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Abstract. By using the coincidence degree theory, we study a type of p-Laplacian neutral
Rayleigh functional differential equation with deviating argument to establish new results
on the existence of T -periodic solutions.
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1. Introduction

In this paper we consider the p-Laplacian neutral Rayleigh functional differential

equation with deviating argument of the form

(1.1) (ϕp((x(t) − cx(t − σ))′))′ + f(x′(t)) + α(t)g(x(t − τ(t))) = e(t),

where ϕp : R → R, ϕp(u) = |u|p−2u, p > 1; f, g ∈ C(R,R); α, τ , e are continuous

T -periodic functions defined on R with α(t) > 0; σ, c ∈ R are constants such that

|c| 6= 1.

Neutral functional differential equations (in short NFDEs) have been used for

the study of distributed networks containing lossless transmission lines and other

aspects [3], [4]. In recent papers, many researchers have obtained a lot of results for

the existence of periodic solutions to NFDEs. In [8], Enrico Serra studied a kind of

NFDE in the form

(1.2) x′(t) + ax′(t − τ) = f(t, x(t)).

* Supported by National Natural Science Foundation of P.R.China (No. 106710102).
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He proved the existence of at least one periodic solution for equation (1.2) (Theo-

rem 3.1). In [6], Lu and Ge studied the existence of periodic solutions for NFDE

(1.3)
d2

dt2
(x(t)− kx(t− τ)) = f(x′(t)) + α(t)g(u(t)) +

n
∑

i=1

βi(t)g(x(t− τi(t))) + e(t).

They used Mawhin’s continuation theorem to obtain the existence of periodic solu-

tions for equation (1.3). Liu [5] considered the first order neutral equation

(u(t) + Bu(t − τ))′ = g1(t, u(t)) − g2(t, u(t − τ1)) + p(t)

and Si [9] examined the kth-order neutral equation

dk

dtk
(x(t) + b0x(t − h0)) +

k
∑

j=1

ajx
(k−j)(t) +

k
∑

j=1

ajx
(k−j)(t − hj) = f(t).

However, there have been few results for the existence of periodic solutions to

p-Laplacian neutral equations. The reason for it lies in the following two facts. The

first is that the differential operator ϕp(u) = |u|p−2u, p 6= 2, is no longer linear, so

the theory of coincidence degree cannot be used directly; the second is that an a

priori bound of solutions is not easy to achieve. In this paper we will overcome these

difficulties and obtain the existence of periodic solutions to equation (1.1).

2. Main Lemmas

Let

A : CT → CT , (Ax)(t) = x(t) − cx(t − σ),

where

CT = {ϕ : ϕ ∈ C(R,R), ϕ(t + T ) = ϕ(t)}

with the norm |ϕ|0 = max
t∈[0,T ]

|ϕ(t)|. In order to use Mawhin’s continuation theorem

to obtain the existence of T -periodic solutions of equation (1.1), we rewrite equa-

tion (1.1) in the form of the two-dimensional differential system

(2.1)

{

(Ax1)
′(t) = ϕq(x2(t)),

x′
2(t) = −f([A−1ϕq(x2)](t)) − α(t)g(x1(t − τ(t))) + e(t),

where q > 1 is a constant with 1/p + 1/q = 1. Clearly, if x(t) = (x1(t), x2(t))
⊤ is

a T -periodic solution to system (2.1), then x1(t) must be a T -periodic solution to
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equation (1.1). Thus, in order to prove that equation (1.1) has a T -periodic solution,

it suffices to show that system (2.1) has a T -periodic solution. Now we set

X = Y = {x = (x1, x2)
⊤ ∈ C(R,R2), x(t + T ) = x(t)}

with the norm ‖x‖ = max{|x1|0, |x2|0}. Clearly X and Y are two Banach spaces.

Further, let

L : D(L) ⊂ X → X, Lx =

(

(Ax1)
′

x′
2

)

,(2.2)

N : X −→ X, (Nx)(t) =

(

ϕq(x2(t))

−f([A−1ϕq(x2)](t)) − α(t)g(x1(t − τ(t))) + e(t)

)

,(2.3)

where D(L) = {x : x ∈ C2(R,R2), x(t + T ) = x(t)}.

Lemma 2.1 ([7]). If |c| < 1 then A has continuous inverse on CT , and

(1) ‖A−1x‖ 6
‖x‖

∣

∣1 − |c|
∣

∣

∀x ∈ CT ;

(2)

∫ T

0

|(A−1f)(t)| dt 6
1

∣

∣1 − |c|
∣

∣

∫ T

0

|f(t)| dt ∀ f ∈ CT ;

(3)

∫ T

0

|(A−1f)|2(t) dt 6
1

(1 − |c|)2

∫ T

0

f2(t) dt ∀ f ∈ CT .

By Hale’s terminology [2], a solution of the system (2.1) is x = (x1, x2)
⊤ ∈

C(R,R2) such that (Ax1, x2) ∈ C1(R,R2) and the equalities in (2.1) are satis-

fied on R. In general, x is not from C1(R,R2). Nevertheless, it is easy to see

that (Ax1)
′ = Ax′

1. So a T -periodic solution x of the system (2.1) must be from

C1(R,R2). According to Lemma 2.1, we can easily obtain that KerL = R
2, Im L =

{

x : x ∈ X,
∫ T

0 x(s) ds = 0
}

. So L is a Fredholm operator with index zero. Let the

projections P and Q be

P : X −→ KerL, Px =
1

T

∫ T

0

x(s) ds, Q : X −→ X, Qy =
1

T

∫ T

0

y(s) ds.

Then Im P = KerL and KerQ = Im L. Let LP = L|D(L)∩KerP . We can easily prove

that LP is invertible, L
−1
P : Im L → D(L) ∩ KerP , and

(L−1
P z)(t) =

(

(A−1Fz1)(t)

(Fz2)(t)

)

, (Fz)(t) =

∫ T

0

G(t, s)z(s) ds,

where G(t, s) =















s

T
, 0 6 s < t 6 T,

s − T

T
, 0 6 t 6 s 6 T,

z(t) =

(

z1(t)

z2(t)

)

.
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Lemma 2.2 ([1]). Suppose that X and Y are two Banach spaces, and L : D(L) ⊂

X → Y is a Fredholm operator with index zero. Furthermore, Ω ⊂ X is an open

bounded set and N : Ω̄ → Y is L-compact on Ω̄. Let the following conditions hold:

(1) Lx 6= λNx ∀x ∈ ∂Ω ∩ D(L) ∀λ ∈ (0, 1),

(2) Nx /∈ Im L ∀x ∈ ∂Ω ∩ KerL,

(3) deg{JQN, Ω ∩ KerL, 0} 6= 0,

where J : Im Q → KerL is an isomorphism. Then equation Lx = Nx has a solution

in Ω̄ ∩ D(L).

3. Main results

For the sake of convenience, we list the following conditions which will be needed

in our study of equation (1.1).

(H1) There is a constant K > 0 such that |f(x)| 6 K ∀x ∈ R.

(H2) There is a constant D > 0 such that















g(x) < −
|e|0
αm

−
K

αm
for x > D,

g(x) >
K

αm
for x < −D,

where αm = min
t∈[0,T ]

α(t) and K is defined by (H1).

(H3) There is a constant r such that

lim sup
x→−∞

|g(x)|

|x|p−1
6 r ∈ [0,∞).

(H′
3) There is a constant r such that

lim sup
x→+∞

|g(x)|

|x|p−1
6 r ∈ [0,∞).

Theorem 3.1. Suppose that |c| < 1,
∫ T

0 e(s) ds = 0, and (H1)–(H3) are all

satisfied. Then equation (1.1) has at least one T -periodic solution if

2(1 + |c|)rαMT p

∣

∣1 − |c|
∣

∣

p < 1,

where αM = max
t∈[0,T ]

α(t).
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P r o o f. Consider the operator equation

Lx = λNx, λ ∈ (0, 1),

where L and N are defined by (2.2) and (2.3), respectively. Let Ω1 = {x : x ∈

D(L), Lx = λNx, λ ∈ (0, 1)}. If x =

(

x1

x2

)

∈ Ω1 then x must satisfy

(3.1)

{

(Ax1)
′(t) = λϕq(x2(t)),

x′
2(t) = −λf([A−1ϕq(x2)](t)) − λα(t)g(x1(t − τ(t))) + λe(t).

From the first equation of (3.1) we get x2(t) = ϕp(λ
−1(Ax1)

′(t)), and combining it

with the second equation of (3.1) yields

(3.2) (ϕp((Ax1)
′(t)))′ + λpf

(1

λ
x′

1(t)
)

+ λpα(t)g(x1(t − τ(t))) = λpe(t).

Let t0 be the point, where Ax1 achieves its maximum on [0, T ], i.e., (Ax1)(t0) =

max
t∈[0,T ]

(Ax1)(t). Then (Ax1)
′(t0) = 0 and x2(t0) = ϕp(λ

−1(Ax1)
′(t0)) = 0 for all

λ ∈ (0, 1). Furthermore, we assume that t0 < T . Then we have

(3.3) x′
2(t0) 6 0.

In fact, if x′
2(t0) > 0 then there exists a constant δ > 0 such that x′

2(t) > 0 for

t ∈ [t0, t0 + δ], and then x2(t) > x2(t0) = 0 for t ∈ [t0, t0 + δ]. So (Ax1)
′(t) =

λϕq(x2(t)) > 0 for t ∈ [t0, t0 + δ] and then (Ax1)(t) > (Ax1)(t0), which contradicts

the assumption on t0. This proves (3.3). From the second equation of (3.1) we have

−λf([A−1ϕq(x2)](t0)) − λα(t0)g(x1(t0 − τ(t0))) + λe(t0) 6 0.

Hence,

g(x1(t0 − τ(t0))) > −
|e|0
αm

−
K

αm
.

Assumption (H2) implies

(3.4) x1(t0 − τ(t0)) 6 D.

Integrating both sides of (3.2) over [0, T ], we get

(3.5)

∫ T

0

f
(1

λ
x′

1(t)
)

dt +

∫ T

0

α(t)g(x1(t − τ(t))) dt = 0.
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From the integral mean value theorem and (3.5) we know that there exists a constant

t1 ∈ [0, T ] such that

α(t1)g(x1(t1 − τ(t1))) + f
( 1

λ
x′

1(t1)
)

= 0.

Then we have

g(x1(t1 − τ(t1))) 6
K

αm
.

Assumption (H2) implies

(3.6) x1(t1 − τ(t1)) > −D.

From (3.4) and (3.6) it is easy to prove that there exists a constant ξ ∈ [0, T ] such

that

(3.7) |x1(ξ)| 6 D.

In fact, by (3.4) we know x1(t0 − τ(t0)) ∈ [−D, D], or x1(t0 − τ(t0)) < −D.

(1) If x1(t0 − τ(t0)) ∈ [−D, D] then t0 − τ(t0) = kπ + ξ, k ∈ Z, ξ ∈ [0, T ]. This

proves (3.7).

(2) If x1(t0 − τ(t0)) < −D then by (3.6) and the fact that x1(t) is continuous

on R, there is a point t2 between t0 − τ(t0) and t1 − τ(t1) such that |x1(t2)| 6 D.

Let t2 = kπ + ξ, k ∈ Z, and ξ ∈ [0, T ]. This also proves (3.7). Hence, we get

|x1|0 = max
t∈[0,T ]

∣

∣

∣

∣

x1(ξ) +

∫ t

ξ

x′
1(s) ds

∣

∣

∣

∣

(3.8)

6 |x1(ξ)| +

∫ T

0

|x′
1(s)| ds 6 D +

∫ T

0

|x′
1(s)| ds.

Let
E1 = {t ∈ [0, T ] : x1(t − τ(t)) < −̺},

E2 = {t ∈ [0, T ] : |x1(t − τ(t))| 6 ̺},

E3 = {t ∈ [0, T ] : x1(t − τ(t)) > ̺},

where ̺ > D > 0 is a given constant. Integrating the two sides of (3.2) on [0, T ], we

get
∫ T

0

α(t)g(x1(t − τ(t))) dt = −

∫ T

0

f
( 1

λ
x′

1(t)
)

dt.

258



Therefore, using (H1) and (H2), we obtain

∫

E3

α(t)|g(x1(t − τ(t)))| dt = −

∫

E3

α(t)g(x1(t − τ(t))) dt(3.9)

=

∫

E1∪E2

α(t)g(x1(t − τ(t))) dt +

∫ T

0

f
(1

λ
x′

1(t)
)

dt

6

∫

E1∪E2

α(t)|g(x1(t − τ(t)))| dt + KT.

Since
(

2(1 + |c|)rαMT p
)

/
(∣

∣1 − |c|
∣

∣

p)
< 1, there exists a constant ε > 0 such that

(3.10)
2(1 + |c|)(r + ε)αMT p

∣

∣1 − |c|
∣

∣

p < 1.

For such ε, by assumption (H3), there exists a constant ̺ > 0 such that ̺ > D and

(3.11) |g(u)| 6 (r + ε)|u|p−1 for u < −̺.

From (3.9) and (3.11) we get

∫ T

0

α(t)|g(x1(t − τ(t)))| dt =

∫

E1∪E2∪E3

α(t)|g(x1(t − τ(t)))| dt(3.12)

6 2

∫

E1∪E2

α(t)|g(x1(t − τ(t)))| dt + KT

6 2(r + ε)αMT |x1|
p−1
0 + 2g̺αMT + KT,

where g̺ = max
t∈E2

|g(x1(t − τ(t)))|. On the other hand, multiplying the two sides of

equation (3.2) by (Ax1)(t), integrating them over [0, T ] and combining it with (3.12),

we arrive at

∫ T

0

|(Ax1)
′(t)|p dt(3.13)

6 (1 + |c|)|x1|0

(∫ T

0

∣

∣

∣
f
(1

λ
x′

1(t)
)∣

∣

∣
dt +

∫ T

0

α(t)|g(x1(t − τ(t)))| dt + T |e|0

)

6 (1 + |c|)|x1|0

∫ T

0

α(t)|g(x1(t − τ(t)))| dt + (1 + |c|)|x1|0(T |e|0 + KT )

6 2(1 + |c|)(r + ε)αMT |x1|
p
0 + (1 + |c|)(2g̺αMT + 2KT + T |e|0)|x1|0.
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For simplicity, let k1 = 2(1+ |c|)(r+ ε)αMT , k2 = (1+ |c|)(2g̺αMT +2KT +T |e|0).

From (3.8) and (3.13) we have

∫ T

0

|(Ax1)
′(t)|p dt 6 k1|x1|

p
0 + k2|x1|0(3.14)

6 k1

(

D +

∫ T

0

|x′
1(t)| dt

)p

+ k2

∫ T

0

|x′
1(t)| dt + Dk2.

By applying the second part of Lemma 2.1 and the Hölder inequality, we get

∫ T

0

|x′
1(t)| dt =

∫ T

0

|(A−1Ax′
1)(t)| dt(3.15)

6

∫ T

0 |(Ax′
1)(t)| dt

∣

∣1 − |c|
∣

∣

6
T 1/q

(∫ T

0 |(Ax′
1)(t)|

p dt
)1/p

∣

∣1 − |c|
∣

∣

.

Case 1. If
∫ T

0
|(Ax′

1)(t)| dt = 0 then
∫ T

0
|x′

1(t)| dt = 0, by (3.8), |x1|0 6 D.

Case 2. If
∫ T

0 |(Ax′
1)(t)| dt > 0 then by (3.14) and (3.15) we have

(3.16)

∫ T

0

|(Ax′
1)(t)|

p dt 6 k1

(

D +

∫ T

0
|(Ax′

1)(t)| dt
∣

∣1 − |c|
∣

∣

)p

+ k2

∫ T

0
|(Ax′

1)(t)| dt
∣

∣1 − |c|
∣

∣

+ Dk2.

Clearly,

(

D +

∫ T

0 |(Ax′
1)(t)| dt

∣

∣1 − |c|
∣

∣

)p

(3.17)

=
1

∣

∣1 − |c|
∣

∣

p

(∫ T

0

|(Ax′
1)(t)| dt

)p(

1 +
D

∣

∣1 − |c|
∣

∣

∫ T

0 |(Ax′
1)(t)| dt

)p

.

By classical elementary inequalities, we see that there is a constant h(p) > 0 which

is dependent on p only, such that

(3.18) (1 + u)p < 1 + (1 + p)u ∀u ∈ (0, h(p)].

If (D
∣

∣1 − |c|
∣

∣)/
∫ T

0
|(Ax′

1)(t)| dt > h then
∫ T

0
|(Ax′

1)(t)| dt < (D
∣

∣1 − |c|
∣

∣)/h. By (3.8)

and (3.15), |x1|0 < D + D/h. If (D
∣

∣1 − |c|
∣

∣)/
∫ T

0
|(Ax′

1)(t)| dt 6 h then by (3.17) and

(3.18) we have

(

D +

∫ T

0
|(Ax′

1)(t)| dt
∣

∣1 − |c|
∣

∣

)p

(3.19)

6
1

∣

∣1 − |c|
∣

∣

p

(∫ T

0

|(Ax′
1)(t)| dt

)p(

1 +
(p + 1)D

∣

∣1 − |c|
∣

∣

∫ T

0 |(Ax′
1)(t)| dt

)

6

(∫ T

0 |(Ax′
1)(t)| dt

)p

∣

∣1 − |c|
∣

∣

p + (p + 1)D
∣

∣1 − |c|
∣

∣

1−p
(∫ T

0

|(Ax′
1)(t)| dt

)p−1

.
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By (3.16) and (3.19),

∫ T

0

|(Ax′
1)(t)|

p dt(3.20)

6
k1

∣

∣1 − |c|
∣

∣

p

(∫ T

0

|(Ax′
1)(t)| dt

)p

+ k1(p + 1)D
∣

∣1 − |c|
∣

∣

1−p
(∫ T

0

|(Ax′
1)(t)| dt

)p−1

+ k2

∫ T

0 |(Ax′
1)(t)| dt

∣

∣1 − |c|
∣

∣

+ Dk2

6
k1

∣

∣1 − |c|
∣

∣

p T p/q

∫ T

0

|(Ax′
1)(t)|

p dt

+ k1(p + 1)D
∣

∣1 − |c|
∣

∣

1−p
T (p−1)/q

(∫ T

0

|(Ax′
1)(t)|

p dt

)(p−1)/p

+
k2

∣

∣1 − |c|
∣

∣

T 1/q

(∫ T

0

|(Ax′
1)(t)|

p dt

)1/p

+ Dk2.

In view of the definition of the number k1, by virtue of (3.10), (3.20), (p − 1)/p < 1

and 1/p < 1, there is a constantM1 > 0 such that
∫ T

0 |(Ax′
1)(t)|

p dt 6 M1. It follows

from (3.15) that
∫ T

0
|x′

1(t)| dt 6 (T 1/q(M1)
1/p)/(

∣

∣1 − |c|
∣

∣) := M2. By (3.8) we get

|x1|0 6 D + M2 := M3.

Consequently, in both cases 1 and 2, we have |x1|0 6 M3. In view of the first equation

of (3.1) we have
∫ T

0
|x2(t)|

q−2x2(t) dt = 0. By the integral mean value theorem there

exists a constant η ∈ [0, T ] such that x2(η) = 0. Hence, |x2|0 6
∫ T

0 |x′
2(t)| dt. By the

second equation of (3.1) we get

∫ T

0

|x′
2(t)| dt 6

∫ T

0

∣

∣

∣f
( 1

λ
x′

1(t)
)∣

∣

∣dt +

∫ T

0

αM |g(x1(t − τ(t)))| dt +

∫ T

0

|e(t)| dt

6 KT + TαMgM3
+ T |e|0,

where gM3
= max

|u|<M3

|g(u)|. So we obtain

|x2|0 6 KT + TαMgM3
+ T |e|0 =: M4.

We have proved that if x = (x1, x2)
⊤ ∈ D(L), Lx = λNx, λ ∈ (0, 1), then |x1|0 6 M3

and |x2|0 6 M4. Let M = max{M3, M4} and

Ω = {x = (x1, x2)
⊤ ∈ X : |x1|0 6 M, |x2|0 6 M}.
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Then M > D and it is clear that the assumption (1) of Lemma 2.2 is satisfied.

Moreover, for any x = (x1, x2)
⊤ ∈ X we have

QNx =









1

T

∫ T

0

ϕq(x2(t)) dt

1

T

∫ T

0

(

−f([A−1ϕq(x2)](t)) − α(t)g(x1(t − τ(t)))
)

dt









.

Since KerL = R
2 and Im L = KerQ, if QNx = 0 for some x = (x1, x2)

⊤ ∈ ∂Ω ∩

KerL, then x2 ≡ 0, |x1| ≡ M , and

g(x1) = −
f(0)

1

T

∫ T

0

α(t) dt

.

By assumptions (H1) and (H2), one has M = |x1| 6 D, which is a contradiction.

So QNx 6= 0 for all x ∈ ∂Ω ∩ KerL and thus the assumption (2) of Lemma 2.2 is

satisfied. It remains to verify condition (3) of Lemma 2.2. In order to prove it, let

J : Im Q → KerL, J(x1, x2)
⊤ = (x2, x1)

⊤,

and H(x, µ) = µx + (1 − µ)JQNx for (x, µ) ∈ X × [0, 1]. Then we have

H(x, µ) =









µx1 +
(1 − µ)

T

∫ T

0

(

−f([A−1ϕq(x2)](t)) − α(t)g(x1(t − τ(t)))
)

dt

µx2 +
(1 − µ)

T

∫ T

0

ϕq(x2(t)) dt









.

It is not difficult to verify that, using (H2), for any x ∈ ∂Ω∩Ker L and µ ∈ [0, 1], we

have H(x, µ) 6= 0. Therefore,

deg{JQN, Ω ∩ KerL, 0} = deg{H(·, 0), Ω ∩ KerL, 0}

= deg{H(·, 1), Ω ∩ KerL, 0}

= deg{I, Ω ∩ KerL, 0} 6= 0.

Therefore, by using Lemma 2.2, we see that equation Lx = Nx has a solution

x = (x1, x2)
⊤ in Ω̄, i.e., equation (1.1) has a T -periodic solution x1. �
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Corollary 3.2. Suppose that |c| < 1,
∫ T

0
e(s) ds = 0 and that (H1), (H2), and

(H′
3) are satisfied. Then equation (1.1) has at least one T -periodic solution provided

2(1 + |c|)rαMT p/
(∣

∣1 − |c|
∣

∣

p)
< 1.

As an application, we consider the following NFDE:

(ϕ3((x(t) − 0.1x(t − π))′))′(3.21)

+ 5 sinx′(t) + (1 + 1
2 sin t)g(x(t − 1

2 cos t)) = 20 cos t,

where

g(u) =











− 1
1000u2, u > 10,

5 − 51
100u, u ∈ [−10, 10],

10 + 1
1000u2, u < −10.

Clearly, equation (3.21) is a particular case of (1.1) in which

p = 3, c = 0.1, σ = π, α(t) = 1 + 1/2 sin t, τ(t) = 1/2 cos t,

e(t) = 20 cos t, f(u) = 5 sin u.

Then we have T = 2π, αM = 3/2 and r = 1/1000, and thus

2(1 + |c|)rαMT p

(1 − |c|)p
=

1.1 × 3 × (2π)3

0.93 × 1000
< 1.

Here assumptions (H1)–(H3) are satisfied. By using Theorem 3.1, we conclude that

equation (3.21) has at least one 2π-periodic solution.
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