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Abstract. In this paper, it is proved that the Fourier integral operators of order m, with
—n <m < —(n—1)/2, are bounded from three kinds of Hardy spaces associated with Herz
spaces to their corresponding Herz spaces.
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1. INTRODUCTION

Fourier integral operators have in the last 50 years become an important tool in
certain areas of analysis, and in particular in a variety of problems arising in partial
differential equations. In its basic form, the Fourier integral operator of order m is
given by

(1.1) Tf(a) = [ () f(6) e

Here f denotes the Fourier transform of f; the functions a and ® are defined as in [7].
That is, a(z,§) € STH(R™ x R, \ {0}) and it has compact and connected support
in 2. The phase ® is real-valued, homogeneous of degree 1 in £, and smooth in (z, &)
for £ # 0, on the support of a. We also assume that 0 € supp,, @ and ® satisfies the
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crucial nondegeneracy condition, that is, for & # 0,

%P
(1.2) det(axi%) £0
on the support of a.

A well known result of Hérmander in [1] state that the Fourier integral operator
T of order 0 is a bounded operator from L? to L2. In [6], A. Seeger, C.D. Sogge and
E. M. Stein showed that 7" of order —(n —1)/2 is bounded from H' to L', and then
by complex interpolation they obtained the boundedness from L? to LP of T" when
—(n—-1)/2<m <0 and |1/2—-1/p| < —m/(n — 1). Recently, Marco M. P. and
Silvia Secco proved the boundedness of T' from h?(R™) to h?(R™) in [5].

On the other aspect, some new Hardy spaces H K, associated with Herz spaces
K, are introduced by Shanzhen Lu and Dachun Yang [2], [8]. An interesting fact
shown in [8] is that H K is the localization of H' at the origin. It is easy to see that
the relation between H K, and K, is similar to the one between H' and L', and the
relation between Ki"P and K P is similar to the one between L7 and LY.

In this paper we investigate the properties of the operator T' defined by (1.1) on
Herz spaces and Hardy spaces associated to Herz spaces. To state our results, let us
introduce some definitions and facts.

Definition 1.1. Let 1 < ¢ < oo and 1/¢+1/¢' = 1. The Herz space K4(R")
consists of those functions f € LL _(R™\ {0}) for which

loc

£l =259 || fxl Lo < o0,

kez

where xj denotes the characteristic function of Cy and Cy = By \ Br—1, Br =
{z: |z] < 2F}.

The Hardy space H K, associated with Herz space K is defined by
HK,={feL": Gf € K,},

where G f is the Grand maximal function of f and ¢ > 1.

Definition 1.2. Let 0 <a<oo,0<p<oocandl<q< oo.
(i) The homogeneous Herz space KJ*P(R™) consists of those functions f € L (R™\
{0}) for which

e 1/p
llizri={ 32 2 Il ) <o

k=—o0
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(ii) The non-homogeneous Herz space K *P(R") consists of those functions f €
L (R™\ {0}) for which

o 1/p
1 ller o= {|fxBo|’zq 1Y gk |ka|’zq} < o0,
k=1

where xy is as above.

Definition 1.3. Let0<a<oo,0<p<ooand 1< qg< .
(i) The homogeneous Hardy space HKg’p(R”) associated with K(‘;’p(R”) is defined
by
HKJP(R") ={f e S"(R"): Gf € KJP(R™)}.

Moreover, we define || f|| ;7 jcor(gn) = G fll gor(rn)-
(ii) The non-homogeneous Hardy space H K "P(R™) associated with KgP(R™) is
defined by

HEGP(R") = { € S'(R"): Gf € K" (R")}.

Moreover, we define | f||gxer@ny = |G fllker@n), where Gf is the Grand
maximal function of f. Now, we can state our results as follows.

Theorem 1.1. Let 1 < q < oo and let T' be the Fourier integral operator, as in
(1.1), whose symbol a is of order m, with —n < m < —(n — 1)/2. If q satisfies

(1.3) “>24

then T, originally defined on S, extends to a bounded operator from HK, to K,
that is

ITfllk, <C-|lfllak,

Theorem 1.2. Let 0 < p < o0, 1 < ¢ < o0 and 0 < a < n(l —1/q). Let
T be the Fourier integral operator as in (1.1), whose symbol a is of order m, with
—n <m < —(n—1)/2. If q satisfies (1.3) in Theorem 1.1, then T, originally defined
on S, extends to a bounded operator on Ké”’ and K P, respectively.
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Theorem 1.3. Let 0 < p < 00, 1 < ¢ < o0 and o > n(l —1/q). Let T
be the Fourier integral operator as in (1.1), whose symbol a is of order m, with
—n—s—1<m<—(n—1)/2—s—1. If q satisfies

2(m+ s)

(1'4) mv

>2+

| =

then T, originally defined on S, extends to a bounded operator from HK, P to K et
and HK"P to KJP, respectively.

Obviously, if o = n(1-1/g) and p = 1, then we denote K¢""? by K, so Theorem 1.1
is a special case of Theorem 1.3. As concerns the proofs of Theorems 1.2 and 1.3,
we only prove the homogeneous case.

The paper is organized as follows. In the next section, we list some definitions
and lemmas which will be used throughout the paper. In Section 3 we give the
estimate of kernel. In Section 4, we present the proof of Theorem 1.1. The proofs of
Theorems 1.2 and 1.3 are given in Section 5 and we conclude the paper in Section 6.

2. DEFINITIONS AND LEMMAS

Let us first introduce some lemmas on the characterization of H K.

Definition 2.1. Let 1 < ¢ < co. A function a on R™ is called a central (1, q)-
atom if
(1) suppa C B, where B is a ball centered at the origin;
(2) llallq < [B[Y7Y
(3) [a(z)dz =0.

In [2], [8], S.Z.Lu and D. C. Yang have proved the following result.

Lemma 2.1. Let f € L'(R") and 1 < ¢ < co. Then f € HK,(R") if and only if
f can be represented as
fl) =" Nax),
l=—c0
where each a; is a central (1,q)-atom which satisfies suppa; C B(0,2!), and
—+oo

> |\i| < co. Moreover,

l=—0

1, ~inf{ 3 |)\z|},
l=—00

where the infimum is taken over all decompositions of f as above.

Now let us introduce some lemmas on the characterization of HK (‘;"p and K (‘;"p .
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Definition 2.2. Let 0 < a < oo and 1 < g < co.
(i) A function a(z) on R™ is called a central («, ¢)-atom, if
(1) suppa C B(0,r);
@) llall, < |BI-/™.
(ii) A function a(z) on R™ is called a central («, ¢)-atom of restrictive type, if
(1) suppa C B(0,7), r > 1;
(2) llally < |B|=®/™, where B(0,r) = {x € R": |z| < r}.

Lemma 2.2. Let 0 < a < 00,0 <p<ooand1l<gq<oo. Then f € I-(qa’p([R") if
and only if f can be represented as

+oo
fl@)=) " Nafz),

l=—o00

+oo

where each a; is a central («, q)-atom with support By, and . |N|P < co. More-
l=—00

over,

+oo 1/p
Il ~int (3 7))

l=—00

where the infimum is taken over all decompositions of f as above.
We have found the proof of Lemma 2.2 in [3].

Definition 2.3. Letn(1—1/¢) < a < 00, 1 < ¢ < 0o and let s be a non-negative
integer, s > |a+n(1/q—1)].
(i) A function a(x) on R™ is called a central (a, ¢, s)-atom, if it satisfies
(1) suppa C B(0,r);
(2) llally < |B|=®/™ where B(0,7) = {z € R™: |z| < r};
(3) [a(z)x’dz =0, |B| < s.
(ii) A function a(z) on R™ is called a central (a,gq,s)p-atom, if it satisfies (1)
through (3), and a(x) = 0 on some neighborhood of 0;
(iii) A function a(z) on R™ is called a central (a, g, s)-atom of restrictive type, if it
satisfies (1) with » > 1, (2) and (3).

Lemma 2.3. Let n(l —1/¢) < a < 00, 0 < p < ooand 1l < ¢ < co. Then
fe HK(;”’([R”) if and only if f can be represented as

+oo
fl@)y=Y" Nafz),

l=—c0
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+oo

where each a; is a central («, q)-atom with support By, and . |N|P < co. More-
l=—

over, =

+o0o 1/p
e ~int (3 )
l=—00
where the infimum is taken over all decompositions of f as above.
We have found the proof of Lemma 2.3 in [4].
For the nonhomogeneous spaces K7 and HK P, there are results similar to
Lemma 2.2 and Lemma 2.3. However, the central atom must be replaced by the
central atom of restrictive type.

Lemma 2.4. Let p € (0,00), ¢ € (1,00), o € [n(l —1/q), o0) and let s be
a nonnegative integer, s > |a —n(1 — 1/q)|. Then F;’q’S and F"%° are dense in
HK;;"‘?’S and HK»%* respectively, where

m
F;,q,s = {f = Z Ajaj: m € N,{a;}7., are central (o, q, s)o—atoms},
j=1

and
m 1/p ]
|f|F;,q,ssz{(Z|Aj|p) :feF;w}.
j=1

We also introduce F»%* and || f||pe-as as in the above two formulas just replacing
central (o, q, s)-atoms by central («, g, s)-atoms of restrictive type.

Lemma 2.5. Let p € (0,1], r € [p,1], g € (1,00), a € [n(1 —1/q), o) and let s
be a nonnegative integer, s > |a —n(l —1/q)|.
(i) IfT is a linear operator defined on Fg"q’s such that

S = sup{||Tal|lB,.: a is any central (a,q, s)y atom } < co

then T uniquely extends to be a bounded B,-sublinear operator from H Kg"q
to B,.
(ii) IfT is a linear operator defined on Fg%* such that

S =sup{||TallB,.: a is any central (o, q, s)p atom of restrictive type} < oo

then T' uniquely extends to a bounded B,-sublinear operator from HK "7 to B,.
Here B, is an r-quasi-Banach space and quasi-Banach spaces LP(R™), HP(R"),
K21, ngq, HEK and HKS"I with p € (0, 1) are typically p-quasi-Banach spaces.

The proofs of the above two lemmas are in [9].
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3. THE ESTIMATION OF KERNEL

By the definition of T', we see that its kernel is given by
(3.1) K(ay) = [ @000, de

As usual, we first construct an exceptional set B} for every ball B;(l < 0), which is

something like
B = {x: dist(Z., By) < 2},

where ¥, = {y: y = ®¢(z,§) for some £}, are the singular sets of 7. For every
positive integer j we choose atom vectors {¢}}, v =1,..., N(j), such that |§;-’—§§-’/| >
279/2 for different v, v/. Then for every & € S™ ! there exists a &% such that
€ —&¥| < 277/2. Observe that

N(j) ~ 200=D/2.
For B(0,2") with radius 2’ < 1 we define the “rectangles”
RY — . = —j/2 v _ .
[Rj *{ya|y_0| <c-2 i/ ,|7rj(y—0)| <é 2 J}’

where 7r}’

is the orthogonal projection in the direction £ and ¢ is a large constant
(independent of j). Obviously, |RY| ~ 27(n+1)/2 Next, the mapping

has for each ¢ a nonvanishing Jacobian, by virtue of (1.2). So we take RY to be the
inverse under ®¢, with § = £7 from the rectangle RY:

(32)  RY = {0, €) — 0] < o 2792, | (B, €0) — 0)] < 277},
Now let B = (J URY. Since @;’ is compact and ®(x,£) satisfies the crucial

2—.7'<21 v
nondegeneracy condition, R is also compact. So there exists {z;}]; C RY such

that RY C (J U(w;), where U(x;) is the neighborhood of x;. For every x € RY there
i=1
exists x;, such that x € U(x;,), while for all x € U(x;,) we have

(I)ﬁ(xagjy) = (I)i(xioag;) + (I)il’(xlvfju)(x - xio)a

where 2’ is a point on the segment between x and x;,. Because ®(z, &) satisfies the
crucial nondegeneracy condition, there exist C1, Cy such that C1 < [|Pe,(z, &) <
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Cs, and because of the relation between @;’ and RY, there exist y = D¢ (x, 5;’) € @;’
and y;, = P¢(ziy,&;) € RY. So we have

|z < faio| + ¢ [y = viol,
and because of the proposition on finite covering, for all z € RY, we have

|lz| < 121?<Xn{|$i| +c-ly—wil},

where y; = ®¢(z;,)) € @;’ Since 0 € supp,, a, we have
D¢ (24, &) = e(0,£7) + Pea(2”, &) (i — 0),

where z” is a point on the segment between x; and 0. If supp, a is a multiply
connected domain, then use finite Talor expansion. Since the mapping

De(0,-): €] =1 — %o

is smooth and the atom sphere is compact, we know Y is compact. So there exists
a const r, which is independent of [, j, such that 3y C B,. That is, for any j, v, we
have

(3.3) |®¢(0,&7) <27
So for all x € R; there exists a constant kg such that

|lz| < g&xn{dyﬂ +2" + |y —yil}

colyl+2n <e2 4 or
7]‘/24’]@0 _’_27"

(27 1,

NN N

2
2
where k1 = max{ko,r}. Then we have

Br= |J URyc (J B0,2" 272 +1)) c B(0,2"(2"? +1));

2-ig2l v 2-32!
since | < 0, we obtain
(3.4) B[ C By, 41,
where kp is a constant and is independent of [.
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We recall the atom vectors {f;’ } used above; they give an essentially uniform grid
on the atom sphere, with separation 277/2. Let

Y ={¢: [¢/|¢l - €5l <2272,

For every j we shall choose C functions x7, v =1,..., N (7), each homogeneous of
degree 0 in ¢ and supported in I'Y , with

(3.5) doxy=1 forall €#0 andall j.

So it is easy to obtain the refined Littlewood-Paley decomposition

1=To(6) + 3 x4(6) - y(¢)

j=1 v
where W;(€) = n(277€) — n(277%1€), and 5 € C,

L ¢l<1,

77(5)—{07 €l > 2

With this decomposition, we define operators T} by
v _ 21id(x, v R
(36) 15(0) = [ 00,0 flo) e,

where a}(z,€) = xj () - \f'j (€) - a(z,£). We also define the corresponding operators
T;, using symbols a;(z) = \le (&) - a(z,€). Clearly

(3.7) T; =Y T

We let K; denote the kernel of the operator 7). For y € B(0, 2!), the key estimates
we shall derive are

1/q
(3.8) / |Kj(x,y)|qu> < 0InAm=(n41)/20)  for all ke Z,
Ck

1/q
(3.9) (/ |Kj(m,y)|qdm> < 0Hm=1/2¢=N) "} 5 |y 41,
Ch
1/q ‘
</ |DZKj(x,y)|qu> < Cintmtstl=(n+1)/20)  for gl k€ 7,
Ch
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where the bound C is independent of j, k, v = (y1,...,7n) is a multi-index with

n
W= w=s+land Dy = 3. DJ'...D}",y=(Y1,---,Yn)
k=1 ly|=s+1
Because of (3.7), it suffices to derive similar estimates for the kernels of the T},

which we denote by K. By the definition of T, we see that its kernel is given by

KY(y) = [ 0000 (0,)de
From the discussion by E. M. Stein in [7], we know that
(3.12) |KY (2,y)| < €27 . 27(n=1)/24m]
X {1427 |(Pe(x, &) —y)i| + 2772 |(@e(x,€)) —y) [}V,

where (-); indicates the component in the direction ¥, and ()" denotes the orthogonal
component.
So for ¢ > 1,

([ |K;<x,y>|de)1/q

1/q
< Cir D /25m) < 0421 — o+ 272 @l ) — o) )2 dx)
Ch

< O 9i(ntD)/2m—(n1)/20) (/

<C- Qj((n+1)/2+m—(n+1)/2(I),

1/q
(14 |2])-2Vs dz)

n

if we choose —2N¢q < —n.

Because By, is compact, similarly to the consideration concerning B;' C By, 41, we
have that the mapping = — z = ®¢(,&}) projects Cj, into {z: 2k 4 2k—1 < x| <
2k 4+ 2k1 50 the mapping

w2 = (20 (Pe(w, )1, 2% (Pe(,€)))

projects Cy into Dy ; = {z: (281 42F71)20/2 < || < (25 +-2%)27}. When k > k; +1,
we know Cj, C° B, thus [®¢(z,£Y) — y| ~ |P¢(x, £F)], so we have

([ |K;<x,y>|qdw)1/q

1/q
< Coin D /24m) < [0+ 2@ — o+ 272 @, ) = o) )2 dx)
C

1/q
gng((n+1)/2+m—(n+1)/2q)(/ (1+|z|)‘2quz) ,
D

k,j
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and taking NN so large that —2N¢g < —n, we have

([ |K;<x,y>|de)1/q

C - (4 1)/24m—(n41)/20) _ (k1 4 9h=1) . 93/2)(~2N+n/q)
O . 93((n+1)/24m=1/2q=N) _o(k1+1)(~2N+n/q)

V/AN/ANV/AN

C . 9i((n+1)/24m=1/20-N),

the second inequality follows by virtue of 2¥1+1 < 2k 4 2k=1 < 9F when k >k +1.
Since N (j) ~ 27("=1/2 (3.8) and (3.9) are obtained.
A similar estimate holds for Dy K7 (z,y), once we observe that the differentiation
in y introduces factors bounded by 27. As a result, (3.10) and (3.11) are obtained.

4. BOUNDEDNESS ON HK,

Now let us present the proof of Theorem 1.1.
By Lemma 2.4 and lemma 2.5, it suffices to show that

(4.1) ITailx, < C

for all (1, ¢)-atom a; associated with the ball B(0,2') and the C' is independent of [.

To begin with, if the radius of B; exceeds 1, the estimate of (4.1) is easy, because
of our assumption that the symbol of T has compact support in the variable z: hence
there exists a Ky such that & > Ky implies T'a; = 0. So

Ko
ITaillre, = D 2"/ || Tax] Lo

k=—o0

Ko
<C- > 28 |ay|

k=—o00
Ko
< C - 2n(/a=1) Z okn/q

k=—o0

<G

the first inequality follows from the L? boundedness property already obtained by
A. Seeger in [6].
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Next, assuming that I < 0, we have

ki+1

Ko
Taill, = > 2"/ Taxellea+ Y 279 Tarxs| e
k=—o0 k=ki1+2
k1+1

< Y e ZHTaszHLq Z 2t/ d ZHT‘”X’“““

k=—o00 k=k1+2
=I+1I.

By using the Minkowski inequality, we arrive at

q 1/q
(4.2) | TjaixellL, = (/C /B Kj(z,y)ai(y) dy dx)
k 1

< /B | ( /C k |Kj<x,y>|qu)1/q|al<y)|dy

1/q
<sup( / |Kj<x,y>|de) Yl
yEB); Ch

By (3.8), (4.2) and ||a;]|1 < C we get

k1+1
II < Z obn(1=1/q) . ZHT arXk| La
k=—o00 j=1
k1+1
< Z okn(1-1/q) ZQJ(M+YL (n+1)/2<1)
k=—o0 j=1
g 07

when m satisfies m < (n+1)/2q — n.
By (3.9), (4.2) and ||a;]|1 < C, we get

Z 2kn1-1/a) ZHTaleHLq

k=k1+2

< Z 9kn(1-1/q) .z:zj(m+n—1/2q—1\7)7
k=k1+2 j=1

<C,

when we choose N such that N > max{m +n —1/2¢,n/2q}.
Because ¢ > 1, we have (n+1)/2g—n < —(n+1)/2. So by the properties of symbols
that if o < 3, a € S* implies a € S%, we know that when m < (n+1)/2¢ — n,
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the (¢, q) boundedness of the Fourier integral operators is certain. So when —n <
m < —(n —1)/2 and ¢ satisfies

we get (4.1). So Theorem 1.1 is proved.

5. BOUNDEDNESS ON K;W AND HK;W

Now, let us deal with the boundedness on K¢*P.

Suppose f € K’g’p. By Lemma 2.3, f(x) = > Nai(z), where a;(z) is a central
lez
(a, g)-atom with the support Bj, and

Z |)‘l|p < CHf”I;(gp

lez
By Definition 1.2 we have
1T f o = D 2P IT Fxal 2o
kez
=Y 253"+ > Nl Tanxel|a)?
keZ >0 1<0
P P
<C. {Zw(z |Al|||Talxk|Lq) + Z?’“‘”’(Z lAzlllTaszllw) }
kez >0 kez <0
= C(Il + .[2)

Let us first estimate ;. Using the fact that 7" maps L? into L? and the assumption
that the symbol of T' has compact support in the variable z, we have

Ko
L<C Y 2Ry Pl

k=—o0 >0
Ko
C Y 2k S n|P27ler 0<p<1
k=—o00 >0
<
Ko , p/p’
C Z 2kap( Z |)\l|p2lap/2) ( Z 27lap /2) . p> 1
k=—o0 >0 >0
<Oy M.

lez

283



To estimate I, by Holder’s inequality and the proposition of («, ¢)-atom we get

1/q
(5.1) /|al(y)|dy < </|al(y)|q dy) | By < oln—n/a—e),

By the Minkowski inequality and the above we have
1/q
(5.2) | Taixk||Le < C2—"/a=%) gup (/ |K(a:,y)|qu) .
yEB; Ck

I5 is dominated by

k1+1 P Ko 2
L= Y zkw(Zp\””Tale”Lq) + > 2k“p<Z|Az|||Tasz||Lq)

k=—o0 1<0 k=k1+2 1<0
=Ji + Jo.

For Ji, using (5.2) and (3.8) we have

k1+1 o) p »
J<C Z 2ko¢p(22j(m+n—(n+l)/2®> (Z |)\l|2l(n—n/q—a)> .

k=—o00 j=1 1<0
By condition (1.3), J1 can be controlled by

C . Z |/\l|p21p(n—n/q—a), 0<p<l,
1<0

1<

p/p’
C- ( v |)\l|p2lp(nn/qa)/2> ( v le'(nn/qa)/2> ., p>1.

1<0 1<0

As a < n(1—1/q), we obtain

J<CY NP

lez
For Js, using (5.2) and (3.9) we have
ko+1 [e%s) p V4
Jo < C Z 2kap( 2j[m+n1/2qN]) (Z |>\l|2l(nn/qa)) )
k=K1 +2 j=1 1<0
Choosing N so that N > max{n/2¢,m +n — 1/2q}, we have

C -3 |Ny|p2en—n/a=a) 0 < p <1,

1<0
J2 < p/p
C . ( 3 |)\l|p21p(n—n/q—a)/2> ( E le’(n—n/q—a)/2> . p>1.
1<0 1<0
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Since o < n(1 —1/q), it is easy to see that

T <CY NP
lez

Therefore
ITf 0 < C S NP

lez
So the boundedness on K g"p is obtained.

Now let us consider the boundedness on H Kr.

Suppose f € Hll(qa’p. By Lemma 2.3, f(z) = > Mai(x), where a;(z) is a central
lez
(a, g)-atom with the support B;, and

S < LI

lez

By Definition 1.2, we have

1T f 1o = D 2T el

kez
P
=S (4 X NliTanle
kez >0 1<0
P '3
o {2 (T nliTanaden ) + 2 (X il ) |
kez 1>0 kez 1<0
= C(Il + .[2)

Similarly to the estimate of I; in Theorem 1.2 we have I; < C Y |\|P.

1
For the estimate of Is, suppose n + s < a+n/qg < n+ s+ 1, and let 7y be a
multi-index with |y| = s + 1. we have

q 1/q
ITsaxell o = < / dx)
Ch
q 1/q
o] .
C

< C2l(5+1)~supyegl</ |D Kj(xz,y)|? dx) /|al )| dy,
Cr

Kj(z,y) - ai(y) dy

/ DK (z.y) - ai(y)y” dy

by virtue of the vanishing moment condition of the atom and the Minkowski inequal-
ity. And then using (3.10), (3.11) and (5.1), we can dominate ||T;a;Xxx||z« by

(53) ||TjaleHL‘1 < C2l(s+1+n7n/q7a)2j(s+1+m+n7(n+1)/2q)7 ke Z,

285



and
(5.4) | Tsaixe| na < C2lstitn—n/q=a)gj(s+1+mtn—1/2¢— N) k >k +1.

Now let us estimate I5. Write

ki+1 D Ky p
L= ) 2k“p(Z|Al|||Tazxk||Lq) + > 2k“p(ZIAzlllTa1Xklqu)

k——oc 1<0 femky +2 1<0
=J1 + Js.

For Ji, using (5.3) we have

ki1+1 P '4
<C Z 2kap(Zgj(s+1+m+n—(n+1>/2q>> <Z|)\l|2l<s+1+n—n/q—a)>.

k=—o00 j=1 <0
By the fact that m < (n+1)/2¢ —n — s — 1, we have

C -3 |\p2le(stitn—n/a=a) = (< p <1,
1<0

p/p’
C. (Z |)\l|p2lp(s+1+n n/q—o /2) ( Z 2lp (s+1+n—n/q— a)/2> . p> 1.

<0 1<0

Ji <

The assumption o +n/q < n+ s + 1 implies

J<CY NP

lez
For J3, using (5.4) we have
Ko o] p P
Jo < C Z 2k0{p ( Z 2j(s+1+m+n—1/2q—N)> (Z |>\l|2l(s+1+n—n/q—(y)> )
k=k1+2 j=1 1<0
Choosing N such that N > max{n/2q,s + 1+ m +n — 1/2q}, we have
C E |/\l|p21p(s+1+n—n/q—a)7 0<p<l,

i<0
Jo

N

»/p’
< Z |)\l|p2lp(s+1+n n/q—o /2) ( Z 2lp (s+1+n—n/q— a)/2> . p>1.
1<0 <0

By the assumption that o +n/g <n+ s+ 1, we get

T <CY NP

lez
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Thus we get
1T f e < Yy N

lez

so we obtain the boundedness on H K7,

6. CONCLUSIONS

In this paper, the main result shows that a classical Fourier T is bounded from
HK, to K, when the order m of T" satisfies

n—1
2

2(m—1)
n+1

—n<m< — , and >2+

Q| =

Also the boundedness from the other two kinds of Herz spaces K g’p(K 2P) and
HK{P(HK$?) to Herz spaces K*P(KJP) is obtained. A mnatural problem is that
whether the boundedness of T' from Hardy spaces associated with Herz spaces into
themselves is valid, on which we will keep an eye in the future.
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