p. 232]. The other assertions now

follow from Corollary 5.2 and Lemma 5.6. �

Lemma 5.10. Let b ∈ G1(n, k) and suppose that ordn b = l′w′, where l′ | l and

w′ | w for l and w as defined in (5.1). Then the height h of b is equal to the least

nonnegative integer such that w′ | kh. Furthermore, the height of any tree attached

to a cycle vertex in G1(n, k) is the least integer h1 such that w | kh1 .

P r o o f. These statements are proved in [16, pp. 234–235]. �
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Lemma 5.11. Let n = n1n2, where gcd(n1, n2) = 1. Let D(n1, k) be a union

of components of G(n1, k) and let R(n2, k) be a union of components of G(n2, k).

Then D(n1, k)×R(n2, k) is a union of components of G(n, k) = G(n1, k)×G(n2, k).

Moreover, if

R(n2, k) =

m
⋃

i=1

Ri(n2, k),

where Ri(n2, k) are distinct components of G(n2, k) for i = 1, 2, . . . , m, then

(5.4) D(n1, k) × R(n2, k) =

m
⋃

i=1

D(n1, k) × Ri(n2, k),

where the union in (5.4) is a disjoint union.

P r o o f. These assertions are proved in [13]. �

As contrasted to the algebraic and elementary methods used in this paper to

analyze the structure of G(n, k), advanced analytic techniques have also been used

in papers such as [2], [3], [6], [8], and [15] to obtain results related to the structure

of G(n, k).

In [2], the following result was proved concerning the average values of the number

of cycle vertices and heights of vertices in G1(n, k), where p denotes a prime.

Theorem 5.12 (Chou and Shparlinski). Let T0(p, k) denote the total number of

cycle vertices in G1(p, k). Let hp,k(a) denote the height of the vertex a in G1(p, k).

Let

T (p, k) =
1

p − 1

p−1
∑

a=1

hp,k(a)

and let

S0(k, N) =
1

π(N)

∑

p6N

T0(p, k) and S(k, N) =
1

π(N)

∑

p6N

T (p, k),

where π(N) denotes the number of primes not greater than N . Then for any integer

k > 2, there are positive constants C1(k) and C2(k) such that the bounds

S0 ∼ C1(k)N and S ∼ C2(k)

hold.

Theorem 5.12 generalizes Theorems 9 and 10 of [15] which treats only the case

k = 2 and makes use of the Extended Riemann Hypothesis.

345



6. Subdigraphs for which all trees attached to cycle vertices

are isomorphic

Let n have the factorization given by (1.2) and let P be the set of primes dividing n.

Let P1 ∪ P2 be a partition of the set P such that P1 ∩ P2 = ∅. Let

(6.1) m1 =
∏

p∈P1

p and m2 =
∏

p∈P2

p,

where mi = 1 if Pi = ∅. Let G∗
Pi

(n, k), i = 1, 2, be the subdigraph of G(n, k) induced

by those vertices which are multiples ofmi and which are also relatively prime to mj ,

where j = 2/i. Then G∗
P1

(n, k) and G∗
P2

(n, k) are called fundamental constituents

of G(n, k). The subdigraphs G∗
P1

(n, k) and G∗
P2

(n, k) were introduced by Wilson

in [16].

Let n = n1n2 have the factorization given in (1.2), where

(6.2) n1 =
∏

pi∈P1

pαi

i and n2 =
∏

pi∈P2

pαi

i .

Let L(n2, k) denote the subdigraph of G2(n2, k) induced by the vertices of G2(n2, k)

which are multiples of m2. Note that the only cycle vertex in L(n2, k) is the fixed

point 0. It is clear that G∗
P2

(n, k) ∼= G1(n1, k) × L(n2, k) and thus, we shall write

(6.3) G∗
P2

(n, k) = G1(n1, k) × L(n2, k).

If P1 = ∅, then n2 = n and G∗
P2

(n, k) ∼= L(n, k). If P2 = ∅, then n1 = n and

G∗
P2

(n, k) ∼= G1(n, k). Let p be a prime. Since p | ak if and only if p | a, it

follows that L(n2, k) is a single component of G(n, k). It further follows from (6.3)

and Lemma 5.11 that G∗
P1

(n, k) and G∗
P2

(n, k) are disjoint unions of components of

G(n, k). It is evident that G2(n, k) is a disjoint union of G∗
P2

(n, k) as P2 ranges over

all nonempty subsets of P .

Figure 4 shows the fundamental constituents of G(56, 2).

Let J(n, k) be a component of G(n, k) and let c be any cycle vertex in G(n, k).

Let P2 be the subset of primes in P which divide c. Since a is a vertex of J(n, k) if

and only if akh

≡ c (mod c) for some positive integer h it follows that J(n, k) is a

subdigraph of G∗
P2

(n, k).

The following theorem shows that all trees attached to cycle vertices in a funda-

mental constituent of G(n, k) are isomorphic. Its proof generalizes the method of

proof by Wilson of Theorem 4 in [16].
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13 15 27 29 41 43 55

1

3 11 17 31 39 45 53

9

5 19 23 33 37 47 51

25

7 21 35

49

28

14 42

0

20
36

48

6 22 34 50

8

24
4

52

2 26 30 54

16

12
44

40

10 18 38 46

32

G∗
∅(56, 2) = G1(56, 2)

G∗
{7}(56, 2) G∗

{2,7}(56, 2)

G∗
{2}(56, 2)

Figure 4. The four fundamental constituents of G(56, 2).

Theorem 6.1. Let n have the factorization given in (1.2) and let P be the set of

primes dividing n. Let a partition of P be given by P1 ∪ P2 such that P1 ∩ P2 = ∅.

Let c1 and c2 be two cycle vertices in G∗
P2

(n, k) and let T (c1) and T (c2) be the trees

attached to c1 and c2, respectively. Then T (c1) ∼= T (c2).

P r o o f. If P2 = ∅, then G∗
P2

(n, k) = G1(n, k), and the assertion follows from

Lemma 5.3. Next suppose that P2 = P . Then n = n2, and G∗
P2

(n, k) = L(n, k).

Since the only cycle vertex in L(n, k) is the fixed point 0, there is only one tree in

G∗
P2

(n, k), and the theorem holds trivially.

We now suppose that ∅ 6= P2 6= P . Then

G∗
P2

(n, k) = G1(n1, k) × L(n2, k),

where n1 > 1 and n2 > 1. By Lemma 5.8, we can write c1 = (d, 0), where d is a

cycle vertex in G1(n1, k) and 0 is the unique cycle vertex in L(n2, k). In particular,
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(1, 0) is a cycle vertex in G1(n1, k) × L(n2, k) and is the unique cycle vertex in its

component.

We complete the proof by showing that T ((1, 0)) ∼= T ((d, 0)). Let (u, v) be a

vertex in T ((1, 0)). Suppose that (u, v) has height h in the tree T ((1, 0)). Let

dh be the unique vertex in G1(n1, k) which is in the same cycle as d and such that

dkh

h ≡ d (mod n1), that is, dh is the cycle vertex which is h vertices before the

cycle vertex d. Note that d0 = d. We define the mapping F from T ((1, 0)) into

G1(n1, k) × L(n2, k) by

F ((u, v)) = (udh, v).

We will show that F is a digraph isomorphism from T ((1, 0)) onto T ((d, 0)).

We first demonstrate that F is a mapping from T ((1, 0)) into T ((d, 0)) that sends

vertices of height h into vertices of the same height h. If (u, v) = (1, 0), then

F ((u, v)) = (d, 0), and both the vertices (1, 0) and (d, 0) have height 0. Now suppose

that (u, v) is not a cycle vertex. Then

[F ((u, v))]k
h

= (udh, v)kh

=
(

ukh

dkh

h , vkh)

= (1 · d, 0) = (d, 0).

Moreover, if 0 6 i < h, then

(udh, v)ki

=
(

uki

dki

h , vki)

,

where either uki

or vki

is a noncycle vertex. If uki

is a noncycle vertex, then uki

dki

h

is a noncycle vertex by Lemma 5.7, since dki

h is a cycle vertex. It now follows by

Lemma 5.8 that (udh, v)ki

is a noncycle vertex. Therefore, F ((u, v)) is a vertex in

T ((d, 0)) that has height h.

We now show that F is a one-to-one mapping. Suppose that (u1, v1) and (u2, v2)

have heights h1 and h2, respectively in T ((1, 0)) and

(6.4) F ((u1, v1)) = (u1dh1
, v1) = (u2dh2

, v2) = F ((u2, v2)).

By our argument above, it then follows that F ((u1, v1)) has height h1, while

F ((u2, v2)) has height h2. If h1 6= h2, then F ((u1, v1)) 6= F ((u2, v2)), which is

a contradiction. Hence, h1 = h2 and dh1
≡ dh2

(mod n1). By (6.4), v1 ≡ v2

(mod n2). Since dh1
is a vertex in G1(n1, k), dh1

is invertible modulo n1. It now

follows from (6.4) that u1 ≡ u2 (mod n1), which implies that F is one-to-one.

We next show that F is onto. Let (u′, v′) be a vertex of height h in T ((d, 0)).

If h = 0, then (u′, v′) = (d, 0) and F ((1, 0)) = (d, 0). We now assume that h > 1.

Consider the vertex (u′d−1
h , v′) in G1(n1, k)×L2(n2, k). We claim that (u′d−1

h , v′) is
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a vertex of height h in T ((1, 0)). Since dh is a cycle vertex, d
kj

h ≡ dh (mod n1) for

some positive integer j. Then

(

d−1
h

)kj

≡
(

dkj

h

)−1
≡ d−1

h (mod n1),

and d−1
h is also a cycle vertex. Note that

(u′d−1
h , v′)kh

=
(

(u′)kh(

d−1
h

)kh

, (v′)kh)

=
(

(u′)kh(

dkh

h

)−1
, (v′)kh)

= (dd−1, 0) = (1, 0).

If 0 6 i < h, then

(u′d−1
h , v′)ki

=
(

(u′)ki(

d−1
h

)ki

, (v′)ki)

,

where either (u′)ki

or (v′)ki

is a noncycle vertex. If (u′)ki

is a noncycle vertex, then

by Lemma 5.7, (u′)ki

(d−1
h )ki

is a noncycle vertex, since (d−1
h )ki

is a cycle vertex.

Thus, (u′d−1
h , v′)ki

is a noncycle vertex, and hence (u′d−1
h , v′) is a vertex in T ((1, 0))

of height h. Now notice that

F ((u′d−1
h , v′)) = (u′d−1

h dh, v′) = (u′, v′),

which implies that F is onto.

Finally, we show that F is edge-preserving. Suppose that (u, v) 6= (1, 0) is a vertex

in T ((1, 0)) of height h > 1. Then (u, v)k is a vertex in T ((1, 0)) of height h− 1 and

F ((u, v)k) = F ((uk, vk)) = (ukdh−1, v
k) = (ukdk

h, vk) = (udh, v)k = [F ((u, v))]k.

The result now follows. �

Corollary 6.2. Let J(n, k) be a component in G(n, k) and let c1 and c2 be any

two cycle vertices in J(n, k). Then T (c1) ∼= T (c2).

P r o o f. This follows from Theorem 6.1 upon noting that J(n, k) is a subdigraph

of G∗
P2

(n, k) for some subset P2 of the set of primes dividing n. �

Corollary 6.3. Let n > 1 be an integer and let P be the set of primes dividing n.

Let P2 be a subset of P . Let t be a fixed positive integer. Then all components in

G∗
P2

(n, k) having a t-cycle are isomorphic.

Example 6.4. In Figure 4, we observe that trees attached to cycle vertices in the

same fundamental constituent of G(56, 2) are isomorphic, whereas trees attached to

cycle vertices in different fundamental constituents are not isomorphic.
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Example 6.5. From Figure 3 we can see that for the digraph G(39, 3), the

fundamental constituents G∗
∅(39, 3) and G∗

{3}(39, 3) have isomorphic nontrivial trees

attached to their cycle vertices, while the fundamental constituents G∗
{13}(39, 3) (see

the second and third components in Figure 3) and G∗
{3,13}(39, 3) (see the first com-

ponent in Figure 3) have the trivial tree attached to their cycle vertices.

7. Possible cycle lengths and heights in G2(n, k)

Theorem 7.1. If C is a t-cycle in G2(n, k), then there exists a t-cycle in G1(n, k).

P r o o f. Since G2(n, k) is the disjoint union of the fundamental constituents

G∗
P2

(n, k) of G(n, k) as P2 ranges over the nonempty subsets of P , the set of primes

dividing n, we see that C is a cycle in some fundamental constituent G∗
P2

(n, k). Then

(7.1) G∗
P2

(n, k) = G1(n1, k) × L(n2, k),

where n1 and n2 are defined as in (6.2). Let c be a vertex in the t-cycle C. Noting

that the only cycle vertex in L(n2, k) is the fixed point 0, we see by Lemma 5.8 that

we can write c = (c1, 0), where c1 is a vertex in a t1-cycle of G1(n1, k). It further

follows from Lemma 5.8 that t = t1 · 1 = t1. Now consider the vertex d = (c1, 1) in

G1(n, k) = G1(n1, k) × G1(n2, k). Since c1 is a cycle vertex in G1(n1, k) and 1 is a

fixed point in G1(n2, k), we find that d is a cycle vertex in G1(n, k). By Lemma 5.8,

we observe that d is part of a t-cycle also. �

Corollary 7.2. Every cycle in G(n, k) is a fixed point if and only if k ≡ 1 (mod l),

where l is as defined in (5.1).

P r o o f. The proof follows from Corollary 5.2 and Theorem 7.1. �

Theorem 7.3. Let n have the factorization given in (1.2). Suppose that G1(n, k)

contains a t-cycle. Then the subdigraph G2(n, k) also contains a t-cycle if and only

if there exist i ∈ {1, 2, . . . , r} and an integer d relatively prime to λ(n) such that

t = ordd k and d | λ(n/pαi

i ).

P r o o f. As noted earlier, G2(n, k) is a disjoint union of G∗
P2

(n, k) as P2 ranges

over all nonempty subsets of P . Let C be a t-cycle in G2(n, k). Then C is a t-cycle

in G∗
P2

(n, k) for some nonempty subset P2 of P . By (7.1)

G∗
P2

(n, k) ∼= G1(n1, k) × L(n2, k),
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where n1 | (n/pki

i ) for some i ∈ {1, 2, . . . , r}. Recall that the only cycle vertex

in L(n2, k) is the fixed point 0. It now follows from Lemmas 5.8, 5.1, and 5.5 that

if d is any positive integer for which d | λ(n1) and gcd(d, k) = 1, then there exists a

t-cycle in G∗
P2

(n, k) such that t = orddk. Since λ(a) | λ(b) when a | b by the property

of the Carmichael-lambda function, the result now follows. �

Example 7.4. Suppose that n has at least two distinct prime divisors. It was

shown in Remark 3.6 of [11] that if k = 2, then n = 203 = 7 · 29 is the least positive

integer n for which there exists a positive integer t such that G1(n, k) has a t-cycle,

but G2(n, k) does not have a t-cycle. In this case, G1(203, 2) has a 6-cycle, whereas

G2(203, 2) does not have a 6-cycle. When k = 3 the least such integer n is n = 115 =

5 · 23. In this instance, G1(115, 3) has a 10-cycle, while G2(115, 3) does not contain

a 10-cycle. Note that λ(115) = 44. However, 44 ∤ λ(5) = 4 and 44 ∤ λ(23) = 22.

Moreover, ord44 3 = 10, whereas ord4 3 = 2 and ord22 3 = 5.

The next corollary is a partial converse of Theorem 7.1.

Corollary 7.5. Let B(G(n, k)) denote the set of integers t such that G(n, k)

has a t-cycle. Suppose that n is a prime or a prime power. Then B(G1(n, k)) =

B(G2(n, k)) if and only if k ≡ 1 (mod l), where l is defined as in (5.1).

P r o o f. By Theorem 7.3, the only cycle in G2(n, k) is the fixed point 0. The

result now follows from Corollary 5.2. �

Theorem 7.6. Let n > 1 be as defined in (1.2) and let a ∈ {1, 2, . . . , n} be an

integer such that a ∈ G2(n, k) and

a = b

r
∏

i=1

pli
i ,

where li > 0 and gcd(b, n) = 1. For i = 1, 2, . . . , r, define mi by

mi =











0 if li = 0,

αi if 1 6 li 6 αi,

li if li > αi.

Let

n1 =

r
∏

i=1

p
αi−min(mi,αi)
i .

Then gcd(n1, a) = 1. Let l and w be as given in (5.1) and let ordn1
a = l′w′, where

l′ | l and w′ | w. Let h(a) be the least nonnegative integer j such that w′ | kj . Then
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the height of a is equal to

max
(

max
16i6r

⌈

logk

mi

li

⌉

, h(a)
)

,

where we define mi/li = 1 if mi = li = 0.

Theorem 7.7. Let n > 1 be as defined in (1.2). Let ei = n/pαi

i , i = 1, 2, . . . , r,

and let λ(ei) = liwi. Let hi be the least nonnegative integer such that

wi | khi .

Let g = max
16i6r

hi. Let h be the maximum height of any vertex in G2(n, k). Then

h = max
(

max
i

⌈logk αi⌉, g
)

.

Theorems 7.6 and 7.7 were proved for the case k = 2 in Theorems 3.10 and 3.14,

respectively, of [11]. Moreover, the proofs of Theorems 7.6 and 7.7 are completely

similar to the proofs of these theorems in [11] upon making use of Lemma 5.10 of

our present paper.

8. Results on fixed points

As we mentioned earlier, fixed points are of interest, because any digraph G(n, k)

always has fixed points including 0 and 1. On the other hand, by Corollary 7.2, there

exist digraphs G(n, k) not having t-cycles for any t > 1.

We have the following two theorems on the number of fixed points and the number

of isolated fixed points in G(n, k). Note that an isolated fixed point is a fixed point

with indegree 1.

Theorem 8.1. Let n > 1.

(i) If k is even, then A1(G(n, k)) > 2ω(n) and A1(G1(n, k)) > 1. In particular, if

k = 2, then A1(G(n, k)) = 2ω(n) and A1(G1(n, k)) = 1.

(ii) If k > 3 is odd and 2 ‖ n, then A1(G(n, k)) > 2 · 3ω(n)−1 and A1(G1(n, k)) >

2ω(n)−1. In particular, if k = 3, then we have A1(G(n, k)) = 2 · 3ω(n)−1 and

A1(G1(n, k)) = 2ω(n)−1.

(iii) If k > 3 is odd and either n is odd or 4 ‖ n, then A1(G(n, k)) > 3ω(n) and

A1(G1(n, k)) > 2ω(n). In particular, if k = 3, then A1(G(n, k)) = 3ω(n) and

A1(G1(n, k)) = 2ω(n).
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(iv) If k > 3 is odd and 8 ‖ n, then A1(G(n, k)) > 5 · 3ω(n)−1 and A1(G1(n, k)) >

4 · 2ω(n)−1. In particular, if k = 3, then A1(G(n, k)) = 5 · 3ω(n)−1 and

A1(G1(n, k)) = 4 · 2ω(n)−1.

P r o o f. The proof follows from Lemma 5.6. �

It was proved in [10] that if k = 2 then G(n, k) has a nonzero isolated fixed point

if and only if n = 2m, where m is an odd square-free integer. In this case, a is a

nonzero isolated fixed point if and only if a = m. In Theorem 8.2, we extend this

result by counting isolated fixed points in G(n, k) for any n > 1 and any k > 2.

Theorem 8.2. Let n > 1 have the factorization given in (1.2). The number of

isolated fixed points in G(n, k) is given by

r
∏

i=1

[δ(gcd(λ(pαi

i ), k)) · δi gcd(λ(pαi

i ), k − 1) + δ(αi)],

where δ(m) = 1 if m = 1 and δ(m) = 0 otherwise, and δi is defined as in Lemma 5.6.

P r o o f. Let a be an isolated fixed point in G(n, k). Then indegn(a) = 1.

By (1.4), indegn(a) = 1 if and only if indegqi
(a) = 1 for i = 1, 2, . . . , r, where

qi = pαi

i . Clearly, a is a fixed point in G(n, k) if and only if a is a fixed point in

G(qi, k) for 1 6 i 6 r. Suppose that a ∈ G1(qi, k) for some i such that 1 6 i 6 r.

Then by Lemma 3.1, indegqi
(a) = 1 if and only if εi gcd(λ(qi), k) = 1, where εi is

defined as in Lemma 3.1. By Lemma 5.6, the number of fixed points in G1(qi, k) is

equal to δi gcd(λ(qi), k − 1), where δi is defined as in Lemma 5.6.

Now suppose that a is a fixed point in G2(qi, k). This occurs if and only if

a ≡ 0 (mod qi). Note that indegqi
(0) = 1 if and only if αi = 1. The result now

follows. �

Remark 8.3. Note that by the proof of Theorem 8.2, the vertex 0 is an isolated

fixed point of G(n, k) if and only if n is square-free (see Figures 1–4).

9. Length of the longest cycle

In [7], the following theorem was proved giving an upper bound for the length of

the longest cycle in G(p, k) when p > 5 is a prime. We let L(G(n, k)) denote the

length of the longest cycle in the digraph G(n, k).
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Theorem 9.1 (Lucheta et al.). Let p > 5 be a prime. Then

L(G(p, k)) 6
p − 1

2
− 1.

Moreover, if (p − 1)/2 is also an odd prime, i.e., (p − 1)/2 is a Sophie Germain

prime, and k is a primitive root modulo (p − 1)/2, then L(G(p, k)) = (p − 1)/2 − 1.

Furthermore, if (p − 1)/2 is an odd prime and k is an odd primitive root modulo

(p − 1)/2, then G(p, k) contains two cycles of length (p − 1)/2 − 1.

Theorem 9.2 below extends Theorem 9.1 to digraphs G(n, k) for any fixed positive

integer n and an integer k > 2 which is allowed to vary. Improved bounds are also

found for L(G(n, k)), and all values of k are determined for which L(G(n, k)) 6 2

for all n.

Theorem 9.2. Let n > 1 be a fixed integer. Then we have:

(i) max
k>2

L(G(n, k)) = λ(λ(n)).

(ii) If k is a fixed integer and C is a t-cycle in G(n, k), then t | λ(λ(n)).

(iii) The digraph G(n, k) contains only cycles of length 1 (fixed points) for all k > 2

if and only if n is one of the 8 positive divisors of 24.

(iv) max
k>2

L(G(n, k)) = 2 if and only if n is one of the 136 positive divisors of 25 · 32 ·

5 · 7 · 13 = 131040 which are not divisors of 24.

(v) If n is not a divisor of 24, then max
k>2

L(G(n, k)) is an even integer.

(vi) Suppose that n > 5. If it is not the case that n is a prime of the form n = 2pi+1,

where p is an odd prime and i > 1, then

(9.1) max
k>2

L(G(n, k)) <
n

4
.

If n is a prime of the form 2pi + 1, then

(9.2) max
k>2

L(G(n, k)) = pi−1(p − 1) =
n − 1

2
−

n − 1

2p
>

n

4
.

In particular, when n is a prime such that n = 2pi + 1, then

(9.3)
n − 1

3
6 max

k>2
L(G(n, k)) 6

n − 1

2
− 1.

The upper bound in (9.3) is attained if and only if n is a prime of the form 2p+1,

i.e., p is a Sophie Germain prime, and the lower bound in (9.3) is attained when

n is a prime of the form 2 · 3i + 1, where i > 1.
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P r o o f. (i) By Lemma 5.1 and Theorem 7.1, the longest cycle in G(n, k) is equal

to ordl k, where l is the largest divisor of λ(n) relatively prime to k. Clearly,

ordl k | λ(l) | λ(λ(n)).

By Theorem 2.2, there exists a positive integer k such that gcd(k, λ(n)) = 1 and

ordλ(n) k = λ(λ(n)). The assertion now follows.

(ii) By Lemma 5.1, there exists a divisor d of λ(n) such that ordd k = t. By

Theorem 2.2 on λ, t | λ(d). It follows from the definition of λ that if m | n, then

λ(m) | λ(n). Hence,

t | λ(d) | λ(λ(n)).

(iii) We note that λ(m) = 1 if and only if m = 1 or 2. By the definition of λ(n),

we see that λ(n) = 1 or 2 if and only if n is a divisor of 24. The result now follows

from part (i).

(iv) Observe that λ(m) = 2 if and only if m = 3, 4, 6, 8, 12, or 24. Using the

definition of λ(n), the result now easily follows.

(v) It follows from the properties of λ(m) that λ(m) is even if and only if m > 3.

Our result now follows from the proof of part (iii).

(vi) First suppose that n is a prime of the form 2pi + 1. Then

max
k>2

L(G(n, k)) = λ(λ(2pi + 1)) = λ(2pi) = pi−1(p − 1)(9.4)

=
n − 1

2
−

n − 1

2p
.

The last inequality in (9.2) and the inequalities in (9.3) now follow immediately. It

is easily seen that the upper bound in (9.3) is attained exactly when n = 2p + 1,

whereas the lower bound in (9.3) is satisfied exactly when n = 2 · 3i + 1 for i > 1.

Now suppose that it is not the case that n is a prime of the form 2pi + 1. By

part (i), it suffices to show that λ(λ(n)) < n/4. We make the following observations

which derive from the definition of the Carmichael lambda-function. If m > 2 then

λ(m) < m. If 2 ‖ m or m = 4, then λ(m) 6 m/2. Noting that λ(m) is even for

m > 2, we see that if m > 4 and 4 | m, then λ(m) 6 m/4. Moreover, if m has j > 2

distinct prime divisors, then λ(m) < m/2j−1.

We now suppose further that 4 | n. Since n > 5 and λ(n) is even, we see from our

above comments that

λ(λ(n)) 6
λ(n)

2
6

n

2 · 4
=

n

8
.
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Now assume that either 2 ‖ n or both n is odd and ω(n) > 2. Since n > 5, we also

have that ω(n) > 2 if 2 ‖ n. Then λ(n) < n/2 and λ(n) is even. Hence,

λ(λ(n)) 6
λ(n)

2
<

n

2 · 2
=

n

4
.

We can now assume that n is odd and ω(n) = 1. Suppose that n = pj, where p is

an odd prime and j > 2. Then

(9.5) λ(λ(n)) = λ(λ(pj)) = λ(pj−1(p − 1)).

If p = 3 and j > 2, then

λ(λ(n)) = 2 · 3j−2 =
2n

9
<

n

4
.

Now suppose that p > 5 and j > 2. Then gcd(p, p − 1) = 1, p − 1 is even, and

λ(p − 1) is also even. From (9.5), we obtain

λ(λ(n)) = λ(pj−1(p − 1)) 6 lcm(pj−2(p − 1), λ(p − 1))(9.6)

6
1

2
pj−2(p − 1)

p − 1

2
<

pj

4
=

n

4
.

We finally assume that n is a prime. If 4 | n− 1, then λ(n − 1) 6 (n− 1)/4, since

n − 1 > 4. Hence,

λ(λ(n)) = λ(n − 1) 6
n − 1

4
<

n

4
.

For our last case, we assume that 4 ∤ n− 1. Then 2 ‖ n− 1 and ω(n − 1) = l > 3,

since n − 1 is even, n − 1 > 4, and n is not of the form 2pi + 1, where p is an odd

prime and i > 1. Then

λ(λ(n)) = λ(n − 1) 6
n − 1

2l−1
6

n − 1

4
<

n

4
.

Our result now follows. �

Remark 9.3. It is noted in [3, p. 1592] that Theorem 9.2 (i) holds.

For the next theorem we let S be the set consisting of natural numbers of the

form 2αFm1
. . . Fmj

for some α > 0 and j > 0, where Fmi
= 22mi

+ 1 are distinct

Fermat primes. If j = 0 then we set n = 2α. It is well known that n ∈ S if and only

if φ(n) = 2i for some i > 0, where φ is Euler’s totient function (see [5, pp. 34–35]).

By a celebrated theorem due to Gauss, n ∈ S for n > 3 if and only if the regular

polygon with n sides has a Euclidean construction with ruler and compass.
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Theorem 9.4. Let n > 1 be a fixed integer. Then

max
k even

L(G(n, k)) = 1

if and only if n ∈ S.

P r o o f. Suppose that n ∈ S. Since λ(n) | φ(n), it follows that λ(n) = 2i for

some i > 0. Thus if k is even, then 1 is the only divisor of λ(n) which is relatively

prime to k. It follows from Lemma 5.1 and Theorem 7.1 that the only cycles in

G(n, k) are fixed points.

Now suppose that n 6∈ S. Then there exists an odd prime p such that p | λ(n).

Clearly, there exists an even integer k such that gcd(k, p) = 1 and k /≡ 1 (mod p).

Then ordp k > 2 and the result follows from Lemma 5.1. �

It follows from Lemma 5.1 that if a ∈ G1(n, k), then the length of the cycle in the

same component as a is less than or equal to ordl k, where l is defined as in (5.1)

and depends on λ(n). The following theorem, proved in [6] using analytic methods,

gives lower bounds for ordl k, which are valid for a positive proportion of integers n.

Theorem 9.5 (Kurlberg and Pomerance).

(i) Suppose ε(x) tends to zero arbitrarily slowly as x → ∞. Then ordl k > n1/2+ε(n)

for all but oε(x) integers n 6 x.

(ii) There is a positive constant γ such that ordl k > n1/2+γ for a positive proportion

of integers n.

(iii) Assuming the Generalized Riemann Hypothesis, for each fixed ε > 0 we have

ordl k > n1−ε for all but oε(x) integers n 6 x.

The results in the paper [6] strengthen those given in [3].

As stated in Theorem 9.2 (i), L(G(n, k)) 6 λ(λ(n)). In [8], the following theorem

is proved using analytic techniques regarding the order of λ(λ(n)).

Theorem 9.6 (Martin and Pomerance). We have

λ(λ(n)) = n exp
(

−1(1 + o(1))(log log n)2 log log log n
)

as n → ∞ through a set of integers of asymptotic density 1.
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