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Local/global uniform approximation

of real-valued continuous functions

Anthony W. Hager

Abstract. For a Tychonoff space X, C(X) is the lattice-ordered group (l-group) of
real-valued continuous functions on X, and C∗(X) is the sub-l-group of bounded
functions. A property that X might have is (AP) whenever G is a divisible sub-l-
group of C∗(X), containing the constant function 1, and separating points from
closed sets in X, then any function in C(X) can be approximated uniformly over
X by functions which are locally in G. The vector lattice version of the Stone-
Weierstrass Theorem is more-or-less equivalent to: Every compact space has AP.
It is shown here that the class of spaces with AP contains all Lindelöf spaces
and is closed under formation of topological sums. Thus, any locally compact
paracompact space has AP. A paracompact space failing AP is Roy’s completely
metrizable space ∆.

Keywords: real-valued function, Stone-Weierstrass, uniform approximation, Lin-
delöf space, locally in

Classification: Primary 41A30, 54C30, 46E05, 54D20; Secondary 54C35, 54D35,
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1. Introduction

All spaces will be Tychonoff. The basic theory of C(X) is recorded in [GJ60].
With pointwise +, ·, and partial order ≤, and resulting lattice operations ∨ and
∧, C(X) is a commutative lattice-ordered ring with identity the constant function
1. We shall barely use the multiplication here, mostly viewing C(X) as an l-group
with distinguished element 1.

(The basic theory of l-groups is recorded in [D95], and of archimedean l-groups
with “distinguished unit” in [HR77]. We will only barely need to refer to these.)

The notation G ≤ C∗(X) (or G ≤ C(X)) means G is a sub-l-group of C∗(X)
(or C(X)) containing 1.

Given G ≤ C∗(X), define locG ≤ C(X): f ∈ locG means f ∈ RX and for each
p ∈ X there are g ∈ G and an open neighborhood of U of p with [g(x) = f(x) for
each x ∈ U ].

(Since “locally continuous” implies “continuous”, locG ⊆ C(X). Let ⊗ denote
+,∨,∧. If f1, f2 ∈ locG and p ∈ X , we have gi and Ui for fi respectively, then
g1 ⊗ g2 and U1 ∩ U2 for f1 ⊗ f2 and p, showing locG is a sub-l-group of C(X).)
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Let S be a set, and let L ⊆ M ⊆ RS . If [∀m ∈ M ∀ ǫ > 0 ∃ l ∈ L with
|m(x) − l(x)| ≤ ǫ ∀x ∈ S], we say that L is uniformly dense in M , and write

L
ud

⊆ M . (Note that only rational ǫ need be considered.)
For L ⊆ RS , let L+ = {l ∈ L | 0 ≤ l}. Note that, if L ⊆ M ⊆ RS , L ≤ RS and

M ≤ RS , L+
ud

⊆ M+ implies L
ud

⊆ M .
A group (G,+) is divisible if ∀ g ∈ G ∀n ∈ N ∃ h ∈ G with nh = g. For

G ≤ C(X), this just means ∀ g ∈ G ∀ r ∈ Q, rg ∈ G. (Throughout the paper, all
assumptions “G is divisible” could be replaced by “G is a vector lattice” with no
real effect.)

Say that G ≤ C∗(X) is full if G is divisible and separates points and closed
sets of X (defined below).

Definition 1.1. The space X has the Approximation Property, AP, if, whenever

G ≤ C∗(X) is full, then locG
ud

≤ C(X).

We shall prove successively that spaces in these progressively larger classes
have AP: Compact, in fact, almost compact; both locally compact and σ-compact;
Lindelöf. And, a sum of spaces has AP iff each summand has AP.

Indeed, it is not so easy to locate spaces failing AP; Roy’s space ∆ is essentially
the only example we know, this fact due to Sola’s proof that ∆ fails a property
weaker (seemingly) than AP. See §6 here.

We record some technical preliminaries.
Suppose G ≤ C(X), and A and B are families of subsets of X (e.g., A = points,

B = closed sets). With some inconsistency in language we say G separates A and
B if

for each A ∈ A and B ∈ B with A ∩B = ∅, there is a g ∈ G(∗)

with g(A) = {0} and g(B) = {1}.

If A = B, we just say G separates A (e.g., G separates points). Since G is a
sub-l-group and 1 ∈ G, in (∗) we can change ((A, 0) and (B, 1)) to ((A, 1) and
(B, 0)) by replacing g by 1− g, and we can suppose 0 ≤ g ≤ 1 by replacing g by
(g ∧ 0)∨ 1, and we can change (B, 1) to (B, z) for any integer z by replacing g by
zg, and if G is divisible, we can change (B, 1) to (B, r) for any rational r.

Let f ∈ C(X). The set Z(f) = {x ∈ X | f(X) = 0} is called a zero-set, and
coz f = X − Z(f) a cozero-set. Zero-sets are closed, any f−1[a, b] is a zero-set,
and f−1(a, b) a cozero-set. See [GJ60].

Lemma 1.2. Let G ≤ C∗(X) and let B be a family of subsets of X .

(a) For any X , if G separates points and B, then G separates compact sets

and B.
(b) For compact X , if G separates points, then G separates zero-sets.

Proof: (a) Suppose E is compact and B ∈ B, with E ∩B = ∅. For each p ∈ E
there is a 0 ≤ gp ∈ G with [gp(p) = 2; gp(B) = {0}]. Then {{x | gp(x) > 1} |
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p ∈ E} covers E, so there is a finite I ⊆ E for which {{x | gp(x) > 1} | p ∈ I}
covers E. Then, g = 1 ∧ (

∨
I gp) has g(E) = {1} and g(B) = {0}.

(b) G separates compact sets by (a). Zero-sets are closed, and thus compact
when X is compact. �

Each X has its Čech-Stone compactification βX : Each f ∈ C∗(X) has the
unique extension βf ∈ C(βX), and extension provides an l-group isomorphism
C∗(X) ≈ C(βX) preserving 1; each f ∈ C(X) has the unique extension βf ∈
C(βX, [−∞,∞]). See [E89] and [GJ60].

In fact, for any G ≤ C(X) which separates points and closed sets of X , there
is a similarly associated unique compactification of Y G of X , called the Yosida
space of G: Each g ∈ G has the unique extension g̃ ∈ C(Y G, [−∞,∞]); with
G∗ ≡ {g ∈ G | g is bounded}, extension provides an isomorphism G∗ ≈ {g̃ | g ∈
G∗} ≤ C(Y G), and {g̃ | g ∈ G∗} separates points in Y G, and thus, if divisible,
is full in C(Y G), by 1.2. See [HR77]. Of course, Y G also can be constructed by
embedding X in a cube.

Conversely, if K is a compactification of X , then of course, C(K) separates
points of K, thus points from closed sets in K (1.2). Thus also in X , so that the
set of restrictions C(K) | X is full in C∗(X).

2. Compact and almost compact

This section is an account, for our purposes, of the Stone-Weierstrass Theorem.
What we will say is known, but it is simpler to sketch proofs than do a tedious
confusing translation to precise statements of what we need.

Theorem 2.1 ([H47, Theorem 1]). LetX be any Tychonoff space, let G ≤ C∗(X)

and suppose G is divisible. Then, G
ud

≤ C∗(X) if and only if G separates zero-sets.

Proof: Suppose G ≤ C∗(X), and G is divisible.

Suppose G
ud

≤ C∗(X) and Z0, Z1 are disjoint zero-sets. Take fi ∈ C(X) with
Z(fi) = Zi. Then f = |f0|/(|f0| + |f1|) has value i on Zi. Take g ∈ G with
|f − g| ≤ 1/3. Then g′ = 3((g ∨ 1/3) ∧ 2/3− 1/3) has value i on Zi.

Suppose G ≤ C∗(X) separates zero-sets, f ∈ C∗(X)+ and ǫ > 0 is rational.
For n ∈ N, let Un = f−1(ǫ(n−2), ǫ(n+2)) and En = f−1[ǫ(n−1), ǫ(n+1)]. Note
that X − Un and En are disjoint zero-sets. Since f is bounded, there is M with
f < M + 2, so that {Un | n ≤ M} covers X . For each n ≤ M , choose gn ∈ G
with values 0 on X − Un and ǫ(n − 1) on En, and 0 ≤ gn ≤ ǫ(n − 1). Then
g ≡

∨
n≤M gn has |f − g| ≤ 3ǫ. �

Corollary 2.2 (Stone-Weierstrass: [S48, Corollary 3, p. 174]). LetX be compact,

let G ≤ C(X) and suppose G is divisible. If G separates points then G
ud

≤ C(X).
Every compact space has AP.

Proof: Here C∗(X) = C(X). Apply 1.2 and 2.1. �
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The statement “Every compact space has AP,” implies the rest of 2.2, though
this requires an argument: Suppose divisible G ≤ C∗(X), separating points.

Then, as in §1, the set of extensions G̃ ≤ C(Y G) is full. If X is compact,

C∗(X) = C(X) and Y G = X . Assuming X has AP, locG
ud

≤ C(X). But, since
Y G = X , locG = G by [HR78, 5.2 and 5.5(a)].

X is called almost compact if |βX −X | ≤ 1, equivalently, the only compacti-
fication of X is βX . See [GJ60].

Corollary 2.3 ([H47, Theorem 4]). X is almost compact if and only if for every

full G ≤ C∗(X), G
ud

≤ C∗(X).
Every almost compact space has AP.

Proof: We use the discussion after 1.2. For G ≤ C∗(X) full, G̃
ud

≤ C(Y G)

by 2.2. If X is almost compact, Y G = βX , so G̃
ud

≤ C(βX), so G = G̃ | X
ud

≤
C(βX) | X = C∗(X). Conversely, if there is a compactification K 6= βX , then
G = C(K) | X ≤ C∗(X) is full, not uniformly dense in C∗(X). �

3. Locally compact σ-compact

This is the most novel step in analyzing AP.

Theorem 3.1. Every locally compact and σ-compact space has AP.

The proof will use some known lemmas, and an additional construction using
the Stone-Weierstrass Theorem on pieces of the space.

Lemma 3.2. The following are equivalent about X .

(a) X is locally compact and σ-compact.

(b) There is a sequence {Kn | n ∈ N} of compact sets, with Kn ⊆ intKn+1

∀n, and X =
⋃

n∈N
Kn.

(c) There is a v ∈ C∗(X) with 0 < v(x) ∀x, and [∀ ǫ > 0 ∃ compact K with

(x /∈ K ⇒ v(x) ≤ ǫ)].
(d) There is u ∈ C(X) with 0 < u(x) ∀x, and [∀ 0 < M ∃ compact K with

(x /∈ K ⇒ M ≤ u(x))].

Proof: This is a standard, and we just sketch.
(b) ⇒ (a). Obvious.
(a)⇒ (b). WriteX =

⋃
n∈N

En, with En compact. By induction: LetK1 = E1,
and given compact Kn, cover it by open sets with compact closure, take a finite
subcover with union U , and let Kn+1 = U .

(b) ⇒ (c). X is normal. By Urysohn’s Lemma, there is a vn ∈ C(X) with 0 ≤
vn ≤ 1, with value 1 on Kn, and 0 on X − intKn+1. Then v ≡

∑
2−nvn ∈ C(X)

by the Weierstrass M-test. (See [E89] if needed.)
(c) ⇒ (d). Set u ≡ 1/v.
(d) ⇒ (b). Given the u, for suitable Mn ↑ +∞, let Kn = u−1[0,Mn]. �
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In any C(X), a locally finite partition of unity is a family {fα} ⊆ C(X, [0, 1]),
with {cozfα} locally finite (meaning: Every point has a neighborhood meeting
only finitely many of the sets coz fα), and with

∑
α fα(x) = 1 ∀x (in which: ∀x,∑

α fα(x) is a finite sum, by the local finiteness).

Lemma 3.3 ([BH74, 2.1]). For any X : if {Un | n ∈ N} is a (countable) cover

of X by cozero-sets, then there is in C(X) a locally finite partition of unity

{un | n ∈ N} with coz fn ⊆ Un ∀n.

Proof of 3.1: Let u ∈ C(X) be as in 3.2(d), let Un = u−1(n − 1, n + 1) and
Vn = u−1(n − 3/2, n + 3/2). Apply 3.3 to {Un}. For any f ∈ C(X), we have
f = f · 1 = f ·

∑
un =

∑
(fun).

Let C ≤ C∗(X) be full. For any K ⊆ X , G | K ≤ C∗(K) is full, thus separates

points of K. For each n, Un is compact, and so G | Un

ud

≤ C(Un) by 2.2.
Let f ∈ C(X)+, and let ǫ > 0 be rational. For each n, take gn ∈ G with

|fun − gn| ≤ ǫ on Un. Let Dn = Un −Un, and by continuity of the functions and
compactness of Dn there is an open Wn with Dn ⊆ Wn ⊆ Vn such that fun ≤ ǫ
and un ≤ 2ǫ on Wn.

Now, Un is compact, so sup{(fun)(x) | x ∈ Un} ≡ sn < +∞. Using 1.2, take
hn ∈ G with values ≥ sn on Un, and 0 on X−(Un∪Wn). Then kn ≡ gn∧hn ∈ G.
We have |fun − kn| ≤ 2ǫ on all of X , and we have coz kn ⊆ cozun ∪ Wn ⊆
Un ∪Wn ⊆ Vn.

If Vi∩Vj 6= ∅, then |i−j| ≤ 2, so {cozkn} is locally finite, so l ≡
∑

kn ∈ C(X).
Since on Vn, we have l =

∑
{ki | n− 2 ≤ i ≤ n+ 2}, we have l ∈ locG.

A little calculation shows |f − l| ≤ 6ǫ on all of X . �

4. Lindelöf

Here is the next enlargement of the class AP.

Theorem 4.1. Every Lindelöf space has AP.

The proof of this uses 3.1, the following known items, and some simple further
argument.

Lemma 4.2. Suppose X ⊆ Y . Each of the following implies the next.

(a) X is Lindelöf.

(b) X is z-embedded in Y : For each zero-set Z of X , there is a zero set Z ′ of

Y with Z = Z ′ ∩X .

(c) ∀ f ∈ C(X) ∀ ǫ > 0 ∃ a cozero-set V of Y with X ⊆ V , and ∃h ∈ C(V )
with |f(x)− h(x)| ≤ ǫ ∀x ∈ X .

(a) ⇒ (b) first appeared in [HJ61, 5.3], and is attributed to M. Jerison; there
is also a proof in [BH74, 4.1].

(b) ⇒ (c), assuming X dense in Y , first appears in [H69, 3.6]; the density is
removed, and the proof cleaned up, in [BH74, 2.2]. This latter proof identifies
and invokes 3.3.
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Proof of 4.1: Suppose X is Lindelöf, G ≤ C∗(X) is full, and let Y = Y G be

the Yosida space of G (discussed in §1), so that G ≈ G̃ ≤ C(Y ), with G̃ ≤ C(Y )
full (by 1.2).

Let V be a cozero-set of Y with V ⊇ X . Then, G̃ | V ≤ C∗(V ) is full, and V

is locally compact and σ-compact, so 3.1 shows loc(G̃ | V )
ud

≤ C(V ). Note that

k ∈ loc(G̃|V ) implies k | X ∈ locG.
Take f ∈ C(X) and rational ǫ > 0. Apply 4.2 to find V as above and h ∈ C(V )

with |f − h| ≤ ǫ on X . Apply the previous paragraph to find k ∈ loc(G̃ | V ) with
|h− k| ≤ ǫ on V . We then have |f − k| ≤ 2ǫ on X , and k | X ∈ locG.

Thus locG
ud

⊆ C(X). �

5. Sums

Given {Xi | i ∈ I} a set of spaces, the sum (or coproduct)
∑

I Xi is the disjoint
union, in which U is open if and only if for each i, U ∩ Xi is open in Xi. We
enlarge further the class AP.

Theorem 5.1.
∑

I Xi has AP if and only if each Xi has AP.

Proof: Suppose each Xi has AP, let X =
∑

Xi and suppose G ≤ C∗(X) is full.
Let Gi = G | Xi (the set of restrictions). It is easy to see that Gi ≤ C∗(Xi) is

full, so locGi

ud

≤ C(Xi). Take f ∈ C(X) and rational ǫ > 0. So f | Xi ∈ C(Xi),
and there is gi ∈ locG with |f − gi| ≤ ǫ on Xi. Define g ∈ C(X) as g(x) = gi(x)
when x ∈ Xi. Evidently, g ∈ locG, and |f − g| ≤ ǫ on all of X .

For the converse, it suffices to show that if X has AP and U is clopen in
X , then U has AP. So, suppose we have such X and U , and G ≤ C∗(U) is
full. Let H = {h ∈ C∗(X)|h|U ∈ G}. Because U is clopen, H ≤ C∗(X) full

and locH = {f ∈ C(X)|f |U ∈ locG}. Thus, locH
ud

≤ C(X), and this implies

locG
ud

≤ C(U). �

Corollary 5.2. Any locally compact paracompact space has AP.

Proof: Such a space is the sum of locally compact σ-compact spaces, by [E89,
p. 308]. Apply 3.1 and 5.1. �

In 5.2, “locally compact” cannot be dropped, because of Example 6.3. I do
not know if “paracompact” can be dropped, but strongly doubt it; see comments
in §7.

6. One example

We explain why Roy’s space ∆ [R68] fails AP, courtesy of M. Sola [S87]. This
is essentially the only example we know of a space failing AP. (Of course, any
space with ∆ as a summand will fail AP, by 5.1.)
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Let K be a compactification of X . Set C[K,X ] =
⋃
{C(V )|X |V is open in

K and V ⊇ X}. Note that C[βX,X ] = C(X) (because f ∈ C(X) extends to
βf ∈ C(βX, [−∞,+∞]), so f ∈ C(V ) | X for V = βf−1(−∞,+∞)).

We say that H ≤ C(X) is uniformly complete if H is closed in C(X) under
uniform convergence of sequences. Of course, C(X) and C∗(X) are uniformly
complete.

Proposition 6.1. (a) Suppose K is a compactification of X . Then C[K,X ]
≤ C(X), separates points and closed sets and is divisible, and C[K,X ] =
locC[K,X ].

(b) Suppose G ≤ C∗(X) separating points and closed sets. Then G ≤ locG ≤
C[Y G,X ] ≤ C(X); if G is uniformly complete, then locG = C[Y G,X ].

(C[K,X ] need not be uniformly complete: Let K = [0, 1], X the irrational

points. Then C[K,X ]
ud

≤ C(X) by 4.2, but there is f ∈ C(X) with no continuous
extension to any p ∈ K −X [FGL65].)

At the risk of excessive jargon, let us say: “H is almost C(X)” if H ≤ C(X),
H separates points and closed sets, H is divisible and uniformly complete and
H = locH . And “K is almost βX” if K is a compactification of X , and βV = βX
for each V open in K with V ⊇ X .

Proposition 6.2. (a) Suppose K is almost βX . Then, C[K,X ] is almost

C(X) and Y C[K,X ] = K; and C[K,X ] = C(X) if and only if K = βX .

(b) H is almost C(X) if and only if H = C[Y H,X ] and Y H is almost βX .

It is fairly easy to derive 6.2 from 6.1, and the proof of 6.1 is not difficult. In
any event, the proofs appear, more-or-less, in [H76] (mutatis mutandis), because
6.1 and 6.2 can be shown equivalent to statements in [H76]. See also remarks
below.

If X has AP, then [H almost C(X) implies H = C(X)] (because H = locH =
locH∗), and so by 6.2 [K almost βX implies K = βX ]. Thus, if X has a
compactificationK which is almost βX but K 6= βX , then X will fail AP. In [R68]
is constructed a completely metrizable space ∆ for which ind∆ = 0 < 1 = dim∆.
Consequently, the maximal zero-dimensional compactification ζX is not β∆. In
[S87] it is shown (in response to a question from [H76] — see 6.4 below) ζ∆ is
almost β∆. (This is not easy.)

Example 6.3. ∆ fails AP.

Remark 6.4. My paper [H76] was an inconclusive attempt to give a new order-
algebraic characterization of C(X). In 6.1 and 7.3 there, appears what is called
a “working conjecture,” which is equivalent to:

If H is almost C(X) and X = R(H) (the real ideal space of H),(†)

then H = C(X).
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(Here, that X = R(H) is equivalent to: ∀ p ∈ Y H −X there is a Gδ-set U of Y H
with p ∈ U and U ∩ X = ∅.) And I said “I suspect (†) false” (p. 18). I pointed
out there in 6.4 (a) ⇔ (b) what is, in effect, the consequence of 6.2 above, that
(H almost C(X) ⇒ H = C(X)) if and only if (K almost βX ⇒ K = βX) — this
sans “X = R(H)” — and said that I did not know if either/both is/are true. In
the “if and only if” here, “X = R(H)” translates to “X is Gδ-closed in K”.

Sola counterexampled (K almost βX ⇒ K = βX) with X = ∆, K = ζ∆.
This does not counterexample (†) because the Gδ-closure of X in ζX is what is
called ν∆, the so-called “N-compactification” of ∆, and the associated “H almost
C(∆)” is H = loc(C(ζ∆) | ∆) = C(ν∆)|∆; here R(H) = ν∆. (See [S87] and
[N73] for some of these details.)

The upshot of this is: (†) still remains an open question. I still suspect (†)

false. (A related question is: H almost C(X)
?
⇒ H ≈ C(R(H))? As noted above,

∆ fails to counterexample this.)

7. Other AP’s

The condition on X discussed in §6 above, that H almost C(X) ⇒ H = C(X),
can be viewed as another Approximation Property for X , and these are several
similar ones, which might or might not be worth further study, and which we list.
In the following, G and H are assumed to separate points and closed sets of X .

(AP1) ∀G ≤ C∗(X), β(locG)∗ ≤ C(βX) separates points of βX .

(AP) ∀ divisible G ≤ C∗(X), locG
ud

≤ C(X).

(AP1) ∀ divisible uniformly complete G ≤ C∗(X), locG
ud

≤ C(X).
(AP2) H almost C(X) ⇒ H = C(X).

It can be shown (and will be, in [H∞]) that AP1 ⇒ AP, and it is easy to see
that AP ⇒ AP1 ⇒ AP2. I have no knowledge of any of the converse implications.
It is true (and not so easy) that any locally compact σ-compact space has AP1,
and also true that any locally compact space has AP1, (because in the conclusion
of AP1, locG = C(X) by applying the Stone-Weierstrass Theorem on compact
neighborhoods).

It does not seem plausible to me that every locally compact space has AP; it
seems to me that some version of paracompactness is required for AP.

Here are three more specific questions about the extent of the class AP.

(1) What is the relationship (if any) between the conditions “X has AP” and
“υX has AP”? (υX is the Hewitt real compactification [GJ60].)

(2) Does every pseudocompact space have AP?

(3) Does every almost Lindelöf space have AP? (X is almost Lindelöf if υX
is Lindelöf and |υX −X | ≤ 1. See [HM02].)
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