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KYBERNET IKA — VOLUME 4 6 ( 2 0 1 0 ) , NUMBER 3 , PAGES 5 1 3 – 5 2 3

APPROXIMATIVE SOLUTIONS OF STOCHASTIC
OPTIMIZATION PROBLEMS

Petr Lachout

The aim of this paper is to present some ideas how to relax the notion of the optimal
solution of the stochastic optimization problem. In the deterministic case, ε-minimal so-
lutions and level-minimal solutions are considered as desired relaxations. We call them
approximative solutions and we introduce some possibilities how to combine them with
randomness. Relations among random versions of approximative solutions and their con-
sistency are presented in this paper. No measurability is assumed, therefore, treatment
convenient for nonmeasurable objects is employed.
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Classification: 90C31, 62F12, 60F99

1. INTRODUCTION

We consider a general scheme of the stochastic optimization problem and we address
the question what could mean “a solution” of it. We work on metric spaces and
consider precise and approximate solutions of the stochastic optimization problem.
We do not require measurability in this paper and uniqueness of the optimal solution
is not assumed. Observed data, approximations and considered functions are maps
from probability space to a metric space, only. Therefore, we become to be out
of the standard theory based on the measurability assumption. The theory for
nonmeasurable objects we employ is nicely explained in [8].

Working without the measurability assumption, there are several concepts for
convergences almost surely and in probability. These definitions together with rela-
tions between them can be found in [8], chapter 1.9, pp. 52–56.

Our paper is closely related to the stochastic estimation theory because statistical
estimators are usually defined as a solution of some particular stochastic optimization
problem. For example, the concept of asymptotic minimizers is inspired by [7] where
the authors introduced the Asymptotically Optimal Estimators (AOE).

2. CONSIDERED OPTIMIZATION PROBLEM

We consider an optimization problem written in the form

inf {f (x ;µ0) | x ∈ X } , (1)



514 P. LACHOUT

where µ0 ∈ P . We suppose X to be a metric space, P be a family of probability
measures defined on a metric space Y and f : X × P → R, where R = [−∞,+∞]
denotes the extended real line.

The objective function is known up to unknown probability measure µ0. We
assume a procedure producing an estimation of µ0:

We suppose to observe Zt ∈ Zt at any time t ∈ N. From observed data we con-
struct probability measure µt(• |Zt) on Y. This measure will play role of estimator
for the “true” probability measure µ0.

Typically, we observe a sequence of data Y1, Y2, Y3, . . . . belonging to a metric
space Y. Hence, we group observations available at time t ∈ N in a vector Zt =
(Y1, Y2, . . . , Ykt), Zt = Ykt and µt(• |Zt) =

1
kt

∑kt

i=1 δYi is the empirical measure.
Let us introduce a denotation of objects of our interest. For a given function

f : X → R we are interested in its minimal value

ϕ [f ] = inf {f(x) | x ∈ X } (2)

and in the set of all minimal solutions

Φ 〈f〉 = {x ∈ X | f(x) = ϕ [f ]} . (3)

Having ϕ [f ] ∈ R, we will consider the sets of all ε-minimal solutions

Ψ 〈f ; ε〉 = {x ∈ X | f(x) ≤ ϕ [f ] + ε} ∀ ε ∈ R, (4)

and the level sets

lev∆ 〈f〉 = {x ∈ X | f(x) ≤ ∆} ∀ ∆ ∈ R. (5)

Let us note that

Ψ 〈f ; ε〉 = ∅ if ε < 0, Ψ 〈f ; ε〉 6= ∅ if ε > 0,

lev∆ 〈f〉 = ∅ if ∆ < ϕ [f ] , lev∆ 〈f〉 6= ∅ if ∆ > ϕ [f ] .

There is a direct relation between the level-optimal solutions and the ε-optimal
solutions:

Ψ 〈f ; ε〉 = levϕ[f ]+ε 〈f〉 , (6)

lev∆ 〈f〉 = Ψ 〈f ; ∆− ϕ [f ]〉 . (7)

Therefore, results on the ε-optimal solutions can be easily translated to the level-
optimal solutions, and vice versa.

We will need to measure “distance” between sets. Convenient for our purposes
is the excess from set A ⊂ X to set B ⊂ X

excess (A,B) = sup
a∈A

inf
b∈B

d(a, b), (8)

where d is the metric ofX . Let us note that the excess itself is no metric. Nevertheles,
it forms Hausdorff metric

H (A,B) = excess (A,B) + excess (B,A) .
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3. APPROXIMATIVE SOLUTIONS

3.1. Deterministic case

In deterministic case there are two possibilities how to approximate the optimal
solutions of (2). We can consider ε-minimal solutions or level-solutions, i. e. we

consider a sequence θ̂t ∈ X such that either

θ̂t ∈ Ψ 〈f (• ;µt(·|zt)); εt〉 ∀ t ∈ N (9)

or

θ̂t ∈ lev∆t 〈f (• ;µt(·|zt))〉 ∀ t ∈ N. (10)

Our aim is to derive consistency of this sequence.
Let us start with ε-minimal solutions. Let εt ≥ 0, zt ∈ Zt, t ∈ N be given and

denote ε̄ = lim sup
t→+∞

εt . We introduce a set of properties

ϕ [f (• ;µt(·|zt))] ∈ R ∀ t ∈ N, (11)

ϕ [f (• ;µ0)] ∈ R, (12)

lim
t→+∞

ϕ [f (• ;µt(·|zt))] = ϕ [f (• ;µ0)] , (13)

Ψ 〈f (• ;µt(·|zt)); εt〉 6= ∅ ∀ t ∈ N, (14)

Φ 〈f (• ;µ0)〉 6= ∅, (15)

there is a compact K such that (16)

Ψ 〈f (• ;µt(·|zt)); εt〉 ⊂ K ∀ t ∈ N,
Ls {Ψ 〈f (• ;µt(·|zt)); εt〉 , t ∈ N} ⊂ Ψ 〈f (• ;µ0); ε̄〉 , (17)

lim
t→+∞

excess (Ψ 〈f (• ;µt(·|zt)); εt〉 ,Ψ 〈f (• ;µ0); ε̄〉) = 0, (18)

where Ls {At , t ∈ N} denotes the set of all cluster points of the sequence of sets At,
t ∈ N, i. e. set of all points reachable by a sequence atn ∈ Atn , n ∈ N.

These properties imply consistency of ε-minimal solutions.

Proposition 3.1. Let (11) – (18) be fulfilled and a sequence θ̂t, t ∈ N be given by
(9). Then,

ϕ [f (• ;µ0)] ≤ lim inf
t→+∞

f
(
θ̂t ;µt(·|zt)

)
(19)

≤ lim sup
t→+∞

f
(
θ̂t ;µt(·|zt)

)
≤ ϕ [f (• ;µ0)] + ε̄,

the sequence θ̂t, t ∈ N is compact, (20)

Ls
{
{θ̂t} , t ∈ N

}
⊂ Ψ 〈f (• ;µ0); ε̄〉 , (21)

lim
t→+∞

excess
(
{θ̂t},Ψ 〈f (• ;µ0); ε̄〉

)
= 0. (22)
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P r o o f . (19) follows (13) and definition of ε̄, (16) implies (20), (17) implies (21),
and (18) implies (22). �

A set of assumptions giving (11) – (18) is presented in [1].
Similar observation is true for the level-optimal solutions. Let ∆t ∈ R, zt ∈ Zt,

t ∈ N be given and denote ∆̄ = lim sup
t→+∞

∆t . We introduce a set of properties

∆t ≥ ϕ [f (• ;µt(·|zt))] ∈ R ∀ t ∈ N, (23)

ϕ [f (• ;µ0)] ∈ R, (24)

lim
t→+∞

ϕ [f (• ;µt(·|zt))] = ϕ [f (• ;µ0)] , (25)

lev∆t 〈f (• ;µt(·|zt))〉 6= ∅ ∀ t ∈ N, (26)

Φ 〈f (• ;µ0)〉 6= ∅, (27)

there is a compact K such that (28)

lev∆t 〈f (• ;µt(·|zt))〉 ⊂ K ∀ t ∈ N,
Ls {lev∆t 〈f (• ;µt(·|zt))〉 , t ∈ N} ⊂ lev∆̄ 〈f (• ;µ0)〉 , (29)

lim
t→+∞

excess (lev∆t 〈f (• ;µt(·|zt))〉 , lev∆̄ 〈f (• ;µ0)〉) = 0. (30)

Again, these properties imply consistency of level-minimal solutions.

Proposition 3.2. Let (23) – (30) be fulfilled and a sequence θ̂t, t ∈ N be given by
(10). Then,

ϕ [f (• ;µ0)] ≤ lim inf
t→+∞

f
(
θ̂t ;µt(·|zt)

)
(31)

≤ lim sup
t→+∞

f
(
θ̂t ;µt(·|zt)

)
≤ ∆̄,

the sequence θ̂t, t ∈ N is compact, (32)

Ls
{
{θ̂t} , t ∈ N

}
⊂ lev∆̄ 〈f (• ;µ0)〉 , (33)

lim
t→+∞

excess
(
{θ̂t}, lev∆̄ 〈f (• ;µ0)〉

)
= 0. (34)

P r o o f . Using relations (6), (7) we can see that lemma 3.2 coincides with lemma
3.1. Therefore, any new proof is not necessary. �

A set of assumptions presented in [1] is giving (23) – (30) because of (6), (7).

3.2. Randomness

Now, we start to combine approximative solutions with randomness.
We assume a probability space (Ω,A,Prob), f : X × P × Ω → R and εt : Ω → R,

εt > 0, Zt : Ω → Zt for each t ∈ N. Also, “true” probability measure µ0 (•|ω) is
assumed to be dependent on random event ω ∈ Ω.

Let us make a short comment to defend the suggested dependence on randomness.
The random event ω ∈ Ω corresponds to observed data. Therefore for ω ∈ Ω with
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observations of higher computational complexity, the error control εt(ω) must be also
higher. The theoretical probability measure µ0 could naturally depend on random
events. For example, if our observations forms a strictly stationary sequence then
it is known that a limit of their relative frequencies always exists, coincides with
the probability measure µ0, and depends on random events. If the observed data
possess ergodic property (e. g. i.i.d. sequence) then the limit is deterministic.

Considered objects are maps, only. We assume no measurability for them. Now,
convergence can be considered in several senses. We will deal just with three of them:
the convergence almost surely (as), almost uniformly (au), and, in outer probability
(Prob∗). These types of convergences are explained in [8]. For convenience, we
placed basic definitions and properties in Appendix of our paper; see Definition 4.2.

Involving randomness, we can investigate several generalizations of ε-minimal
solutions and level-minimal solutions. Let us mention some of them.

A map θ̂t : Ω → X is called

random ε-minimal solution, whenever,

θ̂t(ω) ∈ Ψ 〈f (• ;µt(· |Zt(ω)), ω); εt(ω)〉 ∀ ω ∈ Ω ∀ t ∈ N,

random level-minimal solution, whenever,

θ̂t(ω) ∈ lev∆t(ω) 〈f (• ;µt(· |Zt(ω)), ω)〉 ∀ ω ∈ Ω ∀ t ∈ N.

Slightly weaker notions are

almost sure ε-minimal solution, if there is ΩO ⊂ Ω with Prob (ΩO) = 1 such that

θ̂t(ω) ∈ Ψ 〈f (• ;µt(· |Zt(ω)), ω); εt(ω)〉 ∀ ω ∈ ΩO ∀ t ∈ N,

almost sure level-minimal solution, if there is ΩO ⊂ Ω with Prob (ΩO) = 1 such that

θ̂t(ω) ∈ lev∆t(ω) 〈f (• ;µt(· |Zt(ω)), ω)〉 ∀ ω ∈ ΩO ∀ t ∈ N.

Following ideas of the Asymptotically Optimal Estimators (AOE) introduced in
[7], we can investigate:

strict asymptotically ε-minimal solution, whenever, there is ΩO ⊂ Ω with Prob (ΩO)
= 1 such that for every ω ∈ ΩO

θ̂t(ω) ∈ Ψ 〈f (• ;µt(· |Zt(ω)), ω); εt(ω)〉 ∀ t ∈ N sufficiently large,

strict asymptotically level-minimal solution, whenever, there is ΩO ⊂ Ω with Prob (ΩO)
= 1 such that for every ω ∈ ΩO

θ̂t(ω) ∈ lev∆t(ω) 〈f (• ;µt(· |Zt(ω)), ω)〉 ∀ t ∈ N sufficiently large,

weak asymptotically ε-minimal solution, whenever,

lim
t→+∞

Prob∗
(
ω ∈ Ω : θ̂t(ω) ∈ Ψ 〈f (• ;µt(· |Zt(ω)), ω); εt(ω)〉

)
= 1,
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weak asymptotically level-minimal solution, whenever,

lim
t→+∞

Prob∗
(
ω ∈ Ω : θ̂t(ω) ∈ lev∆t(ω) 〈f (• ;µt(· |Zt(ω)), ω)〉

)
= 1.

Immediately from the definitions, we see that:

• Random ε-minimal solution ⇒ almost sure ε-minimal solution.

• Almost sure ε-minimal solution ⇒ strict asymptotically ε-minimal solution.

• Strict asymptotically ε-minimal solution ⇒ weak asymptotically ε-minimal
solution.

• Random level-minimal solution ⇒ almost sure level-minimal solution.

• Almost sure level-minimal solution ⇒ strict asymptotically level-minimal so-
lution.

• Strict asymptotically level-minimal solution⇒weak asymptotically level-minimal
solution.

It is sufficient to investigate random ε-minimal solutions and random level-minimal
solutions, only. It is because there is a natural construction converting the other
types of approximative solutions to these two.

Construction:

Choose arbitrary sequence αt : Ω → R, αt > 0. Then, εt(ω) + αt(ω) > 0 and one
can select ξt : Ω → X , t ∈ N such that

ξt(ω) ∈ Ψ 〈f (• ;µt(· |Zt(ω)), ω) ; εt(ω) + αt(ω)〉 ∀ω ∈ Ω, ∀ t ∈ N.

For a map θ̂t : Ω → X we set

ηt(ω) = θ̂t(ω) if θ̂t(ω) ∈ Ψ 〈f (• ;µt(· |Zt(ω)), ω) ; εt(ω)〉
= ξt(ω) otherwise.

The construction produces ηt : Ω → X , t ∈ N fulfilling

ηt(ω) ∈ Ψ 〈f (• ;µt(· |Zt(ω)), ω) ; εt(ω) + αt(ω)〉 ∀ω ∈ Ω, ∀ t ∈ N.

Thus, ηt is a random ε-minimal solution of course for enlarged epsilon εt + αt. If,
moreover, limt→+∞ αt(ω) = 0 then

lim sup
t→+∞

εt(ω) + αt(ω) = lim sup
t→+∞

εt(ω) = ε̄(ω).

Now, we can compare asymptotic properties of θ̂t, t ∈ N and ηt, t ∈ N.
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Theorem 3.3. Let θ̂t : Ω → X be a strict asymptotically ε-minimal solution.

Then, there is ΩO ⊂ Ω with Prob (ΩO) = 1 such that for every ω ∈ ΩO

θ̂t(ω) = ηt(ω) ∀ t ∈ N sufficiently large. (35)

Consequently for every ω ∈ ΩO,

the sequence θ̂t(ω), t ∈ N is compact if and only if (36)

the sequence ηt(ω), t ∈ N is compact,

Ls
{
θ̂t(ω) , t ∈ N

}
= Ls {ηt(ω) , t ∈ N} , (37)

f
(
θ̂t(ω) ;µt(· |Zt(ω)), ω

)
= f (ηt(ω) ;µt(· |Zt(ω)), ω) (38)

for all t ∈ N sufficiently large,

excess
(
{θ̂t(ω)},Ψ 〈f (• ;µ0(ω), ω) ; ε̄(ω)〉

)
(39)

= excess ({ηt(ω)},Ψ 〈f (• ;µ0(ω), ω) ; ε̄(ω)〉)
for all t ∈ N sufficiently large.

P r o o f . The definition of the strict asymptotically ε-minimal solution assumes
ΩO ⊂ Ω with Prob (ΩO) = 1 such that for every ω ∈ ΩO and t ∈ N sufficiently large
the formula (9) is fulfilled. Therefore, for every ω ∈ ΩO

θ̂t(ω) = ηt(ω) ∀ t ∈ N sufficiently large.

Since the sequences coincide for every t ∈ N sufficiently large the rest of Lemma 3.3
follows directly. �

Considering a weak asymptotically ε-minimal solution we are loosing direct rela-
tion. We are not able to compare compactness and cluster points of these sequences.
Nevertheles, some relations remain valid in probability sense.

Theorem 3.4. Let θ̂t : Ω → X be a weak asymptotically ε-minimal solution.

Then,

lim
t→+∞

Prob∗
(
θ̂t = ηt

)
= 1. (40)

Consequently,

lim
t→+∞

Prob∗
(
f
(
θ̂t ;µt(· |Zt), ·

)
= f (ηt ;µt(· |Zt), ·)

)
= 1, (41)

lim
t→+∞

Prob∗
(
excess

(
{θ̂t},Ψ 〈f (• ;µ0, ·) ; ε̄〉

)
(42)

= excess ({ηt},Ψ 〈f (• ;µ0, ·) ; ε̄〉)
)
= 1.
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P r o o f . The definition of weak asymptotically ε-minimal solutions required that
the formula (9) is fulfilled with inner probability tending to 1. Therefore,

lim
t→+∞

Prob∗
(
θ̂t = ηt

)
= 1. (43)

The rest of Lemma 3.4 follows this observation. �

Similar construction can be done for level-minimal solutions.

Construction:

Choose arbitrary sequence αt : Ω → R, αt > 0 such that

∆t(ω) + αt(ω) > ϕ [f (• ;µt(· |Zt(ω)), ω)] ∀ t ∈ N ∀ω ∈ Ω.

Now, one can select ξt : Ω → X , t ∈ N such that

ξt(ω) ∈ lev∆t(ω)+αt(ω) 〈f (• ;µt(· |Zt(ω)), ω)〉 ∀ω ∈ Ω, ∀ t ∈ N.

For a map θ̂t : Ω → X we set

ηt(ω) = θ̂t(ω) if θ̂t(ω) ∈ lev∆t(ω) 〈f (• ;µt(· |Zt(ω)), ω)〉
= ξt(ω) otherwise.

The construction produces ηt, t ∈ N such that

ηt(ω) ∈ lev∆t(ω)+αt(ω) 〈f (• ;µt(· |Zt(ω)), ω)〉 for all t ∈ N, ω ∈ Ω.

Thus, ηt is a random level-minimal solution of course for enlarged level ∆t + αt. If,
moreover, limt→+∞ αt(ω) = 0 then

lim sup
t→+∞

∆t(ω) + αt(ω) = lim sup
t→+∞

∆t(ω) = ∆̄(ω).

Now, we can compare asymptotic properties of θ̂t, t ∈ N and ηt, t ∈ N.

Theorem 3.5. Let θ̂t : Ω → X be a strict asymptotically level-minimal solution.
Then, there is ΩO ⊂ Ω with Prob (ΩO) = 1 such that for every ω ∈ ΩO

θ̂t(ω) = ηt(ω) ∀ t ∈ N sufficiently large. (44)

Consequently for every ω ∈ ΩO,

the sequence θ̂t(ω), t ∈ N is compact if and only if (45)

the sequence ηt(ω), t ∈ N is compact,

Ls
{
θ̂t(ω) , t ∈ N

}
= Ls {ηt(ω) , t ∈ N} , (46)

f
(
θ̂t(ω) ;µt(· |Zt(ω)), ω

)
= f (ηt(ω) ;µt(· |Zt(ω)), ω) (47)

for all t ∈ N sufficiently large,

excess
(
{θ̂t(ω)}, lev∆̄(ω) 〈f (• ;µ0(ω), ω)〉

)
(48)

= excess
(
{ηt(ω)}, lev∆̄(ω) 〈f (• ;µ0(ω), ω)〉

)

for all t ∈ N sufficiently large.
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Theorem 3.6. Let θ̂t : Ω → X be a weak asymptotically level-minimal solution.
Then,

lim
t→+∞

Prob∗
(
θ̂t = ηt

)
= 1. (49)

Consequently,

lim
t→+∞

Prob∗
(
f
(
θ̂t ;µt(· |Zt), ·

)
= f (ηt ;µt(· |Zt), ·)

)
= 1, (50)

lim
t→+∞

Prob∗
(
excess

(
{θ̂t}, lev∆̄ 〈f (· ;µ0, ·)〉

)
(51)

= excess ({ηt}, lev∆̄ 〈f (· ;µ0, ·)〉)
)
= 1.

Theorems above showed to us that asymptotic of θ̂t(ω), t ∈ N is governed by
asymptotic of its counterpart ηt(ω), t ∈ N. More precisely, to receive asymptotic al-
most surely (resp. almost uniformly) for strict asymptotically ε-minimal solutions or
strict asymptotically level-minimal solutions we need to show the same convergence
for its counterparts. Some results in this direction can be found in [1, 2, 5]. Let us
note that in [5] the author calls convergence almost surely “sample-path optimiza-
tion”. To receive asymptotic in outer probability for weak asymptotically ε-minimal
solutions or weak asymptotically level-minimal solutions we need to show the same
convergence for its counterparts. Some results in this direction can be found in [7].

4. APPENDIX – NONMEASURABLE MAPPINGS

This auxiliary section contains basic information on nonmeasurable mappings. Def-
initions and relations are taken from [8], chapter 1.9, pp. 52–56. All proofs can be
found in [8], also.

Definition 4.1. Outer and inner probability of a set B ⊂ Ω are defined by

Prob∗ (B) = inf {Prob (A) | B ⊂ A, A ∈ A} ,
Prob∗ (B) = sup {Prob (A) | B ⊃ A, A ∈ A} .

Outer and inner probability are related with a simple formula

Prob∗ (B) + Prob∗ (Ω \B) = 1.

Definition 4.2. Let X be a metric space with metric d and Xn, X : Ω → X , n ∈ N
be arbitrary maps.

• Xn, n ∈ N converges almost surely to X if

Prob∗

(
lim

n→+∞
d(Xn, X) = 0

)
= 1.

We use notation Xn
as−−−−−→

n→+∞
X .
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• Xn, n ∈ N converges almost uniformly to X if for every ε > 0 there exists a
measurable set Aε ⊂ Ω with Prob (Aε) ≥ 1− ε and
d (Xn, X) −→ 0 uniformly on Aε, i. e. supω∈Aε

d (Xn(ω), X(ω)) −→ 0.

We use notation Xn
au−−−−−→

n→+∞
X .

• Xn, n ∈ N converges in outer probability to X if

for every ε > 0 Prob∗ (d (Xn, X) > ε) → 0.

We use notation Xn
Prob∗−−−−−→

n→+∞
X .

There are known relations among these convergences:

• Xn
au−−−−−→

n→+∞
X implies Xn

as−−−−−→
n→+∞

X ;

• Xn
au−−−−−→

n→+∞
X implies Xn

Prob∗−−−−−→
n→+∞

X .

The implication Xn
as−−−−−→

n→+∞
X implies Xn

au−−−−−→
n→+∞

X is not valid in general. For this

result we have to add measurability or certain kind of “asymptotic measurability”;
see [8] for details.
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