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Abstract. We show that asserting the regularity (in the sense of Rund) of a first-order
parametric multiple-integral variational problem is equivalent to asserting that the differ-
ential of the projection of its Hilbert-Carathéodory form is multisymplectic, and is also
equivalent to asserting that Dedecker extremals of the latter (m+ 1)-form are holonomic.
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1. Introduction

In this paper we continue our study of multiple-integral problems in the calculus

of variations which are parametric, to use the terminology of Giaquinta and Hilde-

brandt [7]: these are problems in which the Lagrangian function is homogeneous in

an appropriate sense, so that the variational integrals are parameter-independent.

Typical single-integral parametric problems are those studied in Finsler geometry.

In previous papers we have shown how to generalize the Hilbert 1-form of Finsler

geometry to the first-order multiple-integral case, so as to obtain a decomposable

form which we called the Hilbert-Carathéodory form [3]; and we have obtained the

conditions on the Lagrangian which result in its Euler-Lagrange equations vanishing

identically, that is, the conditions for the Lagrangian to be null [5]. We have also

discussed the higher-order case [4]; but here as in [3] and [5] we deal only with

first-order problems.

Our purpose in this paper is to investigate what it might be for a first-order

parametric multiple-integral problem to be regular. There are in fact (at least) two
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possible answers to this question to be found in the literature. We wish to pro-

pose a third, and we shall show that despite the fact that these three definitions

of regularity are conceptually quite different, in practical terms they are equiva-

lent.

A single-integral variational problem which is not of parametric type is regular if

the Hessian of the Lagrangian with respect to the velocity variables, considered as

a symmetric bilinear form, is non-degenerate. (To be exact, this is the condition for

local regularity: there is also a concept of global regularity, in which the Legendre

transformation is a global diffeomorphism; local regularity is a necessary but not

a sufficient condition for global regularity. Here however we deal only with local

issues.) In Finsler geometry this condition can never hold for the Hessian of the

Finsler function, because of its homogeneity. For regularity we require the Hessian

of the energy, that is, half the square of the Finsler function, to be non-degenerate

(indeed, positive-definite).

The first of the definitions of regularity for parametric multiple-integral problems

we wish to discuss is based on these observations about Finsler geometry. It was

proposed by Rund in the 1960s [9], [10]. Rund’s idea was to find a power of the

homogeneous Lagrangian which mirrors relevant properties of the Finslerian energy,

and to require its Hessian to be non-degenerate for regularity. He was able in this way

to develop an extensive theory of first-order parametric multiple-integral problems

which generalizes aspects of Finsler geometry.

The second approach to defining regularity for parametric problems is to take

advantage of what is known for non-parametric problems, by destroying parameter

independence by using special, so-called affine, coordinates. In our discussion of this

approach we shall use a formulation of regularity for non-parametric problems given

by Krupková [8], which is based on the ideas of Dedecker [6].

The third concept of regularity under consideration is founded on the important

role that multisymplectic structures play in first-order field theories [1], [2]. A mul-

tisymplectic structure on a manifold consists of a closed form of some order whose

characteristic distribution consists just of the zero vector field. The multisymplectic

structure for a field theory generalizes the symplectic structure which has such a key

function in dynamics. We propose as a third definition of regularity that the exte-

rior derivative of the Hilbert-Carathéodory form should determine a multisymplectic

structure.

We shall show that each of these diverse notions of regularity leads to the same

basic condition—except, as it happens, for single-integral problems, so the remarks

above about analogies between symplectic and multisymplectic structures must be

treated with caution. Indeed, several of our results hold only for problems which are

strictly of multiple-integral type.
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In the next section we shall give the essential background for the study of para-

metric multiple-integral problems, and in Section 3 we discuss the three definitions

of regularity in some detail. In Section 4 we define an object which we call the

structural tensor of the Lagrangian, and in Section 5 we show how the structural

tensor helps us answer the question of when and where the exterior derivative of the

Hilbert-Carathéodory form determines a multisymplectic structure. In the following

section we show that the conditions we derive in Section 5 are equivalent to those

required for the other concepts of regularity.

2. Background

We work on a configuration manifold E of dimension N = m + n. An m-frame at

a point u ∈ E is an ordered linearly-independent set ξ = (ξ1, ξ2, . . . , ξm) of elements

of TuE, and the collection of all m-frames at all points of E is a fibre bundle over E

which we denote by F (m)E and call the m-frame bundle. Thus F (m)E is an open

submanifold of the Whitney sum of m copies of TE. We write (uA) for coordinates

on E and (uA, uA
i ) for coordinates on F (m)E; we emphasize that, whereas the su-

perscript A is a genuine coordinate index, the subscript i simply identifies the i-th

vector ξi in the set. By linear independence, the fibre coordinates are such that the

matrix (uA
i ) has rank m.

The i-th component of the identity map F (m)E → F (m)E is a map Xi :

F (m)E → TE fibred over the projection F (m)E → E, and is therefore a vector field

along that projection called the i-th total derivative. The coordinate expression of

Xi is thus

Xi = uA
i

∂

∂uA
.

The group GL(m)+ of m × m matrices of positive determinant acts on F (m)E,

where the action of a = (aj
i ) ∈ GL(m)+ on F (m)E is given by (uA, uA

i ) 7→

(uA, aj
iu

A
j ). This action makes F (m)E into a principal fibre bundle with group

GL(m)+; we denote the base by S (m)E and call it the m-sphere bundle, since it

generalizes the sphere bundle to which it reduces in the case m = 1. A point of

S (m)E is an oriented m-dimensional contact element at a point of E, or an oriented

m-dimensional subspace of a tangent space to E, of which any corresponding frame

is a consistently oriented basis.

We sometimes relate our constructions to those on the jet bundle of a fibration.

If π : E → M is a fibration where dimM = m then the first jet bundle J1π may

be identified with an open submanifold of S (m)E; the points of S (m)E which are

excluded from J1π are those where the oriented m-dimensional subspace is tangent

to the fibration. In these circumstances, we would work on the corresponding open
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submanifold of F (m)E. When considering such fibrations, we shall assume that the

base manifold M is orientable.

A function L on F (m)E is said to be a homogeneous Lagrangian function if, for

every a ∈ GL(m)+,

L(uA, aj
iu

A
j ) = (det a)L(uA, uA

i ).

Lagrangian functions which are homogeneous in this sense give rise to parametric

variational problems. By differentiating the condition above with respect to aj
i and

evaluating at the identity matrix we find that a homogeneous Lagrangianmust satisfy

uA
i

∂L

∂uA
j

= δj
i L.

The vector fields ∆j
i on F (m)E specified in coordinates by

∆j
i = uA

i

∂

∂uA
j

and vertical over E are defined globally, and are in fact the fundamental vector fields

corresponding to the GL(m)+-action; it follows that the condition ∆j
i (L) = δj

i L is

sufficient, as well as necessary, for L to be homogeneous.

If λ is an m-form on the sphere bundle semi-basic over E, we may use it to define

a homogeneous Lagrangian function L in the following way. The semi-basic property

allows us to take the contraction of λ with vectors at points of E, and so we define

the value of L at a point (ξ1, ξ2, . . . , ξm) of F (m)E to be given by the contraction of

λ with the m component vectors ξi of that point. In terms of the total derivatives

Xi we have

L = λ(X1, X2, . . . , Xm).

Any Lagrangian m-form on the jet bundle J1π of a fibration π : E → M is semi-

basic overM and so may be used in this way to define a Lagrangian function on the

corresponding open subset of F (m)E.

The Hilbert-Carathéodory form Θ of a nowhere-vanishing homogeneous La-

grangian L is the m-form

Θ = L

m∧

i=1

1

L

∂L

∂uA
i

duA;

this definition was given, slightly differently, in [3]. The Hilbert-Carathéodory form

is clearly decomposable and semi-basic over E. Furthermore, Θ is easily seen to

be invariant under the GL(m)+-action, and so defines a semi-basic m-form Θ̃ on

S (m)E. Evidently, from the differential homogeneity condition,

Θ(X1, X2, . . . , Xm) = Θ̃(X1, X2, . . . , Xm) = L;
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the similarity with the formula for constructing L from a semi-basic form on the

sphere bundle or a Lagrangian form on a jet bundle is, of course, no accident.

We can use the Hilbert-Carathéodory form to represent the Euler-Lagrange equa-

tions for L in terms of a field of m-frames Γ = (Γ1, Γ2, . . . , Γm) defined on F (m)E

(that is, as a section of the m-frame bundle ofF (m)E rather than of E), so that each

component Γk is a vector field on F (m)E. We require Γ to satisfy the second-order

condition

Γk = uA
k

∂

∂uA
+ ΓA

jk

∂

∂uA
j

with ΓA
kj = ΓA

jk,

and a straightforward calculation gives

Γ dΘ = (−1)m
( ∂L

∂uA
− Γi

( ∂L

∂uA
i

))
duA,

which indeed will also be evident from the formula for dΘ given in Lemma 1 below.

Thus we say that Γ satisfies the Euler-Lagrange equations for L if Γ dΘ = 0.

Suppose further that Γ̂ is a second field of frames satisfying Γ̂k = Γk + Ai
jk∆j

i

for some functions Ai
jk symmetric in their lower indices; then Γ̂ also satisfies the

second-order condition, and another simple calculation shows that Γ̂ satisfies the

Euler-Lagrange equations exactly when Γ does. In view of the significance of the ∆j
i

explained above, it should be clear that this degree of indeterminacy is just what is

to be expected in a parametric problem.

3. Concepts of regularity

In this section we review in more detail the three concepts of regularity whose

equivalence we demonstrate later.

The first of these concepts applies to a homogeneous Lagrangian L defined on

F (m)E, and is described by Rund in [9, Chapter 4 Section 5]. The idea is to define,

for each such Lagrangian, a suitable metric tensor g as a section of the bundle V ∗ ⊙

V ∗ → F (m)E, where V ⊂ TF (m)E is the bundle of tangent vectors vertical over

E. Thus g may be thought of as specifying, at each point ξ of F (m)E, a symmetric

bilinear form on Vξ, the subspace of TξF
(m)E consisting of vectors annihilated by

the projection onto E. The metric is specified by its formula in coordinates,

gij
AB =

m

2

∂2(L2/m)

∂uA
i ∂uB

j

.

Here (gij
AB) is to be regarded as an m(m + n)×m(m + n) matrix, symmetric for the

interchange of i, A with j, B. It may be checked that the construction is tensorial.
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In the single-integral case such a formula describes the Hessian of the Finslerian

energy. Rund demonstrates that taking the particular power 2/m gives the metric a

homogeneity property analogous to that enjoyed by the Finslerian energy, so that in

the general case we may consider 1
2mL2/m as the ‘energy’ of the Lagrangian. Given

such a metric g, the Lagrangian may be recovered as

L =
( 1

m
uA

i uB
j gij

AB

)m/2

;

again this generalizes the way that a Finsler function can be recovered from the

Hessian of its energy.

When the metric g is everywhere non-degenerate (as a symmetric bilinear form)

we shall say that L is Rund regular, and then we see from the recovery formula that

L must be non-vanishing. In such a case, the fibre coordinates uA
i on F (m)E may

be replaced by ‘momentum’ coordinates pj
B = gij

ABuA
i ; this replacement represents a

local identification of the frame bundle with its dual coframe bundle, and specifies a

corresponding Hamiltonian system. An explicit statement of the Rund regularity of

L is that

det
( ∂2L

∂uA
i ∂uB

j

+
(2 − m)

m

1

L

∂L

∂uA
i

∂L

∂uB
j

)
6= 0;

the expression inside the bracket is just L1−2/mgij
AB.

The other two concepts of regularity are concerned with a certain m-form and

its exterior derivative, defined on the sphere bundle (or perhaps on a suitable open

subset thereof).

The second concept of regularity appears in the work of Dedecker [6], who con-

sidered a first-order variational problem on the bundle of contact elements, where

extremals are submanifolds of E. Given such a problem, Dedecker studied certain

related ‘zeroth-order variational problems’, where the extremals are submanifolds of

the contact bundle itself; he defined a problem of the latter kind to be ‘equivalent’ to

the original problem if its extremals are always prolongations of those of the original

one. A weaker version of this property arises when a certain well-defined subset of

the extremals consists of prolongations.

The sphere bundle is a double cover of the contact bundle, and similar consid-

erations apply in our case. We shall say that a semi-basic m-form θ on S (m)E is

a Lepage form if Z dθ is a contact form whenever Z is a vector field on S (m)E

vertical over E; if λ is some other semi-basic m-form on S (m)E then we say that θ

is a Lepage equivalent of λ if it is a Lepage form and if θ−λ is a contact form. An ori-

ented m-dimensional submanifold U ⊂ E is an extremal of the first-order variational

problem defined by λ if, for any vector field X on E, the restriction of X1 dλ to the

prolonged submanifold U1 ⊂ S (m)E vanishes, where X1 denotes the prolongation
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of X to a vector field on S (m)E. On the other hand, an oriented m-dimensional

submanifold W ⊂ S (m)E is an extremal of the zeroth-order variational problem

defined by θ if, for any vector field Y on S (m)E, Y dθ vanishes when restricted to

W . If θ is a Lepage equivalent of λ and U is an extremal of λ then the prolongation

U1 is an extremal of θ.

Our concern now is with a weak version of the converse. We say that an orientedm-

dimensional submanifold W ⊂ S (m)E is a Dedecker submanifold if every 2-contact

differential form on S (m)E vanishes when restricted to W . Given a non-vanishing

homogeneous Lagrangian function L on F (m)E, the projection Θ̃ of its Hilbert-

Carathéodory form is always a Lepage form on S (m)E, as we shall see shortly; we

shall say that L is Dedecker regular if every extremal W of Θ̃ (as a zeroth-order

problem) which is a Dedecker submanifold is then necessarily a prolongation U1.

To confirm that Θ̃ is a Lepage form on S (m)E, and to establish a coordinate

formula for Dedecker regularity, we use the observation made earlier that for a fi-

bration π : E → M , J1π may be identified with an open submanifold of S (m)E, to

introduce local coordinates on S (m)E. We choose ‘split’ coordinates (xi, yα) on E

where i = 1, . . . , m and α = m + 1, . . . , m + n, thereby fibring E locally, with the

xi coordinates on the (notional) base and the yα coordinates on the (notional) fibre.

The fibre coordinates on S (m)E corresponding to the (notional) fibre coordinates

on J1π → E are denoted by yα
i . So (xi, yα, yα

i ) are local coordinates on S (m)E; it is

coordinates of this type that we meant when we referred to affine coordinates earlier.

In effect, we are identifying a suitable open subset of S (m)E with those m-frames

on E for which

ξi =
∂

∂xi
+ yα

i

∂

∂yα
.

We set L (xi, yα, yα
i ) = L(xi, yα, δj

i , y
α
i ). In these coordinates Θ̃ may be expressed

as

Θ̃ = L

m∧

i=1

(
dxi +

1

L

∂L

∂yα
i

ωα
)

where ωα = dyα − yα
j dxj (see [3], where we have again used slightly different no-

tation; also, these calculations are similar to those in [8]). This m-form is just the

Carathéodory form of the local Lagrangian L dx1 ∧ . . . ∧ dxm and is well known to

be a Lepage form. Expanding the formula for Θ̃, and writing

L
i
α =

∂L

∂yα
i

, L
ij
αβ =

1

L

(∂L

∂yα
i

∂L

∂yβ
j

−
∂L

∂yβ
i

∂L

∂yα
j

)
,

we have

Θ̃ = L dmx + L
i
αωα ∧ dm−1xi + 1

4L
ij
αβωα ∧ ωβ ∧ dm−2xij mod ωα ∧ ωβ ∧ ωγ
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where

dmx = dx1 ∧ . . . ∧ dxm, dm−1xi =
∂

∂xi
dmx, dm−2xij =

∂

∂xj
dm−1xi

and where the factor of a quarter in the final term arises because the implied sum is

over all 1 6 i, j 6 m and m + 1 6 α, β 6 m + n rather than over terms where i < j

and α < β. Thus we get

dΘ̃ =
(∂L

∂yα
−XiL

i
α

)
ωα ∧ dmx +

(∂L i
α

∂yγ
k

−L
ik
αγ

)
dyγ

k ∧ωα ∧ dm−1xi mod ωα ∧ ωβ.

Taking the contraction with Y = ∂/∂yβ
j we obtain

Y dΘ̃ =
(∂L i

α

∂yβ
j

− L
ij
αβ

)
∧ ωα ∧ dm−1xi

and so we see that the condition for Dedecker regularity of L is that

det
( ∂2L

∂yα
i ∂yβ

j

−
1

L

(∂L

∂yα
i

∂L

∂yβ
j

−
∂L

∂yβ
i

∂L

∂yα
j

))
6= 0.

We should perhaps mention that Dedecker’s analysis of regularity is quite general,

and gives different explicit criteria for different Lepage equivalents; the property we

have been discussing should strictly speaking be called Dedecker regularity for the

Carathéodory form.

Our third and final concept of regularity also concerns Θ̃, and is appropriate only

in the case m > 1: it is that dΘ̃ should be a multisymplectic form, and then we

say that L is multisymplectic regular. We may also express this in terms of the

Hilbert-Carathéodory form Θ: it is easy to see (and we shall shortly show) that the

fundamental vector fields ∆j
i are always characteristic vector fields of dΘ, and the

condition for multisymplectic regularity is that the characteristic distribution of dΘ

should be spanned by the ∆j
i .

It is worth making a remark here about the exceptional casem = 1, and comparing

this with a similar situation for the De Donder-Weyl theory for Lagrangians defined

on jet bundles, where again m = 1 is an exceptional case. Let π : E → M be

a fibration, and let λ = L dmx be a Lagrangian m-form (here, we take the split

coordinates (xi, yα) to be genuine fibred coordinates on E). The De Donder-Weyl

theory considers the Cartan form

ΘC = L dmx +
∂L

∂yα
i

(dyα − yα
j dxj) ∧ dm−1xi;
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the appropriate notion of regularity for this form is that the Hessian ∂2L /∂yα
i ∂yβ

j

should be non-degenerate. If the Cartan form is regular, it is equivalent to the

Lagrangian in the sense of Dedecker: the extremals of ΘC are prolongations of the

extremals of λ. In the regular case, dΘC is multisymplectic provided that m > 1, as

may be seen easily in coordinates by taking the contraction with an arbitrary vector

field on J1π. But if m = 1 then dΘC is certainly not symplectic, because it is a

2-form on an odd-dimensional manifold.

A similar situation arises in the homogeneous case, where we consider dΘ on

F (m)E. The fundamental vector fields ∆j
i are always annihilated by dΘ; and so is

any second order frame field Γ satisfying the Euler-Lagrange equations. But in the

case m = 1 a second-order frame field is just a vector field, and so would be a section

of the characteristic distribution linearly independent of the (single) fundamental

vector field.

4. The structural tensor

Our approach to proving the equivalence, for a non-vanishing homogeneous La-

grangian L, of the three definitions of regularity given above will involve the use of

a certain section Q of the bundle V ∗ ⊙ V ∗ → E. This section is in general distinct

from the Rund metric g, although the coordinate formula for Q, which we shall give

below, does appear in slightly different form in Rund’s work [9], [10]. It may be

checked that this coordinate formula does indeed define a tensorial object, and we

call it the structural tensor of the Lagrangian. To determine properties of Q we shall

use a particular class of coordinate systems on F (m)E, and we first define these in

the context of certain local bases of vector fields and 1-forms.

We start with the total derivatives Xi which, as described above, are m linearly

independent globally-defined vector fields along the projection F (m)E → E; we also

have m linearly independent globally-defined semi-basic 1-forms

ϑi =
1

L

∂L

∂uA
i

duA

(this is slightly different from the definition given in [3]) where 〈Xi, ϑ
j〉 = δj

i . We

now extend {Xi} to a local basis {Xi, Xα}, where m + 1 6 α 6 m + n, such that

〈Xα, ϑi〉 = 0. Let

Xα = XA
α

∂

∂uA
,

say: the latter contraction condition is then

∂L

∂uA
i

XA
α = 0.
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Finally, let ϑα be the semi-basic 1-forms which make {ϑi, ϑα} a basis of semi-basic 1-

forms dual to the basis {Xi, Xα}. Since 〈Xi, ϑ
α〉 = 0, the ϑα are necessarily contact

1-forms, and we have

duA = uA
i ϑi + XA

α ϑα.

The special coordinate systems mentioned above, which we now define, will be

of use in setting up such local bases. At each point ξ ∈ F (m)E the matrix (uA
i )

has rank m, so by re-ordering the superscripts A we may define coordinate functions

(which we still call uA
i ) where the m×m matrix (uj

i ) is non-singular at ξ and hence in

some neighbourhood of ξ. We shall therefore restrict attention to coordinate systems

having this property. (To call these ‘special’ coordinate systems is perhaps somewhat

extravagant: given the rank condition, in reality there is little more to them than

notational convenience.) We shall denote the components of the inverse of (uj
i ) by

ūj
i , and set ūj

iu
α
j = vα

i .

In such a coordinate system, the homogeneity condition for the Lagrangian is

uk
j

∂L

∂uk
i

+ uα
j

∂L

∂uα
i

= δi
jL,

so that
∂L

∂uj
i

= ūi
jL − vα

j

∂L

∂uα
i

,

and therefore

ϑi = ūi
jduj +

1

L

∂L

∂uα
i

(duα − vα
j duj).

A natural choice for ϑα is then

ϑα = duα − vα
j duj ,

and with this choice we find that the coefficients XA
α are given by

X i
α = −ui

j

1

L

∂L

∂uα
j

, Xβ
α = δβ

α − uβ
j

1

L

∂L

∂uα
j

.

We now introduce the section Q of the bundle V ∗⊙V ∗ → E, the structural tensor,

by its formula in a general coordinate system,

Qij
AB =

∂2L

∂uA
i ∂uB

j

−
1

L

( ∂L

∂uA
i

∂L

∂uB
j

−
∂L

∂uA
j

∂L

∂uB
i

)
;

at each point ξ of F (m)E we may regard the Qij
AB as the components of a symmetric

bilinear form on Vξ, as before. Now by differentiating the homogeneity condition we

obtain
∂2L

∂uA
i ∂uB

j

uB
k = δj

k

∂L

∂uA
i

− δi
k

∂L

∂uA
j

,
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so that

Qij
ABuB

k =
(
δj
k

∂L

∂uA
i

− δi
k

∂L

∂uA
j

)
−

1

L

( ∂L

∂uA
i

(Lδj
k) −

∂L

∂uA
j

(Lδi
k)

)
= 0.

Thus

Q
(
·, ∆j

k

)
= 0,

so that Q annihilates the fundamental vector fields. We shall denote by D the

vertical distribution on F (m)E spanned by the ∆j
i , so that D is a vector subbundle

of V ⊂ TF (m)E; then Q defines a symmetric bilinear form Q̃ on the quotient bundle

V /D , in other words a section of the bundle D⊥ ⊙ D⊥ → F (m)E where D⊥ is the

subbundle of V ∗ consisting of the annihilators of D . Using our special coordinates

we have Qij
Alu

l
k + Qij

Aβuβ
k = 0, or Qij

Al = −Qij
Aβvβ

l , so that

Qij
αl = −Qij

αβvβ
l , Qij

kl = Qij
αβvα

k vβ
l .

Equivalently,

Q = Qij
αβ[duα

i − vα
k duk

i ] ⊙ [duβ
j − vβ

l dul
j ]

where the bracketed 1-forms are equivalence classes modulo semi-basic forms. We

note that [duα
i −vα

k duk
i ] is just the equivalence class of the total derivative Xi(duα −

vα
k duk) and that these equivalence classes span the annihilators of D . The expression

above shows that the Qij
αβ can be regarded as the coefficients of Q̃, which we call the

reduced structural tensor.

5. A condition for multisymplectic regularity

We now use the structural tensor to obtain a condition for the multisymplectic

regularity of a non-vanishing homogeneous Lagrangian for the case m > 1. We start

by obtaining a formula for LdΘ in terms of a basis {ϑi, ϑα} of semi-basic 1-forms, as

described above.

Lemma 1. We have the following formula for LdΘ:

LdΘ = XA
α

( ∂L

∂uA
− uB

i

∂2L

∂uB∂uA
i

)
ϑα ∧ Θ + XA

α XB
β

∂2L

∂uA∂uB
i

ϑα ∧ ϑβ ∧ Θi

+ XA
α

∂2L

∂uA
i ∂uB

j

duB
j ∧ ϑα ∧ Θi,

where Θi = (−1)iLϑ1 ∧ ϑ2 ∧ . . . ϑ̂i . . . ∧ ϑm = Xi Θ, and summation over i (from 1

to m) is intended in the second and third terms.
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P r o o f. We have Θ = Lϑ1 ∧ ϑ2 ∧ . . . ∧ ϑm, whence

dΘ =
1

L
dL ∧ Θ + dϑi ∧ Θi.

Now

dϑi =
1

L

(
− dL ∧ ϑi + d

( ∂L

∂uA
i

)
∧ duA

)
,

and duA = uA
i ϑi + XA

α ϑα, so that

dϑi =
1

L

((
− δi

jdL + uA
j d

( ∂L

∂uA
i

))
∧ ϑj + d

( ∂L

∂uA
i

)
∧ XA

α ϑα
)

=
1

L

(
−

∂L

∂uA
j

duA
i ∧ ϑj + d

( ∂L

∂uA
i

)
∧ XA

α ϑα
)
.

It follows that

LdΘ =
∂L

∂uA
duA ∧ Θ + d

( ∂L

∂uA
i

)
∧ XA

α ϑα ∧ Θi.

Now ϑi ∧ Θ = 0, so we can write

LdΘ =
∂L

∂uA
XA

α ϑα ∧ Θ + d
( ∂L

∂uA
i

)
∧ XA

α ϑα ∧ Θi

=
∂L

∂uA
XA

α ϑα ∧ Θ +
( ∂2L

∂uB∂uA
i

duB +
∂2L

∂uA
i ∂uB

j

duB
j

)
∧ XA

α ϑα ∧ Θi

=
∂L

∂uA
XA

α ϑα ∧ Θ +
( ∂2L

∂uB∂uA
i

(uB
j ϑj + XB

β ϑβ) +
∂2L

∂uA
i ∂uB

j

duB
j

)
∧ XA

α ϑα ∧ Θi

= XA
α

( ∂L

∂uA
− uB

i

∂2L

∂uB∂uA
i

)
ϑα ∧ Θ + XA

α XB
β

∂2L

∂uA∂uB
i

ϑα ∧ ϑβ ∧ Θi

+ XA
α

∂2L

∂uA
i ∂uB

j

duB
j ∧ ϑα ∧ Θi.

�

In the expression above for LdΘ the first two terms are semi-basic. Note that

L(∆j
i dΘ) = XA

α uB
i

∂2L

∂uA
k ∂uB

j

ϑα ∧ Θk

= XA
α

(
δj
i

∂L

∂uA
k

− δk
i

∂L

∂uA
j

)
ϑα ∧ Θk = 0,

in view of the properties of XA
α , so the ∆j

i are characteristic, as we mentioned before.
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The point at issue is whether the exterior derivative of the corresponding La-

grangian form Θ̃ defines a multisymplectic structure on the sphere bundle. The

question is, therefore, if χ is a characteristic vector of dΘ (so that χ dΘ = 0), is it

the case that χ must be a linear combination of the ∆i
j?

The answer hinges on the properties of the final term in the expression for LdΘ,

the one involving duB
j . We shall therefore consider the 1-form

XA
α

∂2L

∂uA
i ∂uB

j

duB
j .

Lemma 2. When expressed in special coordinates,

XA
α

∂2L

∂uA
i ∂uB

j

duB
j = Qij

αβ(duβ
j − vβ

k duk
j ).

P r o o f. We have

X i
α = −ui

j

1

L

∂L

∂uα
j

, Xβ
α = δβ

α − uβ
j

1

L

∂L

∂uα
j

,

from which it follows that

XA
α

∂2L

∂uA
i ∂uB

j

=
∂2L

∂uα
i ∂uB

j

−
1

L

∂L

∂uα
k

uC
k

∂2L

∂uC
i ∂uB

j

=
∂2L

∂uα
i ∂uB

j

−
1

L

∂L

∂uα
k

(
δi
k

∂L

∂uB
j

− δj
k

∂L

∂uB
i

)

= Qij
αB.

The result then follows using the expression for Qij
αl in terms of Q

ij
αβ. �

Theorem 1. For m > 1 the form dΘ̃ defines a multisymplectic structure on

S (m)E if and only if the reduced structural tensor Q̃ is non-degenerate, in other

words if and only if the mn × mn matrix (Qij
αβ) is non-singular.

P r o o f. We need to consider the characteristic vectors of dΘ.

Suppose that dΘ̃ is multisymplectic, so that the only characteristic vectors of dΘ

are the linear combinations of the ∆i
j . Suppose that Qij

αβχβ
j = 0: then if

χ = χβ
j

∂

∂uβ
j

,
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χ is a characteristic vector of dΘ. But if χ is non-zero it cannot be expressed as a

linear combination of the ∆j
i . It follows that (Qij

αβ) is non-singular.

Suppose conversely that (Qij
αβ) is non-singular, and that χ dΘ = 0 with

χ = χiXi + χαXα + χA
i

∂

∂uA
i

.

In the expression for χ dΘ there will be just one term in duB
j ∧ Θi, which comes

from contracting χαXα with the last term in LdΘ. Thus Qij
αβχβ = 0. But then

Qij
αβχβζj = 0 for any ζj , whence χβζj = 0 for any ζj , and χβ = 0.

We may therefore assume that χα = 0: then there remains only one term in χ dΘ

involving duB
j , which is obtained by contracting χiXi with the last term in LdΘ,

and is

χiQjk
αβ(duβ

k − vβ
l dul

k) ∧ ϑα ∧ Θij

where Θij = Xi Θj = −Θji. It follows that χi must satisfy

χiQjk
αβ = χjQik

αβ .

Let Q̄αβ
ij be the coefficients of the inverse matrix, so that Qjk

αβQ̄γβ
lk = δγ

αδj
l . Multiply

through by the inverse:

χiδγ
αδj

l = χjδγ
αδi

l .

Sum over α and γ, and again over j and l, to obtain mχi = χi, whence χi = 0 (for

m 6= 1).

We are left with

χ = χA
i

∂

∂uA
i

,

so that

L(χ dΘ) = Qij
αβ(χβ

j − vβ
k χk

j ) ∧ ϑα ∧ Θi = 0.

Thus χ must satisfy χβ
j = vβ

k χk
j , so that

χA
i

∂

∂uA
i

= χj
i

( ∂

∂uj
i

+ vβ
j

∂

∂uβ
i

)
= χk

i ūj
k∆i

j

as required. �
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6. The other concepts of regularity

We now relate the other two concepts of regularity to the structural tensor Q.

In order to consider Rund regularity it will be convenient to examine a quite

general class of sections P of V ∗ ⊙ V ∗ → F (m)E, with coefficients P ij
AB , namely

those for which

P ij
AB = Qij

AB + Kij
kl

1

L

∂L

∂uA
k

∂L

∂uB
l

for some coefficients Kij
kl , symmetric under the interchange of k, i with l, j. In terms

of our special coordinates, P involves terms of the form

∂L

∂uA
k

[duA
i ] = Lūk

l [dul
i] +

∂L

∂uα
k

[duα
i − vα

l dul
i],

where as before the brackets indicate equivalence classes modulo semi-basic 1-forms.

Set

ωα
i = [duα

i − vα
l dul

i], ωk
i = ūk

l [dul
i] +

1

L

∂L

∂uα
k

ωα
i ;

these 1-form classes are clearly linearly independent and have the same span as the

[duA
i ]. In terms of this basis

P = Qij
αβωα

i ⊙ ωβ
j + LKij

klω
k
i ⊙ ωl

j ,

so that with respect to the ωA
i the matrix of coefficients of P is in block-diagonal

form. Thus P is non-degenerate if and only if both diagonal components are non-

degenerate.

We pointed out earlier that ωα
i = Xi(ϑ

α) modulo semi-basic 1-forms. It is inter-

esting to note in passing that a similar result holds for the relationship between ωk
i

and ϑk.

In the case of interest, where P = L1−2/mg,

Kij
kl =

2

m
δi
kδj

l − δj
kδi

l .

In this case, if V l
j satisfies Kij

klV
l
j = (2/m)δi

k tr V −V i
k = 0 then V must be diagonal;

we find by taking the trace that trV = 0, and therefore V l
j = 0. Thus g will be

non-degenerate, and L will be Rund-regular, if and only if Q̃ is non-degenerate.

One virtue of dealing with P of general form is that it allows us to draw further

conclusions. In particular, consider the case with Kij
kl = δi

kδj
l − δj

kδi
l : now P is just

the Hessian
∂2L

∂uA
i ∂uB

j

.
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If V l
j satisfies Kij

klV
l
j = 0 in this case, then δi

k tr V − V i
k = 0; on taking the trace

this time we find that (m − 1) trV = 0, and therefore V l
j = 0 provided that m 6= 1.

Thus for m > 1, we may equally well say that L is Rund-regular if and only if the

(full) Hessian of L is non-degenerate. This provides yet another insight into Rund’s

theory, of which he was apparently unaware in general terms; it is interesting to note,

however, that for m = 2, g coincides with the Hessian.

We now consider Dedecker regularity. Given the form of the coordinate expression

of the criterion for Dedecker regularity derived earlier, it would be easy to conclude

that nothing much needs to be done here to establish equivalence. However, it must

be borne in mind that that criterion is expressed in terms of L rather than L, and

is supposed to hold in an affine coordinate neighbourhood in S (m)E, rather than on

F (m)E. We now address these differences.

It will be convenient to think of the affine coordinates in terms of a local imbedding

ι of J iπ into F (m)E, given in relation to coordinates (ui, uα, uj
i , u

α
i ) on F (m)E,

split appropriately, by ι(xi, yα, yα
i ) = (xi, yα, δj

i , y
α
i ). The image of ι lies within the

domain of the special coordinates we have been using. Then if L is any homogeneous

Lagrangian on F (m)E, L = L ◦ ι. Conversely, given L , we can find at least locally

a homogeneous Lagrangian L such thatL = L◦ι, by using the homogeneity formula

in the form L(uj
i , u

α
i ) = det(uj

i )L(δj
i , v

α
i ) (suppressing the base coordinates).

Let us denote by Q the tensor occuring in the criterion for Dedecker regularity.

We seek to relate Q and Q.

Now in a neighbourhood in F (m)E in which (uj
i ) is non-singular, we can use vα

i

as a coordinate instead of uα
i . Let us in fact change fibre coordinates to vj

i = uj
i ,

vα
i = ūj

iu
α
j . Then duj

i = dvj
i and duα

i = uj
i dvα

j + vα
j duj

i , so that

∂

∂vα
i

= ui
j

∂

∂uα
j

.

Moreover, ∂/∂vα
i is tangent to the image of ι, and equals ι∗(∂/∂yα

i ) there. Now set

Ľ(vα
i ) = L(δj

i , v
α
i ) = det(uj

i )
−1L(uj

i , u
α
i ). Then

∂Ľ

∂vα
i

= det(uj
i )

−1ui
k

∂L

∂uα
k

,
∂2Ľ

∂vα
i ∂vβ

j

= det(uj
i )

−1ui
kuj

l

∂2L

∂uα
k∂uβ

l

,

so that
∂2Ľ

∂vα
i ∂vβ

j

−
1

Ľ

( ∂Ľ

∂vα
i

∂Ľ

∂vβ
j

−
∂Ľ

∂vα
j

∂Ľ

∂vβ
i

)
= det(uj

i )
−1ui

kuj
l Q

kl
αβ .

We may conclude first that det(uj
i )

−1ui
kuj

l Q
kl
αβ is a function just of vα

i (so far as

dependence on fibre coordinates goes); secondly, that Qij
αβ is non-degenerate every-

where if it is non-degenerate at uj
i = δj

i ; and thirdly, that Q
ij
αβ = Qij

αβ ◦ ι. In fact
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duα
i − vα

j duj
i = uj

i dvα
j , as follows immediately from uα

i = uj
iv

α
j . Thus

Q
ij
αβ [dyα

i ] ⊙ [dyβ
j ] = ι∗(Qij

αβωα
i ⊙ ωβ

j ).

So we see that L is Dedecker-regular exactly when (Qij
αβ) is non-singular. We have

therefore established our main result.

Theorem 2. If L is a non-vanishing homogeneous Lagrangian on F (m)E where

m > 1 then the three conditions of Rund regularity, Dedecker regularity and multi-

symplectic regularity are equivalent.

7. Conclusions

In this paper we have demonstrated a relationship between three apparently dif-

ferent notions of regularity for a parametric variational problem: Rund regularity, on

the one hand, which is a condition on the homogeneous Lagrangian function defined

on F (m)E, and multisymplectic and Dedecker regularities, on the other, which are

conditions on an (m + 1)-form defined on S (m)E. We have also seen that, in some

respects, this relationship for genuine multiple-integral problems is simpler than that

for single-integral problems. It would, however, be too much to expect that a uni-

fied notion of regularity should be appropriate for any parametric multiple-integral

problem.

A comparison with the case of affine jet bundles, considered in [8], is instructive.

In that work, an arbitrary Lepage equivalent of a given Lagrangian m-form is con-

sidered, and it is shown that Dedecker regularity of different forms may give strictly

different results. This is used to advantage by defining a Lagrangian to be regular-

izable if at least one regular Lepage equivalent exists. It is, nevertheless, desirable

for the regularity condition to hold for one of the geometrically-constructed Lepage

equivalents, such as the Carathéodory form or the truncated Cartan form.

In the present context there are two important geometrically-constructedm-forms

associated with a homogeneous Lagrangian: the Hilbert-Carathéodory form consid-

ered above, and the fundamental form described in [5]. Both forms have the same

extremals as the original Lagrangian, but the latter has the advantage that it is closed

precisely when the Lagrangian is null. It would therefore be of interest to compare

the regularity properties of the fundamental form with those described above, and

we hope to do this in some forthcoming work.
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