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K Y BE R NE T IK A — VO L UM E 4 6 ( 2 0 1 0 ) , NU MB E R 4 , P AGE S 7 3 0 – 7 5 3

ON COMPUTATION OF C-STATIONARY POINTS

FOR EQUILIBRIUM PROBLEMS

WITH LINEAR COMPLEMENTARITY CONSTRAINTS

VIA HOMOTOPY METHOD

Michal Červinka

In the paper we consider EPCCs with convex quadratic objective functions and one set
of complementarity constraints. For this class of problems we propose a possible gener-
alization of the homotopy method for finding stationary points of MPCCs. We analyze
the difficulties which arise from this generalization. Numerical results illustrate the perfor-
mance for randomly generated test problems.

Keywords: equilibrium problems with complementarity constraints, homotopy, C-statio-
narity

Classification: 90C31, 90C33, 90C20

1. INTRODUCTION

Complementarity problems are in the focus of mathematicians since the formulation
of Karush–Kuhn–Tucker (KKT) conditions in linear and quadratic programming.
These problems arise among constraints of optimization problems, known as mathe-
matical problems with complementarity constraints (MPCCs). MPCCs form an im-
portant subclass of mathematical programs with equilibrium constraints (MPECs),
optimization problems where, among the constraints, there is a special one in the
form of a variational inequality, generalized equation or a complementarity problem.
Many engineering problems, e. g. shape optimization problems with unilateral con-
tact conditions, can be formulated as MPCCs. Such problems occur often also in
economics (e. g. Stackelberg problem, facility location and production problem), in
biology or in chemistry.

In this paper we consider equilibrium problems with complementarity constraints
(EPCCs), a class of problems to find an equilibrium point that simultaneously
solves several MPCCs, each of which are parameterized by decision variables of
other MPCCs. EPCCs, a subclass of equilibrium problems with equilibrium con-
straints (EPECs), were introduced in the past decade and they receive an interest
of mathematicians particularly for their use in the analysis of the market power of
participants in deregulated electricity markets.
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In this paper, we are interested in EPCCs associated with n parametric mathe-
matical programs with convex-quadratic objective function and a linear complemen-
tarity constraint. The value of each objective depends on the vector x := (x1, . . . , xn)
with xi ∈ R

l, i = 1, . . . , n, and on y ∈ R. The ith MPCC is the mathematical pro-
gram in variables xi and y

minimize
xi,y

1

2

(

x
y

)⊤

Qi

(

x
y

)

+ (ci)⊤
(

x
y

)

subject to 0 ≤ Ax + by + a ⊥ y ≥ 0,

(1)

with the symmetric matrix

Qi =

(

Qi
xx Qi

xy

Qi
yx Qi

yy

)

∈ R
(nl+1)×(nl+1),

Qi
xx ∈ R

nl×nl, Qi
xy = (Qi

yx)⊤ ∈ R
nl×1, Qi

yy ∈ R, a row vector A ∈ R
1×nl, vectors

ci ∈ R
nl+1 and real constants a, b ∈ R. The symbol ⊥ denotes orthogonality. Since

in (1) all but variables xi and y are fixed, to ensure convexity of the objective assume
that the square submatrix which results from Qi by deletion of rows and columns
with indices corresponding to components of

x−i := (x1, . . . , xi−1, xi+1, . . . , xn)

is positive definite.
There are only few proposed numerical methods, e. g. nonlinear Jacobi and non-

linear Gauss-Seidel diagonalization methods, sequential nonlinear complementarity
method, cf. [8], which, under certain restrictive conditions, solve EPCCs. As an
alternative to these methods, we aim to modify a piecewise affine homotopy method
(the homotopy method I, [5]) which searches for so-called C-stationary points of
MPCC [6], into a homotopy method for finding stationary points of EPCC, with
main interest lying on so-called C-stationary points of EPCC. We also introduce an
EPCC version of the C-index of nondegenerate C-stationary points. Analogously
to the MPCC case, a vanishing C-index corresponds to a strongly stationary point
which for the EPCC associated with convex MPCCs (1) coincides with a local solu-
tion (equilibrium point).

There are more attractive stationarity concepts for MPCCs to study, e. g., the
mentioned strong stationarity. Also the development of effective numerical methods
which converge to strongly stationary points [2] makes further study of C-stationarity
for MPCCs less important. On the other hand, still very little is known about the
structure of stationary points of EPCCs. From this perspective, the results known
about C-stationarity for MPCCs become a useful tool for the study of EPCCs and
for development of numerical methods for this class of problems.

We admit that studying only EPCCs with only one-dimensional lower-level deci-
sion variable seem too restrictive. Also, in the view of restrictions we impose upon
the data, cf. the next section, nontrivial description of the algorithm and the fact
that the proposed numerical method may not find any C-stationary point even if



732 M. ČERVINKA

there is one, the practical use of our modified homotopy method is questionable.
On the other hand, during the process we gained a detailed, previously unknown
information about the structure of the sets of stationary points and solutions to the
considered class of problems.

The rest of this paper is organized as follows. In section 2 we study genericity
of the key assumptions imposed on the data needed for proper definition of the
homotopy method. Section 3 studies the structure of the set of C-stationary points
of one-parametric EPCCs. We show that although we cannot avoid singularities in a
generic case, with the use of a generic “regularity” assumption these singular points
can be well treated.

In section 4 we design the homotopy method which tracks the boundary of the set
of C-stationary points of one-parametric EPCCs. We also briefly recall the homotopy
method I for MPCCs which we apply to auxiliary MPCC to find an initial feasible
point of an EPCC. Similarly to the MPCC case, this so-called Phase I approach may
fail and as an alternative, one can use a method analyzing the polyhedral patches
of the feasible set of the original problem.

Section 5 is devoted to our numerical results for randomly generated problems.
Interestingly, very often the algorithm finds a stationary point satisfying stronger
conditions of the so-called M-stationarity.

Throughout the paper, the upper index i = 1, . . . , n is used as a reference to
data and variables of the ith MPCC. We denote the rows of a matrix M ∈ R

p×q by
Mi, i = 1, . . . , p. For an index set I ⊂ {1, . . . , p}, MI ∈ R

|I|×q denotes the submatrix
of M composed of rows with indices i ∈ I. Similarly, for a vector v ∈ R

p we denote
by vI ∈ R

|I| a subvector composed of components vi, i ∈ I.

Most of the vectors used in this paper have dimension nl+1 which is the dimension
of (x, y) in (1). To simplify the notation of subvectors of v ∈ R

nl+1, we often use
vxi := vJ , J = {(i − 1)l + 1, . . . , il} for i = 1, . . . , n, and vy := vnl+1. Analogously
for a matrix M ∈ R

nl+1×q, we often use Mxi := MJ , J = {(i − 1)l + 1, . . . , il} for
i = 1, . . . , n, and My := Mnl+1.

2. PARAMETER-FREE PROBLEM

In this paper, we restrict our attention to the simplest form of EPCC constrained
by the lower level problem in the form of a one-dimensional linear complementarity
problem

for a given vector x find y

such that 0 ≤ Ax + by + a ⊥ y ≥ 0.
(2)

We assume that b > 0, which is sufficient for the linear complementarity problem
(2) to be uniquely solvable, [4]. Hence, we are interested in the EPCC (associated
with n MPCCs (1))

minimize
xi,y

1

2

(

x
y

)⊤

Qi

(

x
y

)

+ (ci)⊤
(

x
y

)

subject to 0 ≤ Ax + by + a ⊥ y ≥ 0,

i = 1, . . . , n. (3)
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As it is usual in works concerning complementarity problems, for a feasible point z̄
of the EPCC (3) we define the active index sets associated with the complementarity
problem (2)

I+(x̄, ȳ) =

{

{1} if Ax + by + a > 0,

∅ otherwise,

L(x̄, ȳ) =

{

{1} if y > 0,

∅ otherwise,

I0(x̄, ȳ) =

{

{1} if Ax + by + a = y = 0,

∅ otherwise.

If there is no confusion about the reference point, we write only I+, L and I0. We
denote a+ = |I+(x̄, ȳ)| and a0 = |I0(x̄, ȳ)|.

For i = 1, . . . , n, we say that the MPEC linear independence constraint qualifi-
cation (MPEC-LICQ) holds true at a feasible point (x̄, ȳ) for the ith MPCC (1), if
the (l + 1) × (1 + a0) matrix

(

(A⊤
L∪I0)xi 0I+∪I0

bL∪I0 1I+∪I0

)

has full column rank. The EPEC linear independence constraint qualification (EPEC-
LICQ) is said to hold at (x̄, ȳ), if MPEC-LICQ holds at (x̄, ȳ) for each MPCC (1),
i = 1, . . . , n.

Denote by λi and µi the multipliers of the ith mathematical program (1) corre-
sponding to the constraints Ax+by+a ≥ 0 and y ≥ 0, respectively. The stationarity
concepts of our interest for the ith MPCC (1) differ from the KKT conditions of the
related quadratic program

minimize
xi,y

1

2

(

x
y

)⊤

Qi

(

x
y

)

+ ci⊤

(

x
y

)

subject to Ax + by + a ≥ 0, y ≥ 0

(4)

only in restrictions imposed on multipliers.

Definition 2.1. Let (x̄, ȳ) be feasible for the ith MPCC (1). Then we call (x̄, ȳ)

i) weakly stationary if there exist Lagrange multipliers λ̄i, µ̄i such that (x̄, ȳ, λ̄i, µ̄i)
satisfies the conditions

0 =









(Qi
xx)xi (Qi

xy)xi −(A⊤
L∪I0)xi 0

Qi
yx Qi

yy −bL∪I0 −1I+∪I0

AL∪I0 bL∪I0 0 0
0 1I+∪I0 0 0

















x̄
ȳ

λ̄i
L∪I0

µ̄i
I+∪I0









+









ci
xi

ci
y

aL∪I0

0









;

(5)

ii) C-stationary, if there exist Lagrange multipliers λ̄i, µ̄i such that (x̄, ȳ, λ̄i, µ̄i)
satisfies the conditions (5) and, additionally, λ̄i

I0 µ̄i
I0 ≥ 0;
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iii) M-stationary, if there exist Lagrange multipliers λ̄i, µ̄i such that (x̄, ȳ, λ̄i, µ̄i)
satisfies the conditions (5) and, additionally, either λ̄i

I0 > 0 and µ̄i
I0 > 0 or

λ̄i
I0 µ̄i

I0 = 0;

iv) strongly stationary, if there exist Lagrange multipliers λ̄i, µ̄i such that
(x̄, ȳ, λ̄i, µ̄i) satisfies the conditions (5) and, additionally, λ̄i

I0 ≥ 0 and µ̄i
I0 ≥ 0.

Clearly, we have the following chain of implications:

strongly stationarity ⇒ M-stationarity ⇒ C-stationarity ⇒ weakly stationarity.

If MPEC-LICQ holds true, strong stationarity conditions and hence also all other
above defined stationarity conditions are the first order necessary optimality con-
ditions [6, Theorem 7(1)]. The names “C-” and “M-” come from the fact that the
above statement could be proven when the Clarke and Mordukhovich calculi are
applied, respectively.

The collection of conditions (5) for each i = 1, . . . , n, together into one system of
conditions produces a non-square system of linear equations. Recall that we assume
b > 0 and thus the variable y is uniquely determined by the vector x. We can
therefore treat the variable y in each MPCC separately, denoting it by yi. This
allows us to work with the following system of linear equation with square system
matrix and where, implicitly, variables yi attain the same value for all i = 1, . . . , n:

0 =









Qxx Qxy −ÃL∪I0 0

Qyx Qyy −B̃⊤
L∪I0 −E⊤

I+∪I0

ĀL∪I0 B̃L∪I0 0 0
0 EI+∪I0 0 0

















x̄
ỹ

λ̄L∪I0

µ̄I+∪I0









+









cx

cy

ãI

0









, (6)

where

Qxx :=







(Q1
xx)x1

...
(Qn

xx)xn






∈ R

nl×nl, Qyx :=







Q1
yx

...
Qn

yx






∈ R

n×nl,

Qxy := diag((Q1
xy)x1 , . . . , (Qn

xy)xn) ∈ R
nl×n, Qyy := diag(Q1

yy, . . . , Q
n
yy) ∈ R

n×n,

ÃL∪I0 := diag((A⊤
L∪I0)x1 , . . . , (A⊤

L∪I0)xn) ∈ R
nl×(1−a+)n,

ĀL∪I0 :=







AL∪I0

...
AL∪I0






∈ R

(1−a+)n×nl, B̃L∪I0 := diag(bL∪I0, . . . , bL∪I0) ∈ R
(1−a+)n×n,

EI+∪I0 := diag(1I+∪I0 , . . . , 1I+∪I0) ∈ R
(a++a0)n×n,

ỹ :=







ȳ1

...
ȳn






∈ R

n, λ̃L∪I0 :=







λ̄1
L∪I0

...
λ̄n

L∪I0






∈ R

(1−a+)n,
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µ̃I+∪I0 :=







µ̄1
I+∪I0

...
µ̄n

I+∪I0






∈ R

(a++a0)n, ãL∪I0 :=







aL∪I0

...
aL∪I0






∈ R

(1−a+)n,

cx :=







c1
x1

...
cn
xn






∈ R

nl, and cy :=







c1
y

...
cn
y






∈ R

n.

We illustrate the structure of the system (6) on a simple academic example.

Example 1. Consider the EPCC consisting of the following two MPCCs with
parameters α, β ∈ R:

minimize
x1∈R,y∈R

1

2
(x1, x2, y)⊤





2 1 1
1 2 1
1 1 1









x1

x2

y



 + (1, 0, α)⊤





x1

x2

y





subject to 0 ≤ 2x1 + 2x2 + y − 2⊥ y ≥ 0,

minimize
x2∈R,y∈R

1

2
(x1, x2, y)⊤





3 2 1
2 3 2
1 2 3









x1

x2

y



 + (0, 1, β)⊤





x1

x2

y





subject to 0 ≤ 2x1 + 2x2 + y − 2⊥ y ≥ 0,

E.g., at a feasible point (x̄1, x̄2, ȳ) = (1, 0, 0) both parts of the complementarity
constraint are active, hence I0 = {1} and the system (6) becomes

0 =

























2 1 1 0 −2 0 0 0
2 3 0 2 0 −2 0 0
1 1 1 0 −1 0 −1 0
1 2 0 3 0 −1 0 −1
2 2 1 0 0 0 0 0
2 2 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

















































x̄1

x̄2

ȳ1

ȳ2

λ̄1

λ̄2

µ̄1

µ̄2

























+

























1
1
α
β
−2
−2
0
0

























. (7)

Analogously to the definition of EPEC-LICQ, we define the stationarity concepts
for EPCCs as follows.

Definition 2.2. Let (x̄, ȳ) be feasible for the EPCC (3). Then we call the point
(x̄, ȳ)

i) weakly stationary if there exist Lagrange multipliers λ̄, µ̄ such that (x̄, ȳ, λ̄, µ̄)
satisfies conditions (6);

ii) C-stationary, if there exist Lagrange multipliers λ̄, µ̄ such that (x̄, ȳ, λ̄, µ̄) sat-
isfies conditions (6) and, additionally, λ̄i

I0 µ̄i
I0 ≥ 0, i = 1, . . . , n;
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iii) M-stationary, if there exist Lagrange multipliers λ̄, µ̄ such that (x̄, ȳ, λ̄, µ̄)
satisfies conditions (6) and, additionally, either λ̄i

I0 > 0 and µ̄i
I0 > 0 or

λ̄i
I0 µ̄i

I0 = 0, i = 1, . . . , n;

iv) strongly stationary, if there exist Lagrange multipliers λ̄, µ̄ such that (x̄, ȳ, λ̄, µ̄)
satisfies conditions (6) and, additionally, λ̄i

I0 ≥ 0 and µ̄i
I0 ≥ 0, i = 1, . . . , n.

The following theorem shows that under EPEC-LICQ, the set of strongly sta-
tionary points of EPCC coincide with the set of solutions to EPCC.

Theorem 2.3. Let (x̄, ȳ) be a local equilibrium point of EPCC (3). If EPEC-
LICQ holds at (x̄, ȳ) then it is a strongly stationary point with unique multipliers.
Conversely, a strongly stationary point (x̄, ȳ) is a solution to EPCC.

P r o o f . The first statement of the theorem follows from [6, Theorem 7(1)] applied
to each MPCC (1), i = 1, . . . , n. Since the Lagrangian of each MPCC is strictly
convex, [6, Theorem 7(2)] implies the second statement. �

The following two assumptions imposed on the data of the EPCC (3) are crucial
for the homotopy method to execute each step in a “regular” way.

(A1) EPEC-LICQ holds at each feasible point of the EPCC (3).

(A2) Consider two matrices




Qxx Qxy −ÃL

Qyx Qyy −B̃⊤
L

ĀL B̃L 0



 ,





Qxx Qxy 0
Qyx Qyy −E⊤

I+

0 EI+ 0





and all matrices








Qxx Qxy −(Ã⊤
I0)⊤I 0

Qyx Qyy −(B̃I0)⊤I −(EI0)⊤J
(ĀI0)1 (B̃I0)1 0 0

0 EI0 0 0









,

where the index sets I ⊂ {1, . . . , n} and J ⊂ {1, . . . , n} fulfill |I|+ |J | = n + 1.
Then we suppose that all these matrices are nonsingular.

When we say that some condition imposed upon data or some property of data
holds in generic sense, we mean that it holds for all data in an open and dense subset
of the data space. This notion of “typical data” is particularly attractive if the data
space is endowed with a topology. One of the possibilities how to prove that some
condition holds in a generic sense is to show that data which do not satisfy such
condition or data with undesired property lie in the union of finitely many smooth
manifolds of positive codimensions.

Alternatively, if the data space is endowed with a measure, a property holds in
a generic sense whenever it holds for almost all data with respect to this measure,
cf. [7].

Although the above assumptions on data of the EPCC might appear too restric-
tive, both hold true in generic sense.
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Theorem 2.4. Assumption (A1) holds for all (A, b, a) from some open and dense
subset M∗ of M = {(A, b, a) ∈ R

1×(nl+1) × R
1 × R

1}.

P r o o f . The validity of EPEC-LICQ in generic sense is an immediate consequence
of [7, Theorem 3(1)], which states that MPEC-LICQ holds true in generic sense. �

Theorem 2.5. Assumption (A2) holds for all (Q, A, b, a) from some open and dense
subset N# of N = {(Q, A, b, a) ∈ R

(nl+1)×(nl+1) × R
1×(nl+1) × R

1 × R
1}.

P r o o f . The statement follows from the fact that the set of all matrices M ∈ R
m×n

of rank r ≤ min{m, n} is a smooth manifold of codimension (m−r)(n−r) in R
m×n,

cf. [1]. Thus, each square matrix is nonsingular in generic sense. This completes
the proof. �

In view of Theorems 2.4 and 2.5, we presume that from now on assumptions (A1)
and (A2) are satisfied.

Similarly to [5] we can define a nondegenerate C-stationary point of EPCC as
follows.

Definition 2.6. Let (x̄, ȳ) be a C-stationary point of the EPCC with multipliers λ̄
and µ̄. Then we call (x̄, ȳ) nondegenerate if for each i = 1 . . . , n, and j ∈ I0 the sign
conditions imposed on multipliers are satisfied with strict inequality, i. e., λi

jµ
i
j > 0.

The above condition is usually called the upper-level strict complementarity. Now,
for a nondegenerate C-stationary point, we can introduce the following generalization
of the concept of a C-index from [5].

Definition 2.7. The C-index of a nondegenerate C-stationary point (x̄, ȳ) is the
sum of negative entries of the vector λ̄I0 (or, equivalently, µ̄I0).

Clearly, a nondegenerate C-stationary point is strongly stationary if and only if
its C-index vanishes.

3. A ONE-PARAMETRIC PROBLEM

Let us modify our EPCC such that it will include a one-dimesional real-valued
parameter t. The parametric problem EPCC(t) will then consist of n one-parametric
MPCCs, where the ith MPCC(t), i = 1, . . . , n, is defined by

minimize
xi,y

1

2

(

x
y

)⊤

Qi

(

x
y

)

+ (di(t))⊤
(

x
y

)

subject to 0 ≤ Ax + By + a ⊥ y ≥ 0

(8)

with di(t) := di + t(ci − di), i = 1, . . . , n, for some vectors di ∈ R
nl+1 and t ∈ R.

Later we will describe how the vectors di = di(0), i = 1, . . . , n, are constructed.
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The C-stationary conditions of the EPCC(t) consist of

0 =









Qxx Qxy −ÃL∪I0 0

Qyx Qyy −B̃⊤
L∪I0 −E⊤

I+∪I0

ĀL∪I0 B̃L∪I0 0 0
0 EI+∪I0 0 0

















x
ỹ

λL∪I0

µI+∪I0









+









dx(t)
dy(t)
ãL∪I0

0









(9)

0 ≤ λi
I0µi

I0 , i = 1, . . . , n, (10)

where the vectors dx(t) and dy(t) are composed of components of vectors d1(t), . . .
. . . , dn(t) in the following way

dx(t) =







(d1(t))x1

...
(dn(t))xn






and dy(t) =







(d1(t))y

...
(dn(t))y






.

Note that by choosing t = 1 we arrive at the original EPCC (3) and its corresponding
C-stationarity conditions.

Let us introduce the following sets:

Σeq = {(t, x, y) ∈ R × R
nl × R

1|(x, y) is an equilibrium point of EPCC(t)}

ΣS−stat = {(t, x, y) ∈ R × R
nl × R

1|(x, y) is a strongly stationary point of EPCC(t)}

ΣC−stat = {(t, x, y) ∈ R × R
nl × R

1|(x, y) is a C-stationary point of EPCC(t)}

As mentioned above, we have the relation Σeq ⊂ ΣS−stat ⊂ ΣC−stat and due to
assumption (A1) the first inclusion becomes equality.

For one-parametric as well as parameter-free EPCCs, it does not hold that all
C-stationary points are nondegenerate in generic sense, see Figure below. In our
analysis, we are particularly interested in the following class of singular points.

Definition 3.1. For t̄ ∈ R a C-stationary point (x̄, ȳ) of EPCC(t̄) with multipliers
λ̄, µ̄ is called codimension n singularity (co-n-singularity) if the following conditions
hold

i) Exactly n entries of the vector (λ̄I0 , µ̄I0) vanish.

ii) If I ⊂ {1, . . . , n} and J ⊂ {1, . . . , n} are index sets such that λ̄I 6= 0, µ̄J 6= 0
and |I| + |J | = n, then the matrix









cx − dx Qxx Qxy −(Ã⊤
I0)⊤I 0

cy − dy Qyx Qyy −(B̃I0)⊤I −(EI0)⊤J
0 (ĀI0)1 (B̃I0)1 0 0
0 0 EI0 0 0









is nonsingular.

Further, we call the co-n-singular C-stationary point (x̄, ȳ)

i) 0-singularity, if I 6= ∅, J 6= ∅ and I ∩ J = ∅;
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ii) i-singularity, if |I ∩ J | = i;

iii) exit point, if either I = ∅ or J = ∅.

Note that each co-n-singularity falls to exactly one of the above mentioned cate-
gories.

The homotopy method traces the set ΣC−stat, searching for C-stationary points
of the original problem. In order to design such algorithm, we have to under-
stand the structure of the set ΣC−stat, in particular its local structure around co-
n-singularities. In the following we show that around each type of co-n-singularity,
ΣC−stat admits a different structure.

3.1. 0-singularity

Let us fix a t̄ ∈ [0, 1] and consider first the 0-singular C-stationary point (x̄, ȳ) of
the EPCC(t̄). If I ⊂ {1, . . . , n} and J ⊂ {1, . . . , n} are index sets uniquely defined
by conditions λ̄I 6= 0, µ̄J 6= 0 and |I|+ |J | = n, let Ic and Jc denote the complement
of I and J in {1, . . . , n}, respectively.

Then ΣC−stat can be described locally around (x̄, ȳ) by means of the following n
systems of equations

0 = Hλj (t, x, y, λI∪{j}, µJ )

=











Qxx Qxy −(Ã⊤
I0)⊤I∪{j} 0

Qyx Qyy −(B̃I0)⊤I∪{j} −(EI0)⊤J
(ĀI0)1 (B̃I0)1 0 0

0 EI0 0 0



















x
ỹ

λI∪{j}

µJ









+









dx(t)
dy(t)
ãI∪{j}

0









,

for each j ∈ Ic and

0 = Hµj (t, x, y, λI , µJ∪{j})

=









Qxx Qxy −(Ã⊤
I0)⊤I 0

Qyx Qyy −(B̃I0)⊤I −(EI0)⊤
J∪{j}

(ĀI0)1 (B̃I0)1 0 0
0 EI0 0 0

















x
ỹ
λI

µJ∪{j}









+









dx(t)
dy(t)
ãI

0









,

for each j ∈ Jc.
Clearly, for j ∈ Ic we have Hλj (t̄, x̄, ȳ, λ̄I∪{j}, µ̄J) = 0 and for j ∈ Jc we have

Hµj (t̄, x̄, ȳ, λ̄I , µ̄J∪{j}) = 0. Moreover, each system matrix is nonsingular due to the
assumption (A2).

Hence, locally around t̄ for each j ∈ Ic there exists a locally unique linear function

(xλj (t), yλj (t), λλj (t), µλj (t)) such that

(xλj (t̄), yλj (t̄), λλj (t̄), µλj (t̄)) = (x̄, ȳ, λ̄I∪{j}, µ̄J)

and
Hλj (t, xλj (t), yλj (t), λλj (t), µλj (t)) = 0. (11)
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Analogously, for each j ∈ Jc there exist a locally unique linear function (xµj (t),
yµj (t), λµj (t), µµj (t)).

Around the 0-singularity (t̄, x̄, ȳ), for some ǫ > 0 only a part of the set

Σλj := {(t, xλj (t), yλj (t))|t − t̄ ∈ (−ǫ, ǫ)}

belongs to the set ΣC−stat. This is that part of Σλj , denoted by Σ
λj

+ , where the

sign of multiplier λ
λj

j (t) is the same as the sign of multiplier µ
λj

j (t). Analogously,
the feasible part of the set

Σµj := {(t, xµj (t), yµj (t))|t − t̄ ∈ (−ǫ, ǫ)},

which belongs to ΣC−stat is denoted by Σ
µj

+ .

Theorem 3.2. At a 0-singular C-stationary point (x̄, ȳ) of the EPCC(t̄) with multi-
pliers λ̄, µ̄, for each j ∈ I the linear function (xλj (t), yλj (t), λλj (t), µλj (t)) intersects
transversally at (t̄, x̄, ȳ, λ̄, µ̄) with each linear function (xλk(t), yλk(t), λλk (t), µλk(t)),
k ∈ I \ {j} and (xµk (t), yµk(t), λµk(t), µµk (t)), k ∈ J.

Also for each j ∈ J the linear function (xµj (t), yµj (t), λµj (t), µµj (t)) intersects
transversally at (t̄, x̄, ȳ, λ̄, µ̄) with each linear function (xλk(t), yλk(t), λλk (t), µλk(t)),
k ∈ I and (xµk(t), yµk(t), λµk (t), µµk(t)), k ∈ J \ {j}.

P r o o f . It is sufficient to show that λ̇
λj

j (t̄) := d
dt

λ
λj

j (t̄) 6= 0. Since λ̇λk

j (t̄) = 0,

k ∈ I \ {j} and λ̇µk

j (t̄) = 0, k ∈ J, this would mean that the linear function

(xλj (t), yλj (t), λλj (t), µλj (t)) does not point into the same direction as any of the
other linear functions.

Take derivatives with respect to t in (11). This yields

0 =











Qxx Qxy −(Ã⊤
I0)⊤I∪{j} 0

Qyx Qyy −(B̃I0)⊤
I∪{j} −(EI0)⊤J

(ĀI0)1 (B̃I0)1 0 0
0 EI0 0 0





















ẋλj (t̄)
˙̃yλj (t̄)

λ̇
λj

I∪{j}(t̄)

µ̇
λj

J (t̄)











+









cx − dx

cy − dy

0
0









.

This system of linear equations can equivalently be rewritten to















cx − dx Qxx Qxy −(Ã⊤
I0)⊤I∪{j} 0

cy − dy Qyx Qyy −(B̃I0)⊤
I∪{j} −(EI0)⊤J

0 (ĀI0)1 (B̃I0)1 0 0
0 0 EI0 0 0
0 0 0 (ej)⊤

I∪{j} 0





























1
ẋλj (t̄)
˙̃yλj (t̄)

λ̇
λj

I∪{j}(t̄)

µ̇
λj

J (t̄)















=













0
0
0
0

λ̇
λj

j (t̄)













,
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where ej denotes the jth unit vector of basis in R
n.

By Laplace formula applied to the last row, the latter system matrix is nonsin-
gular, since the matrix









cx − dx Qxx Qxy −(Ã⊤
I0)⊤I 0

cy − dy Qyx Qyy −(B̃I0)⊤I −(EI0)⊤J
0 (ĀI0)1 (B̃I0)1 0 0
0 0 EI0 0 0









is nonsingular for a co-n-singularity. Hence, λ̇
λj

j (t̄) cannot vanish. This proves the
first part.

The proof of the second statement is analogous. �

Theorem 3.3. On a neighborhood of a 0-singular C-stationary point (x̄, ȳ) of the
EPCC(t̄) with multipliers λ̄, µ̄, the set ΣC−stat coincides with a convex hull of the

sets Σ
λj

+ , j ∈ Ic, and Σ
µj

+ , j ∈ Jc. Moreover, all interior points of such a convex hull
share the same value of C-index.

P r o o f . Without loss of generality, it suffices to show that for j, k ∈ J , a convex

hull of Σ
λj

+ and Σλk

+ belongs to ΣC−stat.

Take α ∈ (0, 1) and points (t1, x
(1), y(1)) ∈ Σ

λj

+ , (t2, x
(2), y(2)) ∈ Σλk

+ . Then we
need to show that also

(tα, xα, yα) := α(t1, x
(1), y(1)) + (1 − α)(t2, x

(2), y(2)) ∈ ΣC−stat.

The point (t1, x
(1), y(1), λ(1), µ(1)) solves (9), where multipliers λ(1), µ(1), uniquely

determined by nonvanishing entries given by λλj

I∪{j}(t1), µ
λj

J (t1), respectively, satisfy

conditions (10). Analogously, the point (t2, x
(2), y(2), λ(2), µ(2)) solves (9), where

multipliers λ(2), µ(2), uniquely determined by nonvanishing entries given by

λλk

I∪{k}(t2), µ
λk

J (t2), respectively, satisfy conditions (10).

Then, clearly, conditions (10) are satisfied for λα = αλ(1) + (1 − α)λ(2) and
µα = αµ(1) +(1−α)µ(2). It remains to show that also (tα, xα, yα, λα, µα) solves (9).
To prove the latter statement, it suffices to recall that dx(t) and dy(t) is linear in t.

Taking any α /∈ [0, 1], conditions (10) are violated for λα = αλ(1) + (1 − α)λ(2).
This finishes the proof of both parts of the theorem. �

3.2. i-singularity

At the i-singularity, let k be an index such that λ̄k = µ̄k = 0. Then locally around
(t̄, x̄, ȳ) the whole sets Σλk and Σµk belong to ΣC−stat. This is due to the fact that
µλk

k (t) = 0 and λµk

k (t) = 0 for each t ∈ (−ǫ, ǫ) and the respective kth sign condition

on biactive multipliers is thus satisfied regardless of the signs of λλk

k (t) and µµk

k (t),
respectively.

Theorem 3.2 clearly holds also for i-singularity. Then a convex hull of the

sets Σ
λj

+ , j ∈ Ic \ {k}, Σ
µj

+ , j ∈ Jc \ {k}, {(t, xλk(t), yλk(t))|t − t̄ ∈ [0, ǫ)} and
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{(t, xµk(t), yµk(t))|t − t̄ ∈ [0, ǫ)} as well as a convex hull of the sets Σ
λj

+ , j ∈ Ic \
{k}, Σ

µj

+ , j ∈ Jc\{k}, {(t, xλk(t), yλk(t))|t−t̄ ∈ (−ǫ, 0]} and {(t, xµk(t), yµk(t))|t−t̄ ∈
(−ǫ, 0]} belongs to the set ΣC−stat. We summarize this in the following theorem.

Theorem 3.4. On a neighborhood of an i-singular C-stationary point (x̄, ȳ) of the
EPCC(t̄) with multipliers λ̄, µ̄, the set ΣC−stat coincides with a union of 2i convex
hulls of parts of sets Σλj , j ∈ Ic and Σµj , j ∈ Jc specified above. Moreover, all
interior points of each such convex hull share the same value of C-index.

P r o o f . The proof follows from the same arguments used in the proof of Theorem
3.3 and the observations above. �

3.3. Exit point

Note that there are only two possible exit points (t̄, x̄, ȳ). At the first one with λ̄ = 0,

all sets Σ
λj

+ , j = 1, . . . , n, belong to the set ΣC−stat.
Moreover, the same is true for the feasible part of the set

ΣI+

= {(t, xI+

(t), yI+

(t))|t − t̄ ∈ (−ǫ, ǫ)}

for some ǫ > 0, where the locally unique linear function (xI+

(t), yI+

(t), 0, µI+

(t)) is
defined by the regular system of equations

0 =





Qxx Qxy 0
Qyx Qyy −E⊤

I+

0 EI+ 0









x
y

µI+



 +





dx(t)
dy(t)

0



 .

Analogously, at the other exit point with µ̄ = 0, the sets Σ
µj

+ , j = 1, . . . , n, and
the feasible part of the set ΣL belong to the set ΣC−stat.

Theorem 3.5. At an exit point (x̄, ȳ) of the EPCC(t̄) with multipliers λ̄, µ̄, the

statement of Theorem 3.2 holds true. Moreover, either the linear function (xI+

(t),

yI+

(t), 0, µI+

(t)) intersects at (t̄, x̄, ȳ, λ̄, µ̄) transversally with the linear functions
(xλj (t), yλj (t), λλj (t), µλj (t)), j = 1, . . . , n, or the linear function (xL(t), yL(t), λL(t),
0) intersects at (t̄, x̄, ȳ, λ̄, µ̄) transversally with (xµj (t), yµj (t), λµj (t), µµj (t)), j =
1, . . . , n.

P r o o f . Using the arguments from the proof of Theorem 3.2, we can prove that

at the exit point with λ̄ = 0, for each j = 1, . . . n, the derivative λ̇
λj

j (t̄) 6= 0 while

λ̇I+

j = 0. Similarly, at the second exit point for each j = 1, . . . n, the derivative

µ̇
µj

j (t̄) 6= 0 while µ̇L
j = 0. �

Theorem 3.6. On a neighborhood of the exit point (x̄, ȳ) of the EPCC(t̄) with
multipliers λ̄ = 0 and µ̄ 6= 0, the set ΣC−stat coincides with a union of the feasible

part of ΣI+

and a convex hull of the sets Σ
λj

+ , j = 1, . . . , n.
On a neighborhood of the exit point (x̄, ȳ) of the EPCC(t̄) with multipliers λ̄ 6= 0

and µ̄ = 0, the set ΣC−stat coincides with a union of the feasible part of ΣL and a
convex hull of the sets Σ

µj

+ , j = 1, . . . , n.
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Fig. Co-2-singularities of the EPCC(t).

P r o o f . The proof follows from the same arguments used in the proof of Theorem
3.3 and observations above. �

Clearly, the C-index of nondegenerate C-stationary points can change only at
co-n-singularities which are not 0-singular. We show the change of C-index on the
EPCC from Example 1 with one particular setting of parameters α, β.

Example 1. (continued) Consider the EPCC from Example 1 with α = 3/2 and
β = 1/2 and suppose that dx(t) = (−6,−10)⊤ and dy(t) = (−3,−5)⊤.

Then one can find exactly six co-2-singularities of the EPCC(t): two exit points,
(1/3, 2/3, 0) at t = 2/3 and (1, 0, 0) at t = 0 with multipliers (λ, µ) equal (0,0,1, 1/3)
and (−2,−4, 0, 0), respectively; two 0-singularities, (25/9,−16/9, 0) at t = 8/9 and
(1,0,0) at t = 4/7 with multipliers (2, 0, 0,−8/9) and (0,-6/7,4/7,0), respectively;
and two 1-singularities, (1, 0, 0) at t = 8/11 and (17/9,−8/9, 0) at t = 4/9 with
multipliers (6/11, 0, 8/11, 0) and (0,−2, 0,−4/9), respectively.

All co-2-singularities are depicted on Figure in multiplier spaces; exit points as
boxes, 0-singularities as bullets and 1-singularities as triangles. The shaded area
is the set of all biactive multipliers corresponding to C-stationary points of the
EPCC(t).

The interior points of the bounded piece correspond to multipliers of C-stationary
points with C-index 1. The 1-singularity (1, 0, 0) at t = 8/11 connects this piece
with the one with interior points with vanishing C-index. The other 1-singularity
connects it with the piece with interior points with C-index 2. The latter two pieces
are connected to the parts of the set ΣC−stat of points with vanishing C-index by
exit points.

Notice that slight shifts of the dashed lines in Figure due to small perturbations
of the data eliminate neither the co-2-singularities nor singular C-stationary points
on the border of the shaded area.
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4. HOMOTOPY METHOD

The basic idea of the homotopy method we are about to describe in detail is to
formulate an artificial EPCC by modifying (jointly) objective functions of all MPCCs
in (3) such that a chosen feasible point (x̄, ȳ) becomes strongly stationary. The
parameter t then creates a connection between the original and the artificial problem.

Let (x̄, ȳ) be a feasible point of the EPCC (3) and L, I+ and I0 be the associated
index sets. Based on the structure of the index sets we construct the vector d(0) =
(dx(0), dy(0)).

If L = {1}, then we set µ̄ := 0 and choose a vector λ̄ with arbitrary strictly
positive components. If I+ = {1}, then we set λ̄ := 0 and µ̄ with arbitrary strictly
positive components. If I0 = {1}, we set either µ̄ := 0 and choose a multiplier vector
λ̄ with arbitrary strictly positive components or vice versa. In either case, we use
the following formula to compute the vector d(0).

d(0) := −

(

Qxx Qxy

Qyx Qyy

) (

x̄
ỹ

)

+

(

ÃL∪I0

B̃⊤
L∪I0

)

λ̄ +

(

0
E⊤

I+∪I0

)

µ̄. (12)

Then (x̄, ȳ) is a solution of EPCC(0). To obtain vector d(t), we set

d(t) =

(

dx(t)
dy(t)

)

:=

(

dx(0)
dy(0)

)

+ t

((

cx

cy

)

−

(

dx(0)
dy(0)

))

. (13)

The homotopy method traces the set ΣC−stat starting at t = 0. Note that if
for the initial feasible point the complementarity constraint is biactive, the method
starts at one of the two exit points.

4.1. Overview of the homotopy method I for MPCCs

Before we proceed to the homotopy method in detail, let us summarize the homo-
topy method I from [5] which searches for C-stationary points of convex-quadratic
mathematical programs with linear complementarity constraints.

The program (3) can be converted to the following convex-quadratic MPCC in

variable z =
(

x
i

y

)

minimize
1

2
z⊤Q̄z + c̄⊤z

subject to 0 ≤ Āz + ā ⊥ B̄z + b̄ ≥ 0,
(14)

where

Q̄ =

(

Qi
xixi Qi

xiy

Qi
yxi Qi

yy

)

, c̄ =

(

ci
xi

ci
y

)

+ 2

(

Qxi,x−i

Qy,x−i

)

x̄−i,

Ā = (Axi , b), B̄ = (0, 1), ā = (A⊤
x−i)⊤x̄−i + a, b̄ = 0.

For the purpose of this overview, consider the general problem (14) with matrices
Ā, B̄ ∈ R

m×(l+m).
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Let MPEC-LICQ be satisfied at each feasible point of (14). Given a feasible point
z̄ of the MPCC (14), put λ̄I+ = 0, µ̄L = 0 and

d̄ = −Q̄z̄ + Ā⊤
L∪I0 λ̄L∪I0 + B̄⊤

I+∪I0 µ̄I+∪I0

with some strictly positive values of components of vectors λ̄L∪I0 , µ̄I+∪I0 .
Then z̄ is a local minimizer of the program

minimize
1

2
z⊤Q̄z + (d̄ + t(c̄ − d̄))⊤z

subject to 0 ≤ Āz + ā ⊥ B̄z + b̄ ≥ 0
(15)

for t = 0. Locally around the point (t, z, λ, µ), C-stationary points of MPCC(t + τ)
and their corresponding multipliers are given by





z(τ)
λ(τ)
µ(τ)



 =





z
λ
µ



 + τ





ż

λ̇
µ̇





with




Q̄ −Ā⊤
L∪I0 −B̄⊤

I+∪I0

ĀL∪I0 0 0
B̄I+∪I0 0 0









ż

λ̇
µ̇



 =





c̄ − d̄
0
0



 .

At the start, t is set to zero and the method traces the homotopy path in the
direction of increasing t. The steplength is then determined as the minimal positive
value of τ̄ for which one of the following inequalities vanishes

Āiz(τ) + āi > 0, i ∈ I+,

B̄jz(τ) + b̄j > 0, j ∈ L,

λi(τ) 6= 0, i ∈ I0,

µj(τ) 6= 0, j ∈ I0.

This value can be easily determined using the ratios

qi = −
Āiz + āi

Āiż
, i ∈ I+,

qi = −
λi

λ̇i

, i ∈ I0,

rj = −
B̄jz + b̄j

B̄j ż
, j ∈ L,

rj = −
µj

µ̇j

, j ∈ I0.

Then, if moving forward in t, the method takes the steplength

τ̄ = min({qi ∩ (0, 1 − t), i ∈ I+ ∪ I0, rj ∩ (0, 1 − t), j ∈ L ∪ I0}).
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If this minimum is taken over the empty set, the value t = 1 can be reached
directly and the method terminates with a C-stationary point of the MPCC (14).

If the minimum is attained at some qi, i ∈ I0, then λi(t+τ̄ ) vanishes and biactivity
of constraint i is dropped (i. e., we put the index i to the set I+). The sign of µi(t+τ̄)
then decides about the direction in t for the next step: if µi(t+ τ̄) < 0, the direction
changes. If the minimum is attained at some qi, i ∈ I+, then we add the biactivity of
the constraint i (i. e., we put index i to the set I0) and the sign of multiplier µi(t+ τ̄ )
determines the direction of the next step. For ratios rj we proceed analogously.

If the method currently proceeds in t backwards, the next step is the maximal
negative value of the ratios

τ̄ = max({qi ∩ (−∞, 0), i ∈ I+ ∪ I0, rj ∩ (−∞, 0), j ∈ L ∪ I0}).

If this maximum is taken over the empty set, an infinite step could be taken
to t ց −∞ and the method thus terminates without a solution. Else, analogous
changes in activities are performed.

The method described above depends on the knowledge of initial feasible point
z̄ of MPCC. The following Phase I.a approach uses the homotopy method itself to
provide a feasible point.

Consider the following auxiliary problem in variables z ∈ R
l+m and s ∈ R

minimize
1

2
s2

subject to 0 ≤ (Ā, u − ā)

(

z
s

)

+ ā ⊥ (B̄, v − b̄)

(

z
s

)

+ b̄ ≥ 0
(16)

for some chosen vectors u, v ∈ R
m with 0 ≤ u ⊥ v ≥ 0. Note that the point

(z, s) = (0, 1) is always feasible. Hence we can try to apply the homotopy method I
to (16). If a solution point (z̄, 0) is found, z̄ is a feasible point for MPCC.

If l + 1 ≤ m, the first l + m + 1 components of (u⊤, v⊤) are set to zero and the
remaining components are set to one. However, the Hessian of the objective is only
positive semidefinite and thus the method may not succeed in some cases. Then,
Phase I.b approach is guaranteed to provide either a feasible point or verification of
inconsistency.

In Phase I.b, sometimes called the disjunctive approach [3], we check, using the
Phase I of the simplex method, all 2m polyhedral pieces of the feasible region. Each
such piece is determined by an index set I ⊂ {1, . . . , m} and conditions

ĀIz + āI = 0, ĀIcz + āIc ≥ 0, (17)

B̄Icz + b̄Ic = 0, B̄Iz + b̄I ≥ 0. (18)

If all polyhedral pieces are inconsistent, then the considered MPCC is also incon-
sistent.

Now, we modify this homotopy method I to the EPCC composed of MPCCs (3),
using the knowledge about the structure of the set ΣC−stat around co-n-singular
points.
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4.2. Phase I for EPCC

Analogously to Phase I procedure for MPCCs, we can compute an initial feasible
point of the EPCC either via application of the homotopy method I for MPCCs to
an auxiliary program or via checking each polyhedral piece of the feasible region of
EPCC.

The problem (16) now takes the form of an MPCC in variables x, y and s

minimize
1

2
s2

subject to 0 ≤ (A, b, u − ā)





x
y
s



 + ā ⊥ (0, 1, v)





x
y
s



 ≥ 0
(19)

for some chosen scalars u, v ∈ R with 0 ≤ u ⊥ v ≥ 0. Again, the point (x, y, s) =
(0, 0, 1) is always feasible. Hence, we can try to apply the homotopy method I to
(19). If a solution (x̄, ȳ, 0) is found, (x̄, ȳ) is a feasible point of the EPCC (3).

Similarly, if Phase I.a fails to provide a feasible point, we can apply Phase I.b.
In our case it is enough to check, using the Phase I of the simplex method, just 2
polyhedral pieces of the feasible region. The first one is determined by conditions

Ax + by + a = 0, y ≥ 0,

while the second one by conditions

Ax + by + a ≥ 0, y = 0.

4.3. Overview of the algorithm

From the analysis of the structure of the set ΣC−stat around co-n-singularities, it
is clear that the set ΣC−stat consists of finitely many convex polyhedral pieces:
(one-dimensional) halflines corresponding to index sets I+ and L and n-dimensional
polyhedral sets corresponding to index set I0. It is thus sufficient to design an algo-
rithm which traces all one-dimensional faces of each such convex polyhedral piece;
such procedure would give us full information about the set ΣC−stat, see Example 1.

The description of the algorithm to trace the biactive part of the set ΣC−stat

is significantly more complicated then in the homotopy method I for MPCCs. We
make use of the following lists of points or vectors:

“untreated exit points”: the list of visited exit points for which the corresp-

onding set ΣL
+ or ΣI+

+ was not yet traced

“multiplier signs”: the list of vectors of signs of biactive multipliers,

uniquely determining each convex polyhedral piece

of biactive part of the set ΣC−stat

“co-n-singularities”: the list of visited co-n-singularities

“i-singularities”: the list of visited i-singularities



748 M. ČERVINKA

“biactive C-stationary points”: the list of found C-stationary points in the biactive

part of the set ΣC−stat

“new directions”: the list of directions in which the next step can be

made from the current iterate

“new multiplier signs”: the list of vectors of signs of biactive multipliers, u-

niquely determining polyhedral pieces connected by

i-singularity to previously traced polyhedral piece

of the set ΣC−stat.

At the start of the method, all lists above are empty.
First, we describe the steps of the method based on the initial structure of the

index sets.
Starting the method at (x̄, ȳ) and t = 0 with L = {1} or I+ = {1}, the method

traces the set ΣL
+ or ΣI+

+ in the direction of increasing t up to the respective exit
point. In the former case, we compute the ratio

r = −
y

ẏ

with




Qxx Qxy −ÃL

Qyx Qyy −B̃⊤
L

ĀL B̃L 0









ẋ
ẏ

λ̇



 =





cx − dx(0)
cy − dy(0)

0



 .

For r ≤ 0 or r ≥ 1 we then make a step into t̄ = 1 and terminate with the
solution, else take a step into t̄ = r and add activity of the constraint y ≥ 0. In the
latter case we compute the ratio

q = −
Ax + by + a

Aẋ + bẏ

with




Qxx Qxy 0
Qyx Qyy −E⊤

I+

0 EI+ 0









ẋ
ẏ
µ̇



 =





cx − dx(0)
cy − dy(0)

0



 .

For q ≤ 0 or r ≥ 1 we then make a step into t = 1 and terminate with the solution,
else take a step into t = q and add activity of the constraint Ax + by + a ≥ 0.

Starting the method at (x̄, ȳ) and t = 0 with I0 = {1}, we add the point (x̄, ȳ)
to the list “untreated exit points”, otherwise proceed in the same way as if we got
to one of the exit points by a step described above. The reason for this is that the
method traces the set ΣL

+ or ΣI+

+ at the end of the procedure unless it was already
traced in the step described above.

Each step of the algorithm in the biactive case proceeds by tracing line seg-
ments between two neighboring co-n-singularities or half lines emanating from each
co-n-singularity. Each such line can be generated by fixing n − 1 vanishing mul-
tipliers. In the former case these fixed vanishing multipliers are common to both



On Computation of C-stationary Points for EPCCs via Homotopy Method 749

co-n-singularities. If the index sets of free multipliers are I and J, cf. assumption
(A2), and we are moving in t forward, the method takes the steplength

τ̄ = min({−
λj

λ̇j
∩ (0, 1 − t), j ∈ I,−

λi

λ̇i
∩ (0, 1 − t), j ∈ J}),

where the vectors λ̇I and µ̇I are given by the solution of









Qxx Qxy −(Ã⊤
I0)⊤I 0

Qyx Qyy −(B̃I0)⊤I −(EI0)⊤J
(ĀI0)1 (B̃I0)1 0 0

0 EI0 0 0

















ẋ
ẏ

λ̇I

µ̇J









=









cx − dx(0)
cy − dy(0)

0
0









. (20)

If the minimum is taken over the empty set, t = 1 can be reached directly.
If we are moving in t backwards, the steplength is determined by

τ̄ = max({−
λj

λ̇j
∩ (−∞, 0), j ∈ I,−

λj

λ̇j
∩ (−∞, 0), j ∈ J}).

Now we describe how the algorithm proceeds in the biactive case. First, we add
the vector of signs of the nonzero multiplier vector to the list “multiplier signs”. We
label the exit point to be the “starting point” and initiate the following recursive
procedure called “SearchStep”:

1) If the current iterate is already in the list “co-n-singularities”, terminate “Search-
Step”, else add the iterate to the list.

2) If t = 1, and the iterate for the current vector of multiplier signs is not on the
list “biactive C-stationary points”, add it to the list with information about
the multiplier signs and terminate “SearchStep”.

3) If the current iterate is an i-singularity, and not in the list “i-singularities”,
add it to the list.

4) If the current iterate is an exit point not in the list “untreated exit points”
and is not labeled as “starting point”, add it to the list.

5) Put all possible n directions, determined by the index sets I and J , from the
current iterate to the list “new directions”. As long as the list is nonempty,
execute step 6).

6) For the first direction in the list, determine the direction of the step in t by
the sign of the derivative in variable t of that free multiplier which is vanishing
at the current iterate and the corresponding component of the vector of sings
of multipliers. If they coincide, the method proceeds with the step forward in
t, else we proceed backward in t. Find the steplength. If the next step has a
finite length, initiate the procedure “SearchStep” for the new iterate. Delete
the first entry from the list “new directions”.
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When the first call of “SearchStep” terminates, we have successfully finished the
analysis of the first convex polyhedral patch of the set ΣC−stat. Then, until the list
“i-singularities” is empty, we repeat the following steps:

1) Determine the list “new multiplier signs”.

2) Until the list “new multiplier signs” is empty, repeat the following. If its first
entry is not in the list “multiplier signs”, add it to the list “multiplier signs”,
label the first entry in the list “i-singularities” to be the “starting point”,
empty the list “co-n-singularities” and initiate “SearchStep”. Delete the first
entry in the list “new multiplier signs”.

3) Delete the first entry in the list “i-singularities”.

Now, if the list “untreated exit points” is nonempty, it suffices to check ΣL
+ and

ΣI+

+ not yet investigated .
Following the set of rules above, the algorithm clearly never traces the same

convex polyhedral piece of the set ΣC−stat twice. However, it either terminates after
one step at a nonbiactive C-stationary point or traces only polyhedral pieces of the
set ΣC−stat connected by i-singular and exit points with t < 1.

Theorem 4.1. Let the data of the EPCC (3) satisfy both assumptions (A1) and
(A2). Then the following assertions hold:

i) The algorithm terminates after finitely many steps.

ii) If the list “biactive C-stationary points” is nonempty, the set of all detected
biactive C-stationary points consists of the union of convex hulls of points from
the list “biactive C-stationary points” with the same corresponding vector of
signs of multipliers. Moreover, interior points of each such convex hull consist
of nondegenerate C-stationary points with the same C-index.

P r o o f . The statement of part i) follows from the rules described above. There
are only finitely many co-n-singularities and each convex polyhedral piece of the set
ΣC−stat is traced at most once.

The second statement follows from Theorems 3.3, 3.4 and 3.6. �

Example 1. (continued) Let us choose the initial feasible point (x̄1, x̄2, ȳ, λ̄1,
λ̄2, µ̄1, µ̄2) = (2, 2, 0, 0, 0, 1, 1). Then the computation of d(0) according to (12)
yields (−6,−10,−3,−5)⊤. The application of the homotopy method described above
results in the following three C-stationary points (x1, x2, y): within the biactive case
the algorithm finds points (−2, 3, 0) and (1, 0, 0) with multipliers (λ1, λ2, µ1, µ2)
equal to (0, 3, 5/2, 3/2) and (3/2, 3/2, 1, 0), respectively, and a nondegenerate
C-stationary point (10/3,−8/3, 2/3) with the multiplier vector (17/6, 1/2, 0, 0).

The set of C-stationary points then consists of the union of the point (10/3,−8/3,
2/3) and convex hull of points (−2, 3, 0) and (1, 0, 0). Note that since each point
is even strongly stationary, the set of C-stationary points coincides with the set of
solutions of the EPCC.

On Figure, the crosses and all points on the dark grey line correspond to multi-
pliers of C-stationary points of the EPCC within the biactive case.
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Table. Numerical results for homotopy method.

n l I.a C M S biac #C-s #M-s #S-s #n-biac ∅cpu ∅biac C-s

2 1 86 62 60 50 53 93 83 59 44 0.065 0.925
2 10 85 56 56 43 51 94 79 51 31 0.075 1.235
2 50 78 63 62 46 52 105 89 61 29 0.158 1.462
3 1 76 66 64 53 52 197 141 83 45 0.116 2.923
3 10 85 67 63 40 59 292 177 75 28 0.151 4.475
3 50 89 71 67 45 65 320 191 82 30 0.528 4.462
4 1 83 65 61 44 57 551 298 83 38 0.309 9.000
4 10 80 87 84 56 76 1191 596 163 39 0.732 15.158
4 50 81 83 80 47 74 1369 580 96 38 4.722 17.987
5 1 81 76 72 53 70 1718 817 117 48 0.949 23.857
5 10 85 85 83 39 79 3657 1277 106 35 5.331 45.848
5 50 82 93 92 54 82 5601 1849 187 44 20.018 67.7683
6 1 80 80 73 49 68 7937 1920 138 43 6.136 116.088
6 10 78 92 89 55 81 15962 4818 182 49 30.147 196.457
6 50 92 97 96 55 91 26650 6478 370 43 130.664 292.385
7 1 81 89 84 52 82 57354 9112 533 43 109.848 698.915
7 10 85 98 97 48 91 111419 17564 493 41 353.154 1223.934
7 50 89 98 98 56 94 178385 23136 727 46 1196.385 1897.223

5. NUMERICAL RESULTS

We have tested the performance of the homotopy method for EPCCs associated with
n = 2, . . . , 7, MPCCs with convex-quadratic objective functions and with one linear
complementarity constraint. For each such problem we considered l = 1, 10 and 50
variables on on the upper-level. For each combination of (n, l) we run the method
on hundred randomly generated test problems. The algorithm was implemented in
Matlab 6.5 and tests were performed on a 2.8GHz PC with 1GB RAM. The results
are summarized in Table.

The columns in Table denote the following:

I.a: number of problems, for which Phase I.a succeeded

C: number of problems, for which at least one C-stationary point was found

M: number of problems, for which at least one M-stationary point was found

S: number of problems, for which at least one solution was found

biac: number of problems, for which the method entered the biactive case

#C-s: total number of detected C-stationary points

#M-s: total number of detected M-stationary points

#S-s: total number of detected solutions

#n-biact: total number of detected nonbiactive stationary points

∅cpu: average CPU-time for solved problems in seconds

∅biac C-s: average number of computed C-stationary points in the biactive case.
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We conclude the paper with several remarks.

For each tested problem we applied first the Phase I.a. If it failed to produce
a feasible point of EPCC, the first polyhedral piece in Phase I.b yielded a starting
point for our homotopy method. The first piece corresponds in our case to that
part of feasible set for which the constraint y ≥ 0 is active. We could have, of
course, started immediately with Phase I.b, since for m = 1 this procedure involves
checking only 2 pieces and is thus not that costly as in the case of a high number of
complementarity constraints.

With higher values of n, the method is more likely to find a C-stationary point.
Moreover, only for a very small number of test problems for which a C-stationary
point was found the method failed to find also an M-stationary point. The strongly
stationary points, in our case already the solutions to EPCCs, were found for each
tested combination of (n, l1) roughly for 50 percent of randomly generated test prob-
lems.

The obtained results indicate an interesting fact that EPCCs may possess huge

number of solutions. This brings up several important issues. The most serious one
is the impact of this large cardinality of the solution set on concrete decision making
processes and interpretation of these solutions with respect to the input data.
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Praha 8. Czech Republic

e-mail: cervinka@utia.cas.cz


		webmaster@dml.cz
	2013-09-21T15:45:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




