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A NOTE ON POROACOUSTIC TRAVELING WAVES UNDER

DARCY’S LAW: EXACT SOLUTIONS*

P. M. Jordan, J. K. Fulford, Stennis Space Center

Dedicated to Professor K. R. Rajagopal on the occasion of his 60th birthday

Abstract. A mathematical analysis of poroacoustic traveling wave phenomena is pre-
sented. Assuming that the fluid phase satisfies the perfect gas law and that the drag offered
by the porous matrix is described by Darcy’s law, exact traveling wave solutions (TWS)s,
as well as asymptotic/approximate expressions, are derived and examined. In particular,
stability issues are addressed, shock and acceleration waves are shown to arise, and spe-
cial/limiting cases are noted. Lastly, connections to other fields are pointed out and possible
extensions of this work are briefly discussed.
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1. Introduction

The study of acoustic propagation in fluid-saturated porous media, often referred

to as poroacoustics, is an important sub-field of acoustics that dates back many

years; see, e.g., [13], [22], [14], [23] and references therein. Some recent contributions

to this field include Rajagopal and Tao’s [20] elegant, mixture theory-based, reexam-

ination and generalization of Biots model of acoustic propagation in saturated sand;

Straughan’s [23] in-depth book on waves in porous media; Jordan’s [8] perturbation

analysis of the Darcy-Jordan model (DJM) in the context of Stokes’ second problem;

the article by Ciarletta et al. [5] in which a study of anisotropic effects on poroacous-

tic acceleration waves is presented; and, more recently, the contribution by Fellah et

al. [6] on the ultrasonic characterization of certain air-saturated porous materials.

*This work was supported by ONR/NRL funding (PE 061153N). All figures appearing
herein were generated using the software package Mathematica.
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Here, we consider acoustic traveling waves in a gas that saturates a rigid, sta-

tionary, porous medium. We carry out our analysis under the exact, fully nonlinear

theory of homentropic1 compressible flow; and we assume that Darcy’s law [22], [14],

[19],

(1.1) ∇P = −
(µχ

K

)

v,

describes the drag exerted by the porous matrix on the gas flowing through it. In

this note, P is an intrinsic pressure; ̺ is the mass density of the gas; we observe that

the Darcy (or filtration) velocity vector V is related to the intrinsic (i.e., volume-

averaged over a volume element consisting of gas only) velocity vector v by the

Dupuit-Forchheimer relationship, specifically, V = χv; and the positive constants µ,

K, and χ(< 1) denote the dynamic viscosity, permeability, and porosity, respectively.

It must be stressed that, since Darcy’s law is just an approximation, based on many

assumptions, some severe, to the balance of linear momentum, it does not have the

same status as a balance law; see Rajagopal [17] for an excellent discussion of this

point. Indeed, Beavers and Sparrow [1] point out that Darcy’s law is applicable only

in situations where the following inequality is satisfied:

(1.2) (ReK)−1 ≫ Cf ,

where the positive constant Cf denotes the form-drag (or inertia) coefficient that

appears in the nonlinear drag law known as Forchheimer’s equation (see (5.1)) and

ReK ∝
√
K (see (2.8)) is known as the permeability-based Reynolds number [3].

Our primary aim here is to extend and refine Jordan’s [7] investigation of poroa-

coustic traveling waves under the DJM, a wave equation derived under weakly non-

linear theory, by forgoing all approximations to the governing equations. Specifically,

exact TWSs for the case in which the saturating fluid is a perfect gas are derived and

studied. In addition, special cases are considered, asymptotic/approximate results

are presented, and numerical simulations are used to illustrate the main analytical

findings. Most significantly, it is shown that, in addition to kinks, both shock and

acceleration waves are possible, depending on the value of the speed of the travel-

ing wave, and that, in the traveling wave context, the poroacoustic model considered

here can be regarded as a generalization of that which describes acoustic propagation

in certain mono-relaxing media.

To this end, the present note is arranged as follows. In Section 2, balance laws and

constitutive assumptions are stated. In Section 3, an exact traveling wave analysis

is carried out and graphs of the solution profiles are given. In Section 4, asymptotic

1 For more on this special case of isentropic flow, see Thompson [24].
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results are presented, special/limiting cases are noted, and discontinuities in the

form of shock and acceleration waves are examined. Lastly, in Section 5, possible

extensions of the present study are suggested and discussed.

2. Governing equations, basic assumptions, and nondimensionalizations

Consider a gas, which we take to behave as a perfect gas2, that permeates a fixed

and rigid, non-thermally conducting, homogeneous and isotropic porous medium.

Assuming the gas is initially in its equilibrium state, and that the flow can be regarded

as homentropic, the equations of continuity, momentum, and state are, in the case

of one-dimensional (1D) flow along the x-axis, given by

̺t + u̺x + ̺ux = 0,(2.1)

̺(ut + uux) = −℘̺̺x −
(µχ

K

)

u,(2.2)

℘ = ℘0(̺/̺0)
γ ,(2.3)

where the assumption of homentropic flow means that η = η0 throughout the en-

tire volume of gas for all t > 0. Here, ̺(> 0) is the mass density; ℘(> 0) is the

thermodynamic pressure, where ℘̺ denotes ∂℘/∂̺; the velocity vector has the form

v = (u(x, t), 0, 0), which implies the velocity field is irrotational; η denotes the spe-

cific entropy; γ = cp/cv is the adiabatic index, where the constants cp > cv > 0

respectively denote the specific heats at constant pressure and volume; and all body

forces have been neglected. And by equilibrium state we mean the unperturbed state

in which u = 0, ̺ = ̺0, ℘ = ℘0, and η = η0 all hold simultaneously, where ̺0, ℘0,

and η0 are constants.

To simplify the forthcoming analysis, we use the fact that ℘̺ = c20(̺/̺0)
γ−1,

where the adiabatic sound speed c0 =
√

γ℘0/̺0 denotes the speed of sound in the

undisturbed gas, and introduce the following non-dimensional quantities:

(2.4) u◦ = u/V, ̺◦ = s+ 1 = ̺/̺0, ℘◦ = ℘/℘0, x◦ = x/L, t◦ = c0t/L,

where the positive constants V and L denote a characteristic speed and length, re-

spectively, and for future reference we note that s is the condensation, to recast (2.1)–

(2.3) in the somewhat simpler (i.e., dimensionless) form

̺t + ε(u̺)x = 0,(2.5)

̺(εut + ε2uux) = −̺x̺
γ−1 − εδu,(2.6)

℘ = ̺γ .(2.7)

2 That is, an ideal gas for which the specific heats, and therefore their ratio, are constants;
again, see Thompson [24, p. 79].
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Here, ε = V/c0 is the Mach number; δ = χ/Re is the dimensionless Darcy coefficient,

where Re = c0(K/L)/ν is a Reynolds number and ν = µ/̺0 denotes the kinematic

viscosity; and all circle superscripts (◦) have been suppressed, but remain understood.

R em a r k 1. The continuum assumption, on which our poroacoustic model is

based, requires Kn ≪ 1, where Kn =
√
K/L is the Knudsen number of the flow

considered here. Thus, δ can be re-expressed as

(2.8) δ = ε(χ2/Kn)/ReK .

3. Traveling wave analysis

3.1. Ansatzs

Let us assume ̺ = f(ξ), u = g(ξ), and ℘ = p(ξ), where ξ := x − ct is the

wave variable and, unless otherwise noted, the wave speed c(:= const.) is taken

to be positive. On substituting the first two of these ansatzs into (2.5) and (2.6),

integrating the former with respect to ξ, and then simplifying, the following system

is obtained:

f(εg − c) = K1,(3.1)

εg′f(−c+ εg) + fγ−1f ′ = −εδg,(3.2)

where K1 is a constant of integration, a prime denotes d/dξ, and we note for future

reference that

(3.3) p(ξ) = fγ(ξ) and p′(ξ) = γfγ−1(ξ)f ′(ξ).

Solving for K1 using the equilibrium state conditions f = 1 and g = 0, (3.1) can

be recast as

(3.4) εg = c(f − 1)/f (g < c/ε),

where the restriction now imposed on g ensures f > 0. On eliminating g between (3.2)

and (3.4) using the fact that

(3.5) εg′ = cf ′/f2,

we obtain, after simplifying, the associated ordinary differential equation (ODE) for

the density, namely,

(3.6) (1 − c−2fγ+1)f ′ = −κf(1 − f),

where we have set κ := δ/c for convenience.
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R em a r k 2. For simplicity of presentation in what follows, we introduce the

quantity U , defined here as

(3.7) U(ξ) := 1 − c−1εg = 1/f (0 < f 6 U <∞),

which will be used in lieu of g in graphs comparing the density and velocity fields. In

terms of U , which can be regraded as the dimensionless specific volume [24, p. 53],

(3.6) becomes

(3.8) (1 − c−2U−γ−1)U ′ = −κ(1 − U),

where we observe that U = f = 1 when the gas is in its equilibrium state.

3.2. Phase plane analysis and stability of equilibria

An analysis of (3.6) in the (f, f ′)-plane reveals that it admits the equilibrium

solutions f = {0, 1}, where it should be noted f = 0 is always stable or unstable,

respectively when c > 0 or c < 0. Moreover, if fw ∈ (0, 1), where fw := f(0)

denotes that value of f at the wavefront x = ct, then f ∈ (0, 1] for every c > 0.

More importantly, however, (3.6) is found to describe two distinct flow regimes,

corresponding to the two cases of c 6= 1, separated by the degenerate case c = 1.

For c > 1, the equilibrium solutions f = {0, 1} are stable and unstable, respec-
tively, and, provided fw ∈ (0, 1), there exists a unique, strictly decreasing kink-type

solution of (3.6) such that f ∈ (0, 1) for every ξ ∈ R.

In contrast, when c < 1 it is easily established that f = {0, 1} are both stable
and that at f = fs, where fs := c2/(γ+1) is a non-removable singular point of (3.6),

|f ′| = ∞. In fact, as we will soon see, f is dual -valued when c < 1 and fw ∈ (0, 1)

hold simultaneously.

For c = 1, f ′ exhibits a jump discontinuity at f = 1, where it is noteworthy that

the stability/instability of f = 1 in this case cannot be determined. To understand

the impact of this degeneracy, we need only re-express the c = 1 case of (3.6) as

(1 − f)
{

(γ + 1)
[

1 − 1

2
γ(1 − f) +

1

6
γ(γ − 1)(1 − f)2 + . . .

]

f ′ + κf
}

= 0(3.9)

(c = 1),

from which it is evident that f = 1 is a solution, and then observe that

(3.10) lim
f→1

f(1 − f)

1 − fγ+1
=

1

γ + 1
.
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3.3. Exact solutions

Henceforth restricting our attention to bounded solutions, we return to (3.6) and

integrate. Thus, we are led to consider the quadrature

(3.11)

∫ f

fw

(1 − c−2fγ+1) df

f(1 − f)
= −κξ, where fw ∈ (0, 1).

Observing that the integrand in (3.11) can never be a quotient of polynomials, since

1 < γ < 1.7 in the case of perfect gases, this integral can, nevertheless, be evaluated

exactly in terms of special functions.

Omitting the detail, it is readily established that the exact, albeit implicit, solution

of (3.6) is given by the following.

For c 6= 1:

2F1(γ + 1, 1; γ + 2; f)fγ+1 − 2F1(γ + 1, 1; γ + 2; fw)fγ+1
w

c2(γ + 1)
(3.12)

+ ln
[fw(1 − f)

f(1 − fw)

]

= κξ, f ∈ (0, 1).

For c = 1:

f(ξ) = 1, ξ ∈ (−∞, ξ1(fw)],(3.13)

2F1(γ + 1, 1; γ + 2; f)fγ+1 − 2F1(γ + 1, 1; γ + 2; fw)fγ+1
w

γ + 1

+ ln
[fw(1 − f)

f(1 − fw)

]

= δξ, f ∈ (0, 1) ⇒ ξ ∈ (ξ1(fw),∞).

Here, 2F1 denotes the Gauss hypergeometric series and

ξc(fw)(3.14)

=
1

cδ

[

c2 ln
( fw

1 − fw

)

− λ− ψ(γ + 1) − 2F1(γ + 1, 1; γ + 2; fw)fγ+1
w

γ + 1

]

,

where ψ(·) is the digamma function and λ ≈ 0.5772 is the Euler-Mascheroni constant.

Regarding the velocity and pressure fields, we observe that the corresponding

exact, but implicit, expressions for g and p can be derived using (3.4) and (3.3),

respectively, where it should be noted that 0 < p 6 f 6 1.

In the case of the quantity U , it is not difficult to show that (3.8), like (3.6), can

be integrated in terms of special functions; e.g., for c 6= 1:

−
[

2F1(1 − γ, 1; 2 − γ; U)U1−γ

c2(γ − 1)
− ln(U − 1) + γ−1c−2U−γ

]∣

∣

∣

U

1/fw

= κξ,(3.15)

U ∈ (1,∞),
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which like its counterpart (3.12) is an exact, but implicit, result. Here, U(0) = 1/fw

is the required wavefront condition.

3.4. Numerical results: Integral curves

In this subsection we plot the f vs. ξ and U vs. ξ solution profiles for both diatomic

and monatomic gases. The four figures presented here cover the cases c 6= 1 and c = 1

and, apart from the values chosen for γ, the curves they contain do not necessarily

depict a particular poroacoustic flow situation. Lastly, it should be noted that, since

the associated ODEs are invariant under ξ 7→ ξ + const., we take, without loss of

generality, fw = 1/2 in Figs. 1–4, and also in Fig. 5, which appears in Subsection 4.4.3

below.

In Fig. 1 we have plotted, for a gas with γ = 7/5 (e.g., air at 20 ◦C), the expressions

given in (3.12) and (3.15) for c > 1. Clearly, the density profile assumes the form

of a kink, as we inferred from our stability analysis, whose amplitude tends to zero

(i.e., the vacuum state) as ξ → ∞. The U vs. ξ profile, on the other hand, is seen to
blow-up as ξ → ∞, i.e., as the density tends to the vacuum state, which is consistent
with the behavior of the velocity field reported in [7]; see Remark 3 below.

0.5

1

1.5

2

2.5

3

1−1 2−2 3−3
ξ

f, U
c2

= 1.5

Figure 1. f, U vs. ξ for c ≈ 1.225, γ = 7/5, fw = 0.5, and κ = 1. Solid curve: (3.12).
Broken curve: (3.15).

In contrast, Fig. 2 clearly illustrates the fact, alluded to in Subsection 3.2, that f is

dual-valued when c < 1 and fw ∈ (0, 1) hold simultaneously. Here, assuming once

again γ = 7/5, we have plotted f vs. ξ for three different values of c < 1, but fixed fw.

While such non-unique solutions are acceptable from the mathematical standpoint,

they are, of course, physically unrealistic. As we will see in Subsection 4.3.2, however,

for c < 1 (3.12) actually represents a discontinuous waveform, known as an inner

discontinuity [26, p. 77], the physical interpretation of which is a shock wave.
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0.2

0.4

0.8

1

0.6

1 2 3 4−1

f

ξ

c < 1

Figure 2. f vs. ξ generated from (3.12) for γ = 7/5, fw = 0.5, and κ = 1. Bold-solid curve:
c = 0.9. Thin-solid curve: c = 0.5. Broken curve: c = 0.1.

The sequence shown in Fig. 3, in which the gas phase is taken to be CO2 at several

thousand degrees Kelvin [24, p. 80], illustrates the transition from the smooth kink

0.2

0.4

0.8

1

0.6

2.5−2.5 5−5 7.5−7.5

f c = 1.50

ξ

0.2

0.4

0.8

1

0.6

2−2 4−4

f c = 1.10

ξ

0.2

0.4

0.8

1

0.6

1−1 2−2

f c = 1.01

ξ

Figure 3. f vs. ξ for γ = 15/13, fw = 0.5, and κ = 1.0.

generated by (3.12) to the piecewise-defined profile described by (3.13) as c → 1

(from above). In particular, we observe that the f vs. ξ profile forms a corner in this
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limit, thus implying that f ′ develops a jump discontinuity as c → 1, the location of

which (in this figure) will be ξ = ξ1(0.5) ≈ −1.258.

In Fig. 4 we have plotted the f vs. ξ and U vs. ξ profiles for the actual case

c = 1, but where a monatomic gas (e.g., Ar, He, etc.) is now assumed, using the

piecewise-defined, but continuous, expression given in (3.13). Here, we see that

the aforementioned corner is now fully formed, and located at ξ = ξ1(0.5) in the

present figure. Moreover, the U profile is also seen to exhibit a corner, at the same

location as f , and thus it follows that U ′ is also discontinuous. In Subsection 4.3.3

we will reexamine the c = 1 case using the singular surface theory and derive exact

expressions for the jumps in f ′, g′, and p′.

0.5

1

1.5

2

2.5

3

1 2 3−1−2−3
ξ

f, U c = 1.0

Figure 4. f, U vs. ξ for c = 1.0, γ = 5/3, fw = 0.5, and δ = 1. Solid curve: (3.13). Broken
curve: U(ξ) = 1/f(ξ), where f is given by (3.13).

4. Analytical results

4.1. Asymptotics of the kink profiles

To gain a better understanding of the behavior of our model, we present in this

subsection large-|ξ| and small-|ξ| expressions for the cases c > 1. These expressions,

which are not only explicit, but much simpler than their exact counterparts, were

derived based on truncated expansions of either the corresponding case of the exact

solution given in Subsection 3.3, or of the integrand in (3.11). And while the following

relate only to f , parallel expressions for g and p can, of course, be derived using (3.4)

and (3.3), respectively.
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For c > 1:

(4.1) f(ξ) ∼



































1 − exp
[ cδ[ξ − ξc(

1
2 )]

c2 − 1

]

, ξ → −∞,

2γc2[2 + γ2−γc−2 −
√

(2 − 2−γc−2)2 + 21−γc−3δξ]

2(γ + 1)
, |ξ| → 0,

exp
{

−
[

2F1(γ + 1, 1; γ + 2; 1
2 )(1

2 )γ+1 + cδ(γ + 1)ξ

c2(γ + 1)

]}

, ξ → ∞.

For c = 1:

(4.2) f(ξ) ≃















































1, ξ 6 ξ1(
1
2 ),

1 +
2{(γ + 1) −

√

(γ + 1)2 + δP (γ)[ξ − ξ1(fw)]}
P (γ)

, ξ1(
1
2 ) < ξ ≪ 0,

2γ [2 + γ2−γ −
√

(2 − 2−γ)2 + 21−γδξ]

2(γ + 1)
, |ξ| → 0+,

exp
{

−
[

2F1(γ + 1, 1; γ + 2; 1
2 )(1

2 )γ+1 + δ(γ + 1)ξ

γ + 1

]}

, ξ → ∞.

Here, we have set P (γ) := (γ+ 1)(2− γ) and, for simplicity of presentation, we have

again taken f(0) = 1/2.

R em a r k 3. From (4.1)3, (4.2)3, and the relation U = 1/f , the blow-up of U

depicted in Figs. 1 and 4 is easily seen to be exponential, specifically, like

(4.3) U(ξ) ∼ exp
[

2F1(γ + 1, 1; γ + 2; 1
2 )(1

2 )γ+1 + cδ(γ + 1)ξ

c2(γ + 1)

]

(ξ → ∞),

where the former and latter respectively correspond to c =
√

1.5 and c = 1.

R em a r k 4. When c is large, (3.12) admits the following simple approximation:

(4.4) f(ξ) ≈ 1

2

[

1 − tanh
(1

2
κξ

)]

(c≫ 1),

which of course represents a Taylor shock of shock thickness 4/κ. Since it does not

appear, either explicitly or implicitly, in (4.4), we see that f , g, and p are all highly

insensitive to changes in γ when c ≫ 1. Thus, according to our model, all perfect

gases exhibit, qualitatively speaking, the same behavior in the large-c regime.

4.2. Special cases of perfect gases

In the case of monatomic (e.g., noble gases) and diatomic (e.g., nitrogen, oxygen,

CO2) gases under ordinary conditions, γ = 5/3 and γ = 7/5, respectively; see [24,
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p. 80]. For these two important subclasses of perfect gases, the integral in (3.11) can

be evaluated in terms of elementary functions.

For γ = 5/3:

[

ln
(1 − f

f

)

− 3

10
c−2f2/3(5 + 2f) − c−2

√
3 arctan

(1 + 2f1/3

√
3

)

(4.5)

− c−2 ln
( 1 − f1/3

√

1 + f1/3 + f2/3

)]∣

∣

∣

f

fw

= κξ.

For γ = 7/5:

{

ln
(1 − f

f

)

− c−2
[

ln(1 − f1/5) +
5

14
f2/5(7 + 2f)(4.6)

−
√

ϕ−1
√

5 arctan
(2f1/5 − ϕ−1

√

ϕ
√

5

)

+

√

ϕ
√

5 arctan
( 2f1/5 + ϕ

√

ϕ−1
√

5

)

− 1

2
ϕ ln(1 − ϕ−1f1/5 + f2/5) +

1

2
ϕ−1 ln(1 + ϕf1/5 + f2/5)

]}
∣

∣

∣

f

fw

= κξ,

where ϕ = (1 +
√

5)/2 is the Golden ratio. Here, it must be stressed that these

expressions are valid only for the cases c 6= 1; however, their specialization to c = 1

is easily accomplished with the aid of (3.13).

4.3. Shock and acceleration waves

We now investigate the range of shock and acceleration wave phenomena admitted

by our Darcy-based model under the traveling wave assumption. First, however,

it is necessary to introduce three important concepts from the theory of singular

surfaces [25], [23].

(i) The plane x = Σ(t) represents a singular surface, which in the present study

propagates to the right along the x-axis with speed c, across which some func-

tion, say, F = F(x, t), suffers a jump discontinuity.

(ii) The amplitude of this jump in F is defined as [[F]] := F− − F+, where F± :=

lim
x→Σ±

F are assumed to exist and ± superscripts correspond to the regions ahead
of and behind Σ, respectively.

(iii) And by a shock wave we mean here a propagating singular surface (i.e., a wave-

front) across which f (and thus g, p) suffer a jump discontinuity.

4.3.1. Shock waves: c > 1. Although they are, perhaps, less interesting than

those which arise when c < 1, shocks can also form in the kink profiles, i.e., for c > 1,
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but only in the limit δ → ∞. This follows from the fact that the shock thickness, l
(> 0) [16], which for f(0) = 1/2 is given by

(4.7) l = 4cδ−1
[

1 − c−2
(1

2

)γ+1]

(c > 1),

tends to zero as δ → ∞. In term of the viscosity, a shock forms as µ becomes very
large, provided c > 1, under our poroacoustic model. Clearly, this behavior is the

exact opposite of what occurs in classical (i.e., nonporous) gas dynamics, where a

shock forms as µ → 0. As Rajagopal [17] has pointed out, however, one of the key

assumptions underpinning Darcy’s law is that viscous dissipation within the mass of

fluid itself is negligibly small. Thus, from the physical standpoint, letting µ→ ∞ in
this (or any) Darcy-based model will almost certainly yield unrealistic results.

4.3.2. Shock waves: c < 1. As noted earlier, the physical interpretation of the

dual-valued waveforms shown in Fig. 2 is that they represent shock waves. Weakly

nonlinear shock theory can be used, as it is in the case of acoustic traveling waves in

mono-relaxing media, to “correct” the c < 1 case of (3.12), whereby a single-valued,

but discontinuous, expression is obtained.

While an in-depth study of this case cannot be carried out here due to limited

space, we can give, with the help of [16], the shock amplitude expressions predicted

by the weakly nonlinear version of our model. Thus, on expanding about f = 1 and

neglecting the appropriate higher-order terms, it follows that solutions of (3.6) can

be approximated by those of the Abel equation:

(4.8) (σ − f)f ′ = −1

2
cδβ−1f(1 − f), where σ := 1 − 1

2
β−1(1 − c2).

The coefficient of nonlinearity, β (> 1) [2], has been introduced here because (4.8),

being derived under a weakly nonlinear approximation3, is applicable to both gases

and liquids, where β = (γ + 1)/2 in the case of the former; in fact, this ODE can

also be used to determine the acceleration wave amplitudes given below in Subsec-

tion 4.3.3. Thus, the findings reported in the remainder of this section (4) apply to

both gases and liquids, via the fact that they are expressed in terms of β.

Since (4.8) is identical in form to [16, Eq. (11-6.19)], it is a relatively straightfor-

ward matter now to construct the corrected waveform for c < 1 and show that the

3Also known as a “finite-amplitude” approximation, it is based, in the case of homentropic
flow, on the use of the quadratic power series expansion ℘ ≈ ℘0 + ̺0c

2

0[s + (β − 1)s2],
expressed here in dimensional form, and where s is defined in Eq. (2.4), in place of (2.3);
see [11], [2], [4].
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resulting shock amplitudes are given by

[[f ]] =
1 − c2

β
, [[U ]] =

−(1 − c2)

β − (1 − c2)
,(4.9)

[[p]] =
(2β − 1)(1 − c2)

β

[

1 − (β − 1)(1 − c2)

β

]

(c < 1).

Here, f− = 1, since Σ is propagating to the right; f+ = 1 − (1 − c2)/β, where the

condition lim
ξ→0+

f(ξ) = f+ was imposed to place the shock-front at ξ = 0; [[U ]] was

determined using the relation U = 1/f in conjunction with the jump product rule

(4.10) [[AB]] = A+[[B]] + B+[[A]] + [[A]][[B]];

[[p]] was obtained by expanding (3.3)1 about f = 1; and we observe that [[f ]] ∈ (0, 1),

[[U ]] ∈ (−(β − 1)−1, 0), and [[p]] ∈ (0, 1).

4.3.3. Acceleration waves. Along with shock waves, compressible flows can

also support acceleration waves [25], [23]. In the present study, such waves arise only

when c = 1 and correspond to jumps in f ′, g′, etc., across the plane ξ = ξ1(fw).

Making the identification Σ(t) = t + ξ1(fw) and noting that (f ′)− = 0, it can be

shown that

(4.11) [[f ′]] =
δ

2β
, [[g′]] =

δ

2εβ
, [[p′]] =

δ(2β − 1)

2β
(c = 1),

where [[g′]] and [[p′]] were determined using (3.5) and (3.3)2, respectively, along with

the aid of (4.11)1 and (4.10).

In Fig. 5 we give an example of an acceleration wave in the density, where we note

that −f ′ here corresponds to ̺t since c = 1, for the case in which the gas phase is

assumed to be a diatomic gas (e.g., N2 [24, p. 80]) under ordinary conditions. For

these parameter values, the wavefront in Fig. 5 is located at ξ = ξ1(0.5) ≈ −1.355,

which follows from (3.14), and the acceleration wave amplitude is [[f ′]] ≈ 0.417, in

agreement with (4.11)1.

Turning now to Hadamard’s lemma [25], it is not difficult to show that [[̺t]] = −[[f ′]]

and [[ut]] = −[[g′]] when c = 1. Thus, we find that

(4.12) [[ut]] = −α∗ (c = 1),

where α∗ = δ/(2εβ) is a critical amplitude value (see, e.g., [7]).
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Figure 5. f , −f ′ vs. ξ for c = 1.0, γ = 7/5 (i.e., β = 1.2), fw = 0.5, and δ = 1.0. Solid
curve: f vs. ξ. Broken curve: −f ′ vs. ξ.

R em a r k 5. From (4.12) it is clear that the DJM of [7] and the exact model of

the present note predict the same value for the acceleration wave’s magnitude, but

not its amplitude. This discrepancy in sign is easily resolved by observing that U ,
the quantity in the former corresponding to g here, is non-negative, a result of the

fact that U(0) > 0 was assumed in [7].

4.4. Weakly nonlinear theory and connections to other fields

The weakly nonlinear versions of the associated ODEs for f and g are the Abel

equations

(4.13) (σ − f)f ′ = −1

2
cδβ−1f(1 − f) and [(1 − c2) + 2c−1εβg]g′ = −cδg.

Clearly, the former is just (4.8), re-stated here for the reader’s convenience, while

the latter, which except for the coefficient of g on the left-hand side is identical to

its counterpart under the DJM [7, Eq. (9)], is based on the assumption ε|g| ≪ c.

It is noteworthy that, along with problems involving traffic flow and atmospheric

(traveling) waves, (4.13)1 also arises, as the reader might have already inferred, when

considering acoustic traveling waves in mono-relaxing media; see [9] and references

therein. Thus, in the traveling wave context, we see that the weakly nonlinear version

of our poroacoustic model is, from the mathematical standpoint, equivalent to those

of the three examples just cited.
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We close this section with the observation that explicit solutions of (4.13)1 and

(4.13)2 can be expressed approximately [9] and exactly [7], respectively, in terms of

the Lambert W -function, the “W -function” being a recent addition to the family of

special functions which is rapidly being put to use by researchers from many different

fields (see [21], [7], [4], [9] and references therein).

5. Extensions, modifications, and possible future work4

While Darcy’s law is the oldest and best known model of flow in porous media,

it does, as noted in Section 1, have its limitations. Consequently, since the early

part of the 20th century an array of modifications and alternatives to (1.1) have

been proposed, the best known of these being the equations of Forchheimer and

Brinkman.

In situations involving high-velocity flow through porous materials, i.e., the ve-

locity regime in which the inequality in (1.2) is not satisfied, Darcy’s law has been

shown to fail [22], [14]. In such cases, the current consensus in literature is that

Forchheimer’s equation, the most common version of which is [14]

(5.1) ∇P = −
(µχ

K

)

v − ̺(Cfχ
2K−1/2)|v|v,

then becomes the appropriate form of the resistance law. With regards to the present

investigation, it is noteworthy that a precedent supporting the application of (5.1)

to subsonic compressible flows can be found in literature; again, see [1].

However, if a boundary or an interface is present, or if the porosity is very close

to unity, then, as pointed out by Payne et al. [15], there is a school of thought that

contends that Brinkman’s equation (see, e.g., [14] and references therein)

(5.2) ∇P = µ̃χ∇
2
v − (µχK−1)v,

where µ̃ (> 0) is an effective viscosity known as the Brinkman viscosity, should

be used in place of (1.1). With regards to using Brinkman’s equation to describe

poroacoustic phenomena, we refer the reader to [8, Section 5.2], wherein a weakly

nonlinear model, based on the 1D case of (5.2), is presented.

And finally, along with including thermal effects, which can be significant in many

geophysical applications [18], and combining (5.1) and (5.2) into a single resistance

law, one could also re-work the present traveling wave analysis for the case of poroa-

coustic propagation in a gas with pressure dependent viscosity. For as pointed out

4 In this, the final section, we revert back to using dimensional quantities.
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by Málek and Rajagopal [12, p. 383], in the case of a compressible viscous fluid,

µ actually depends on the pressure. As an important step towards carrying out

such a study, we point to the recent article by Kannan and Rajagopal [10]; in it a

generalization of (5.2) is derived, which we term the Brinkman-Kannan-Rajagopal

(BKR) equation, which allows for a pressure-dependent viscosity coefficient.
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