Czechoslovak Mathematical Journal

Zamira Abdikalikova; Ryskul Oinarov; Lars-Erik Persson

Boundedness and compactness of the embedding between spaces with multiweighted
derivatives when 1 < g < p < 00

Czechoslovak Mathematical Journal, Vol. 61 (2011), No. 1, 7-26

Persistent URL: http://dml.cz/dmlcz/141515

Terms of use:

© Institute of Mathematics AS CR, 2011

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/141515
http://dml.cz

Czechoslovak Mathematical Journal, 61 (136) (2011), 7—26
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WHEN 1 <g<p<o
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LARS-ERIK PERSSON, Lulea

(Received May 6, 2009)

Abstract. We consider a new Sobolev type function space called the space with mul-
tiweighted derivatives W'z, where @ = (ag,a1,...,an), o; € R, i = 0,1,...,n, and

n—1 .
I£lw, = IDAflp + X DS (D)
1=

DEf(t) = t*f(t), D%f(t)zt“"‘%D?{lf(t), i=1,2,....n.

We establish necessary and sufficient conditions for the boundedness and compactness of
the embedding W'z — W;%, when 1 <g<p<oo,0<m<n.

Keywords: weighted function space, multiweighted derivative, embedding theorems, com-
pactness.

MSC 2010: 46E35, 46E30

1. INTRODUCTION

Let m and n be natural numbers, R be the set of real numbers, 1 < p,q¢ < oo,
n
a=(ap,1,...,0p), 0, €ER, i=0,1,....,n, |a| = > a;, I =(0,1) or I = (1,+00)
i=0
and 1/p+1/p' = 1.

Let f: I — R. We define the differential operations DL f of order i, 0 < i < n, as
follows:

Daf(t) =™ f(t), Daf(t) = t“i%Dg‘lf@), i=12...,n,



where each derivative is defined in the generalized sense (see e.g. [6]). The op-
eration DL f is called the a-multiweighted derivative of the function f of order 4,
1=0,1,...,n.

Let Wy'z = W;'5z(I) be the space of functions f: I — R, which has @-
multiweighted nth order derivatives on the interval I and for which the following

norm is finite:

n—1
I fllwy o = IDEfllp + D IDEF(L)],
=0

where || - ||, is the usual norm of the space L,(I), 1 < p < 0.
When o; =0,7=0,1,...,n — 1, and a,, =~y the space W'5 coincides with the
Lp =+

usual Kudryavtsev space Ly . = Ly (I) with the finite norm || f|
n—1 .
,2% [FO )] (see [5]).

1=

Besides W™

D,

we will consider the space W% and our aim is to obtain necessary

a3
and sufficient conditions for boundedness and compactness of the embedding

(1.1) Wpa = W/5

when 1 < g<p<oo, B=(80,61,---,08m), Bi€R,i=0,1,...,m, 0<m < n.

The embedding (1.1) has been considered in [4], but basically only sufficient con-
ditions for boundedness of the embedding (1.1) have been obtained. In [1] necessary
and sufficient conditions for boundedness and compactness of the embedding (1.1)
have been established when 1 < p < ¢ < co.

In order not to disturb our proofs of the main results in Sections 3 and 4 we
use Section 2 to present some necessary notation and auxiliary results e.g. from the
papers [4] and [7]. In Section 4 the embedding theorems from Section 3 for the spaces
W,'5(0,1) have been rewritten to the case of the spaces W'5(1, +00).

In this paper we use the following conventions: If i > j, then the sum i is

k=i
considered to be equal to zero; and the notation A < B means that A < ¢B, where

the constant ¢ > 0 may depend on unessential parameters.

2. PRELIMINARIES

In [4] the following relation between the a-multiweighted derivative and the (-
multiweighted derivative of the function f was proved:

k
(2.1) DEF(t) = > et DEf(), k=0,1,...,m,
1=0



k i
where pp; = > 5 — oj+i—k,i=0,1,...,k, kE=0,1,...,m; and the coeffi-
=0

cients cg s, % =] O(,) 1,.. fk; —1,k=0,1,...,m, are defined by the recurrent formula:
Crk =1,
k—1
Ck,0 = Ck—1,0 (Z Bi—ao—k+ 1),
j=0
k—1 i
Chkyi = Ck—1,i—1 +Ck1’i<2ﬂj —Zog—ki—k—i—l), 1=1,2,...,k—1.

=0 j=0

Moreover, in [4] it was proved that

k
(2.2) DEF(t) :Zdwt”kviD%f(t), k=0,1,...,m,
j=0

k J

where v, ;= > oy — > Bi+j—kand di 4, 0 < j < k < m, are defined analogously
i=0 i=0

as ¢k, 0 < i <k <m.

For 0 <t <z andfori,j=0,1,...,n—1 we define the following set of functions:

KH-L]' (t, $) = Ki-i—l,j (t7 z, a)

x x x
= /t t;+0tli+1 /t t;+0;i+2 .. / t;aj df,j dtj_l . dtH_l when 7 < Js
i+l

tj—1

Kit1,(t,z) = Kiyq,j(t,z,@) =1 when ¢ = j,
Kit1,(t,z) = Kiyq,j(t,z,@) =0 when ¢ > j.

By changing variables, when i < j the following properties of homogeneity of the
functions K1 ; can be established:

Kit1,5(2t, zx)
zx zx ‘ zx v
= / ti—+(’(1i+1 / t;+0§'+2 .. / t;ay df,j df,j_l - dt7;+1
zt tir1 tj—1
= [tk = 2Tk, dtk = Zd’Tk]

T T x
= / (ZTiJrl)_aH'l / (27—7;+2)_(yi+2 .. / (Z’Tj)_o{j 217 de de,1 N dTiJrl
t T Tj-1

i+1



In particular, when x = 1 and ¢t = 1, we have that

J

> (1—ag)

(2.3) Kiy1,j(2t,z) = zk=it1 Kiv1,5(t,1),
S (1-an)

Kiv1,j(2, 23) = 2= Kiv,;(1,2),

respectively.
The following integral representation of the a-multiweighted derivative of the func-
tion f € W}'; was proved in [4]:
n—1 o )
(24)  DEf(t) =Y (=1) "Kir (8, 1)DEf(1)

j=i

1
+/ " Kiy1na(t, 2)Dg f(x)de, i=0,1,...,n—1.
¢

By inserting (2.4) into (2.1) when k& = m we find that

m n—1
(2.5) DR f(t) = Z Con itHm Z(—nﬂ'*imﬂ,j@, 1)DLf(1)
1=10 Jj=1

1

m
3 it / 27 K1, (t 2) Df (2) da

=10 t

For 0 < i < j < n—1 we define:

k 3
ki’j—min{k‘: Z<k<]; Z as_k: glga’<x< Z as_f)}’
7’\ \.]

s=i+1 s=i+1

and
j+1
M; ; = max <j—s+1— Z ak>.
i<s<y
k=s+1

For convenience, we denote k; = k; ,—1, M; = M; ,—1. Note that M; > M;,; and

My = max M,;.
0<i<n—1

Furthermore, for the proof of our main result we need the fact, that for the func-
tions fs(t) =t~ * K s(t,1,@), 0 < m < s < n, their multiweighted derivative D;—B”fS
does not vanish, i.e.

(2.6) DZf,(t) #£0, Vte(0.1].

10



Indeed, let us assume the opposite, i.e. let fs(t) =t * Ky s(t,1,@), 0 <m < s <
n, be the solutions of the equation

(2.7) D%”f(t) =0, Vte(0,1].
Then they can be written as linear combinations of the fundamental solutions:
fit) =t MKy (¢,1,8), i=0,1,....m—1,

of the homogeneous equation (2.7), i.e

(28) fg(t) = Z Cit_ﬁoKl,i(ta 173)7 Vit e (07 1]7

m—1
where > 2 #0,¢;, €R,i=0,1,...,m— 1.

=0
Taking @-multiweighted derivative of order k, £k = 0,1, ..
of (2.8), we have that

.,m—1, from both parts

m—1

(2.9) DER(t) = 3 e:DE( Kyt 1,5), Vi e (0,1].

=0

Using (2.2) and taking into account that drr = 1, 0 < j < k < m, from (2.9)
for k, 0 < k < m, we obtain that

k m—1 k
(2.10)  DEf(t) =) (1) dpt™ Y eiKjri(t1,8) =Y (=1)dg je;t"™,
j=0 i=J j=0

since Kj11,(t,1,8) =1 and Kj11,:(t,1,8) =0,i=43+1,j+2,...,m— 1.
On the other hand a straightforward calculation shows that

(2.11) Difs(t) = Dg(t™* K1,5(t,1,@)) = (—=1)" Kp41,5(t, 1, @),
k=0,1,...m—1; s=mm+1,....n

Thus, from (2.10) and (2.11) we obtain that

M;r

(— ) Kiy1,5(t, 1, @) = jdkjcjtv’w

j=0
k=0,1,...m—1;s=mm+1,...,n.

11



In particular, when ¢t = 1 we get the following system of equations of order m:

k
(=1)dy jc; =0, k=0,1,...,m— 1.
=0

J

Solving this system of equations when k = 0, we have that dypoco = 0. Since
do,0 = 1, it yields that ¢y = 0. Furthermore, by successively solving the system for
k=1,2,...,m —1 (note that dj 1 # 0), we get that ¢, =0, k =0,1,...,m — 1.
However, by our assumption, cx, £ = 0,1,...,m — 1, can not be equal to zero
simultaneously. This contradiction shows that (2.6) holds.

Moreover, we need upper and lower estimates for the functions K;y1 (¢, 1) when
0<t<1land Kity1n-1(1,%) when 1 < ¢t < 00,0 < i < j <n—1. In [2] there
were obtained upper and lower estimates for the functions u;(t) = t*° Ky ;(¢, 1, —@),
i =20,1,...,n — 1. Below we give three statements about estimates for the func-
tions K;41(¢,1) and K;tq,(1,t), which follow from these results. Moreover, for
convenience we use the following equalities:

S

igmslgj (ao + Z (1- ozk)>

k=i+1
Jj+1 Jj+1
= igm;gj{ao—l—]—z—l—l— Z ap — (]—s—i—l— Z ak>}
k=i+1 k=s+1
Jj+1
=at+j—it+1- Z ap — M ;.
k=i+1
Lemma 2.1. Let 0 < i< j<n—1. Then
1
Jj—i+1— Z Otkaiyj L
Kt (1) <t k=it1 [Int|*s, te(0,1],
k
where l; ; is the number of k, k; ; +1 < k < j, such that Y, (as—1) =0, if
S:k:iJ'Jrl

kivj < j} and li,j - O, Ifk’t,j :j

Lemma 2.2. Let 0 < i < n—1. Then there exists §, 0 < § < 1, such that for any
t € (0,0] the following estimate

n—i— > ax—M,
Kivin 1(t,1) >t  #=i1

holds.

12



Lemma 2.3. Let 0 <¢ < n—1. Then

T K (1,1) < Mgl > 1,
ki—1
where [; is the number of k, i + 1 < k < k; — 1, such that Y (as — 1) = 0 when
s=k

ki >i+1,andl; =0 when k; =i+ 1.

We also recall the following Lemma by T. Ando [3]:

Lemma 2.4. Every linear integral operator, acting from Ly, to Ly, where1 < ¢ <
p < 00, is compact.

Consider the following integral operators:
1
(2.12) K;DZf(t) = thmi / " Kipq po1(t,x) D2 f(x)de, i=1g,i0+1,...,m,
t

acting from L,(0,1) to L,(0,1).

From the results in [7] we have the following:

Lemma 2.5. Let 1 < ¢ < p < oco. The integral operators (2.12) are bounded
from L,(0,1) to L4(0,1) if and only if

— n
B, = max max B}, < oo,

fo<i<mi<j<n—1 ©

where

1 1 , a(p—1)/(p—q)
(213) B'ZJ = {/0 </ |£L’7a" j+1’n,1(t,x)|p d(E>
t

t q/(p—q)
X (/ |SIL7"'iKi+1’j(S,t)|qu>
0

i (p—a)/raq
X d(/ |8Hm”"K7;+17j(S,t)|qu>} .
0

13



3. EMBEDDING THEOREMS FOR THE SPACE W;'5(0,1)

Denote 49 = min{i: 0 < < m, ¢, # 0}, where ¢, 4, ¢ = 0,1,...,m, are defined
as in (2.1).
Our main result in this paper reads:

Theorem 3.1. Let I = (0,1),1 < ¢ <p < oo and 0 < m < n. Then the following
conditions are equivalent:

i) the embedding (1.1) is bounded;
ii) the embedding (1.1) is compact;
i)

_ 1 1
(3.1) |b’|—|a|+n—m+g>max{2—),Mi0}.

Proof. First we prove that i) = ii).
Assume that i) holds, i.e., for all f € W}'; the following estimate

||f||Wq5 <l fllwn

holds. Then, by the definition of the norm in the space quF the following estimate

(3.2) 1D £y < el fllws.

holds, where ¢ > 0 does not depend on f € W}'5.
Now we take a set L of functions from W'z such that for all f € L:

(3.3) Dif1)=0, j=0,1,...,n—1.

It is obvious that L is a subset of the space W}'5. For any I € L,(0, 1) there exists
a unique function f € L as a solution of the equation DZf(¢) = F(t) with initial
condition (3.3). Therefore, due to the fact that [|f|wr_ = [[F]|,, the operator Dy
establishes an isometry between the subspace L C W' and the space L,(0,1).

Let

m
Z Cmﬂlx—om t”m’iKi+17n—1(t7 x) = F(t J?)

i=ig

Then, for all f € L, the expression (2.5) has the following form:

DZf() = [ Rt.a)D8f()de = KDR1()

14



Using this expression in (3.2), for all f € L we have that
IKDzfllq < el D5 £,

or

IKFq < el Fllp,

which means that the operator K is bounded from L, to L,. In our case 1 < ¢ <
p < 00, and, thus, by Lemma 2.4, the integral operator K is compact from L, to L.
Since the first sum in (2.5) is finite-dimensional, the expression (2.5), as an operator,
is compact from W}'; to L,. Hence, the embedding (1.1) is compact, i.e. ii) holds.

Next we prove that iii) = i). Let iii) hold. According to (2.1) for f € W)'; when
t = 1 we have that

(3.4) Z IDEf(1)] < Z |DE £ (
k=19

From (2.5) and (3.4) it follows that the embedding (1.1) is bounded whenever
1
@5)/|WMKﬁM@JWdh<w,i:ﬁmm+L”qnuj:@i+L“wn—L
0

and the integral operators (2.12) are bounded from L,(0,1) to L,(0,1).
By using Lemma 2.1 for 0 < ¢ < j < n — 1 we find that

1 q[p,m ;— max ( i ,+i_s)]

1

thmi Ky (6 1D)]TdE < |t PRSI o=t Int

+1,J
0 0

a3 dt.

The last integral converges, if, for ig < ¢ < j < m < n—1, the following conditions
hold:

um7i—ir£3<)<j<z ozk—l-z—s)—l- > 0,

k=i+1
ie.
S n
(3.6) 1Bl — & +n—m+— >zglga<xj(z ak—s)— Zak—i—n
k=i+1 k=i+1
n
= iglsaéxj(n_s_ Z Ozk>.

k=s+1

n
Since M;, > max (n —-s—= > ak) for ip < i < j < n-—1, due to (3.1) the
iS5<] k=s+1

conditions (3.6) hold for all ¢ = 0,1,...,m, j =4,i+ 1,...,n — 1, and we conclude
that (3.5) holds.

15



To prove boundedness of the integral operators (2.12) due to Lemma 2.5 we es-
timate each integral in B; ;. By using the properties (2.3) of homogeneity of the
functions K1 ;, we find that

t
(3.7)/ s Ky (5, 8)[9 ds = [s = t2, ds = tdz]
0
1
= ¢Hm.igtl (/ |Z“”"iKi+17j(tZ,t)|q dz)
0

Hm,iq+1+q i 1—ay
=1 ’“:”“ (/ |zFm i Ky (2, 1) dz)

Moreover, due to (3.5), we know that the last integral converges. By using now
the assumptions of our theorem, we find that

|B| |04|+Tl—m+—_ Zﬁk—zak-f-l—m—i—n—z— Z ak—f——

k=i+1

>M;,, >2n—j— Z Q.
k=j+1

Thus

J
. 1
k=it1 4

or

Lt qpmi+q Y, (1—ax) >0,
k=i+1

and, consequently,

K 14+qpm,itq ﬁj (1—ag)
(38) d(/ |s”m,17Ki+1’j(Svt)|q dS) =c- d(t k=i+1 )
0

(Nrrt it Z (170‘7«))

=cy-t k=it1 t,

where

1 J
c :/ |stmi Kivq j(s,1)]7ds, e1=c- (1 + qlim,i + ¢ Z (1-— ak)),
0

k=i+1
i=idg,io+1,...,m, j=di+1,....,n—1.

16



Putting (3.7) and (3.8) into (2.13), we find that

B, < {/1t(q(um,ﬁkéﬂ(l—ak))+1)q(p—q>+q(um,i+k=fz;+l<1—ak>)
0

1 , a(p—1)/(p—q) (p—q)/pq
X (/ |$_a"Kj+1,n_1(t,$)|p dx) dt}
t

{/lt(um,ﬂr > (1—a)+1/p)pa/(p—a)
0

k=it1

1 , a(p—1)/(p—q) (p—q)/pq
X (/ |£L'7a" j+1’n,1(t,$)|p dl‘) dt} .
t

Since (p—1)/p = 1/p’ we conclude that

L/ it 3 (1—an)+1/p
(3.9) By, < / £ e
0

1 , 1/p'\ rq/(P—q) (p—a)/pq
x ( / & K1 (6 2)|P dx) ) dt} .
t

Using again the properties (2.3) of homogeneity of the functions K;ii, and
Lemma 2.3, we obtain that

1 ! 1/p,
(3.10) (/ le™ " Kjp1,n—1(t, 2)” dx)
t
v N
_ tfanJrl/p (/ |x70tn j+17n71(t,t$)|p de>
1
_(yn+1/pl+ nX—:I (1_ak) 1/t , 1/p/
=t o (/ |27 K1 (1, 2)” dx)
1

“1p+ Y (- e / 7
< /P k=%:+1( k) (/ |P (Mj—1)|1nx|p L dm) )
1

j=1d0,%0+1,...,n—1.

Since

oo
’ / 1
/ P (Mj_1)|1nx|plj dz < oo when M; < =, j=idg,%0+1,...,n—1,
1 p

17



from (3.10) for small enough ¢ > 0 we have that

1 , 1/p’
(3.11) (/ |27 K1 (t,2)[P dx)
t

S (1—ak)—M; _ 1
th=i+1 [In¢|% if M; > —,
P
3 1l—ap)—1
< { pTT if M, < L,
P
> (1—ag)—1/p ) 1
th=i+1 n¢|lit/P" if M; =~
P

From (3.9) and (3.11) we get that

U (it 3 (o M, _ (r—a)/pa
(/ t(; ,,+k=2i+1(1 ag)+1/p M,)pq/(p q>|1nt|li'pq/(p*q) dt)
0

if M;>1/p,

U (o, z (1=a))pa/(p-q) \P~O)/Pq
/t dt
0

k=i+
(3.12) B!, <
if M; < 1/p,
. N B (r—a)/pq
(/ t(um L+k; (1—ax))pa/(p q)|1nt|(lf+1/p'>m/(”“” dt)
0

From (3.12) it follows that Blnj, o <i<m, i< j<n-—1, will be finite if

,u'mz+ Z 1_ak)+__M >—pa
k=i+1 rq
or
- _ 1 1
(3.13) I8l — |a| +n—m+ p > M; when M; > s
and
,Ufmz"_ Z ].—Ctk pa
k=i+1 Pq
or
_ 1 1 _1
(3.14) Bl —la|+n—m+—->— when M; < -
q p p

18



Since the left-hand sides of (3.13) and (3.14) are the same and do not depend on ¢,
7, and the quantities M; do not increase with the index i = 79,79 + 1,...,n — 1, the
quantity B, = max max B}, will be finite, if (3.1) holds. Consequently, iii)
. .. toSiSmi<j<n—1
implies i).
To complete the proof it is sufficient to prove that ii) = iii), so we assume that
ii) holds. Then the embedding (1.1) is bounded, and (3.2) holds for every f € W
Let us put fo(t) = ¢t~ K5 ,—1(¢t,1). Then DZfo(t) = 0 when ¢ € (0,1) and
Difo(1) =0,i=0,1,...,n — 2, |DZ fo(1)| = 1. Consequently, fy € W5 and
[ follwr_ = 1. Hence, (3.2) implies that

102 foll <

Due to (2.6) this yields that HDgLfqu > 0. By using (2.1), we have that

1
(3.15) /
0
n—i— i Oék—M,;

Since, due to Lemma 2.2, K11 n—1(t,1) >t k=itl ,0< i< n—1, for small
enough ¢ > 0, then

m q

> (=D em it Ky noa (1) dt < .

i=ig

i Ky e (8, 1) > t\ﬁ|*|a|+”*m*Mi, t=10,%0+ 1,...,m,

for small enough ¢ > 0. By our condition ¢, ;, # 0 and M;, > M;, ip < i < m,
this yields that when M;, > 1/p the order of the integrand in (3.15) is not less
than tlB1-1&l+n—m=M Therefore, the function t(#l-[al+n—m=Mi)a ig jntegrable in

a neighbourhood of ¢t = 0 and this is equivalent to the following condition
- 1
(316) |6|—|a|+n—m+g>Mi0.

Now let us take the function f(t) = t"~|1=¢/? where 0 < ¢ < 1. Then
n—1
D3 =TI (n=s- 3 au—Z)e-e
Jj=0 k=j+1
Consequently, fi1 € W'z By making some calculations we find that
m—1 7

D3 f1(t) H (Z B —lal +n—i-— p)t'ﬁl—lam—m—e/p.

19



Since we have finite many factors in the product, there exists €9 > 0 such that, for
each € € (eq, 1),

m—1 [
H(Zﬁk—|a|+n—i—%) £0.

i=0 “k=0
Due to the continuous embedding (1.1) it must hold that D;—a”fl € L4(0,1), but this
is possible if and only if

_ 1
Bl —|al+n—m—S+->0 forall ¢€ (e, 1).
P q
Hence, by letting ¢ — 1, we have that

— 1
(3.17) |5|—|§|+n—m+52

= =

Let M;, < 1/p. We suppose that
— _ 1 1
(3.18) IBl—la|+n—m+=—==0.
q P

We consider the following set of the functions:
1
f(t) = cEt_ao/ Kin 1t z)z" % xoc(x)z /P dz, e <e<1,
t

where ¢ is a constant and X () denotes the characteristic function of the interval

(0,¢).
Since D2f-(t) = cc(—1)"X(0,¢)(t)t /7, we have f. € Wy for all e € (0,1).
We choose a constant c. such that || fe||lwr_ = |Dg /|, = 1. Then

ce = (1 —e)t/rele=b/p,

We now prove that the set of functions f., 0 < € < 1, converges weakly to zero
when € — 0. By definition of the space W5 it follows that it is isometric to
the space L,(I) x R"™. Therefore, (W;'5)* = (Lp(I) x R")* = Ly(I) x R". Since
Dif-(1)=0,i=0,1,...,n — 1, we have, according to Holder’s inequality, for each
G = (g,a) € Ly(I) x R™

o= [ parwawal = | [ o a

<%<436dﬁm(47¢mﬂwfm
=(Aﬂamﬂ&fm.

20



Hence, it follows that (f.,G) — 0 when ¢ — 0 for all G € (W'5)*. Therefore, due
to the compactness of the embedding (1.1), the set of functions f., 0 < e < 1, when
¢ — 0 converges strongly to zero in qu—. Moreover, by using (2.1), (2.4) and (2.5),

we have that

(3.19) D%nfs(t) = Z CM,ith’iDéfs(t)

i=ip
m 1
= > (= Depthme / Kigin1(t,z)z" " xoc ()2~ /7 da.
i=io t
Now we prove that for ¢ = ig,i0 + 1,...,m and for all € € (0,1), the estimate
1 1 q
(3.20) / ghHmi / Kiv1na1(t,z)z % xo.(z)z~5/Pdz| dt < oo,
0 t
holds.
By changing variables, due to Lemma 2.3 we get that
1 1 q
(3.21) / Hm / Ki+17n_1(t, J))J?_a"_e/p dz| dt
0 t
n—1
U pmi—an—e/pHl+ 3 (1—ay) 1/ a
< / t k=it1 / zM"'_l_E/p|1nz|l"' dz| dt.
0 1

Since M;, < 1/p and M; < M,,, i =ip,i0+ 1,...,m, for all ¢ € (0,1) we have that
M;—1—¢/p<0,i=0,1,...,m. Therefore,

1/t 1/t
/ ZMim1=¢/P|In 2|l dz < / [In z
1 1

and, hence, from (3.21) it follows that

1
L dz S ¥|1Dt li’,

1 1 q
(3.22) / t“/ Kivino1(t,x)z=~5/Pdz| dt
0 t
n—1
1 (l’wn,i_a’n_e/p"l‘ > (1—04k))(1 L
<</ 4 =i+l [ln¢|% dt.
0

Moreover, according to (3.18) we have that

n—1
€ 1
Hm,i — OQp — = + E (I1-—ag)>——, Vee(0,1).
p k=i+1 q
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Consequently, the last integral in (3.22) converges and this fact yields the esti-
mate (3.20).
Further, by taking the norm in (3.19) we get that

(3.23) IDZ LI,

1 q 1/q
=c </ dt>
0
e q 1/q
=c. (/ dt) .
0

In (3.23) first we change variables t — &t in the outer integral, next we change

m

1
S (1) it / Kipinoa(t e /7xq,.(a) do
t

i=1g

m

€
Z(—l)icm,it”’“""/ Kit1n-1(t, )z /P da
t

i=1g

variables x — ex in the inter integral, and taking into account the relation (3.18),

we find that
1D f-lq = glBl=[@l4n—m+1/q-1/pp _

where

T. = (1—5)1/P</01

Due to (3.20) this yields that T, < oo for all € € (0,1). Moreover,

m

1
S (Diem ittt [ Kipynoa(tz)e /P da
t

i=1g

q 1/q
dt) |

Ty = lim T,

e—0

e[
(L1

1
Z(—l)icm7it“’“""/ Ki+17n_1(t,l‘)$_a" dx
t
1 1/q
:(/ |Dg(ta0K1,n(t,1))|‘Idt) £0,
0

m

1
Z(—l)icm,it“’””"/ Kit1p-1(ta)e™ /" da
t

i=ip
q 1/q
dt)

q 1/q
dt)

i=1g

since, according to (2.6), Dm(t*aoKl n(t,1)) # 0 for almost every ¢t € (0,1]. Con-
sequently, ||Dmf€||q 40 When € — 0, that is, f. does not converge to zero in Wm
when ¢ — 0. The contradiction obtained shows that strict inequality occurs in (3. 17)
when M, < 1/p, that is,
— 1 1
Bl =l 4 —mt = >,
q P
which together with (3.16) gives (3.1).
The proof is complete. O
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Now on the interval I = (0,1) when o, =0, k =0,1,...,n—1, a, =7, B; =0,
i=0,1,...,m—1, and B,, = v we consider the Kudryavtsev spaces Lj ., and L',

respectively. Then M;, = nax 1(n —s$—17) =n—~ —ip. Hence, Theorem 3.1
i0<s<n—
implies the following new information about the embedding between these spaces

and the spaces with multiweighted derivatives:

Corollary 3.1. Let 0 < m < nand 1 < ¢ < p < oo. Then the following
conditions are equivalent:
i) the embedding L; . — Wq’”B is bounded;
ii) the embedding Ly, — quﬁ is compact;
i) |8] —v+n—m+1/¢g>max{n -~ —io,1/p}.

Corollary 3.2. Let 0 < m < nand 1 < ¢ < p < oo. Then the following
conditions are equivalent:

i) the embedding W)'; — Ly, is bounded;
ii) the embedding WIQ— — Ly, is compact;

iii) v — @] + n —m+1/q > max{M;,,1/p}.

4. EMBEDDING THEOREMS FOR THE SPACE W}'5(1, 00)

The connection between the spaces W;'5(0,1) and W}';(1,00) can be seen by

making the change of variable x = 1/¢. In this way every functlon [ e Wis(1,00)
can be transformed into a function f(z) = f(1/z) from the space W;’Z( , ), where
a=(Qg,01,..,0p), 0 = —Qp+2—2/p,&; = —;+2,i=1,2,...,n—1, & = —p.
Moreover,

D% fllp.(1,400)

d d d P \/P
BT T f (1 ‘ dt
dt dt 1) >

+o0 1/p +o0
([ mzrora) ([
1 1
! d d d pdz\/?
—Qp — Qi —1 —Q1 —040
T a2 a—2dz f( ) x2)

/

1
/1 x—an+2_2/pix_a"‘1+2£ g2 —aof( ) P )/p
0
/

24z
d
dz dz dz
1
d - d i -
) — D2 Fll 0

.T/'a" _man—l — . xal Olof

dx dx

23



Analogously, from the space qul_i(l’ +00) we can pass to the space WmE(O, 1).
, 4
Then the embedding (1.1) is equivalent to the embedding:

W:E(O, 1) — W(TE(O, 1),
and all notions and statements for the space W;’E(O, 1) can be rewritten for the space

Ws(1, 400).
Therefore,

n
M;,= max |(n—s— E Qy,
i<s<n—1

k=s+1

n—1
2
= max (n—s— Z (—ak+2)+an—2+}—j>

i<s<n—1
k=s+1
n
2 2
= max |(—[(n—-—s— Z ag | +— ) =-M;+ -,
i<s<n—1 eyt p p

n
where M; = min (n—s— > ak),i:O,l,...,n—l.
i<s<n—1 k=s41
m—1

Since |3] = (B +2) = fo = O +2 = 2/a = —[] + 2m = 2/q and [7] =

1=
—|@| + 2n — 2/p, from the condition (3.1) we have that

[\

(4.1) |B|—|a|+n—m+1/q=|§|—|B|+2m—2n+n—m+a—a+}—j

In the case M;, = —M;, + 2/p > 1/p, this is equivalent to M;, < 1/p and
from (4.1) it follows that

_ 1 2 2
@ =B8] +m—n——+=>-M; + ~,
g p p

ie.
— 1 1
|6|—|§|+n—m+§<./\/li0 when Mi0<5.

In the case M;, < 1/p, that is M;, > 1/p, from (4.1) we get that

- 1 2 1
@l =Bl +m—n— 4= >
q p P
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ie.
— 1 1
|B|—|§|+n—m+a<]; when M, >

D=

Hence, the condition
= _ 1 1 -
1Bl —lal+n—m+ - > max{—,MiO}
q p
will be changed into the condition
- 1 (1
Bl —lal +n—m+ = < mln{}—j,/\/lio}.

Thus, from Theorem 3.1 and Corollary 3.1, Corollary 3.2, respectively, we obtain
the following results:

Theorem 4.1. Let I = (1,4+0), 1 < ¢ < p < oo and 0 < m < n. Then the
following conditions are equivalent:
i) the embedding (1.1) is bounded;
ii) the embedding (1.1) is compact;
iii) [B] — @] +n —m+1/¢ < min{M;,,1/p}.

In the space Lgﬁ(l, +00) we have that M;, = 1—~. Therefore, we get the following
results:

Corollary 4.1. Let I = (1,400), 0 < m <n and 1 < ¢ < p < oo. Then the
following conditions are equivalent:

i) the embedding Ly (I) — W(ZlE(I) is bounded;

ii) the embedding L, . (I) — W(ZlE(I) is compact;
i) |8 —v+n—m+1/¢g<min{l —~,1/p}.

Corollary 4.2. Let I = (1,+00), 0 < m < n and 1 < ¢ < p < co. Then the
following conditions are equivalent:
i) the embedding W'5(I) — Ly",(I) is bounded;
ii) the embedding W;'5(I) — Lg",(I) is compact;
iii) v — @ +n—m+1/qg < min{M,,,1/p}.
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