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Abstract. The notion of Cayley color graphs of groups is generalized to inverse semigroups
and groupoids. The set of partial automorphisms of the Cayley color graph of an inverse
semigroup or a groupoid is isomorphic to the original inverse semigroup or groupoid. The
groupoid of color permuting partial automorphisms of the Cayley color graph of a transitive
groupoid is isomorphic to the original groupoid.
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1. Introduction

A classic result of Frucht says that every finite group is the automorphism group

of some graph. This result follows from the fact that the group of automorphisms

of the Cayley color graph of a finite group is isomorphic to the original group. The

proof of both of these results and a comprehensive discussion of the Cayley color

graph can be found in [7] and [3].

In this paper we generalize the notion of Cayley color graphs to inverse semigroups

and groupoids. We show that if T is an inverse semigroup or a groupoid, then the

set of partial automorphisms of the Cayley color graph of T , with composition and

inverse as the operations, is isomorphic to T . We also show that the groupoid of color

permuting partial automorphisms of the Cayley color graph of a transitive groupoid

G is isomorphic to the semidirect product of G and the subgroup of AutG preserving

the generators of G .

I thank Marc Fabbri for his suggestions.
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2. Preliminaries

An inverse semigroup is a semigroup S with a unique adjoint s∗ for each s ∈ S

satisfying ss∗s = s and s∗ss∗ = s∗. Every inverse semigroup can be represented as

partial bijections of a set. We say that s 6 t if s = ss∗t. The set of idempotents

{ss∗; s ∈ S} of S is a semilattice, with the partial order. Our reference for inverse

semigroups is [5].

A groupoid G is a small category with inverses. That is G is a set with a subset

G (2) of G × G, a product map (x, y) 7→ xy : G (2) → G and an inverse map x 7→

x−1 : G → G such that:

(a) (xy)z = x(yz) for all (x, y), (y, z) ∈ G (2);

(b) (x, x−1) ∈ G (2) for all x ∈ G and x−1(xy) = y, (xy)y−1 = x for all (x, y) ∈ G (2).

The set G (2) is called the set of composable pairs. The domain and range maps

d, r : G → U are defined by d(x) = x−1x and r(x) = xx−1 where U = {xx−1; x ∈ G }

is the set of units of G . Every groupoid is the disjoint union of transitive groupoids,

and every transitive groupoid is the direct product of a groupG and a trivial groupoid

A × A [4]. More precisely a transitive groupoid G is isomorphic to a groupoid

A × G × A where (d, h, c) and (b, g, a) are composable whenever b = c, in which

case their product is (d, hg, a). The inverse of (b, g, a) is (a, g−1, b). The set A can

be chosen to be the unit space of G and the group G is isomorphic to the isotropy

subgroup G u
u = {x; d(x) = u = r(x)} for any unit u of G . Our references for

groupoids are [1], [6].

Let T be an inverse semigroup or a groupoid. A subset ∆ of T generates T if

every element of T can be written as a finite product of elements of ∆.

A color digraph is a possibly infinite directed graph with possible multiple edges

and loops together with a color function defined on the set of edges.

3. The Cayley color graph of an inverse semigroup

In this section S denotes an inverse semigroup and ∆ a set of generators of S.

The Cayley color graph of a group does not have an arrow colored with the inverse

of a generator. Every time we have an arrow with color g joining s and sg, we can

imagine a reversed arrow with color g−1 joining sg and sgg−1 = s. For inverse

semigroups, sgg∗ is not necessarily the same as s. So we may need to include both

the arrows colored with g and g∗.

Definition 3.1. The tail of a vertex v in a color digraph is the set tail(v) of

vertices that can be reached by a finite directed walk starting at v. We say that v is

a head of its tail.
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Note that a tail may have more than one head, and that a tail contains each of its

heads.

Definition 3.2. The Cayley color graph D∆(S) of S with respect to the gener-

ating set ∆ is the color digraph with vertices S and edges

{(s, g, sg); s ∈ S, g ∈ ∆}

such that the edge e = (s, g, sg) connects s to sg and has color g.

Lemma 3.3. If s is a vertex of D∆(S) then tail(s) = {sr; r ∈ S}.

P r o o f. If t ∈ tail(s) then t can be reached from s by a finite directed walk. If

g1, . . . , gn are the colors of the edges in this walk then t = s(g1 . . . gn).

Conversely if t = sr then r = g1 . . . gn for some g1, . . . , gn ∈ ∆ and so t can be

reached from s along a directed walk on edges with colors g1, . . . , gn. �

A Cayley color graph is connected, that is, any vertex t can be reached from any

other vertex s by an undirected walk since tt∗ss∗ = ss∗tt∗ is in the tail of both s

and t. The following example shows that the Cayley color graph is not necessarily

strongly connected.

Example 3.4. The inverse semigroup S = {s, s∗, s∗s, ss∗, 0} generated by ∆ =

{s, s∗} subject to the relation ss = 0, has the following Cayley color graph:
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Note that s∗ cannot be reached from s along a directed walk.

Example 3.5. The bicyclic semigroup [5, II.6.4] is the semigroup with identity

element, generated by ∆ = {s, t} subject to the relation ts = 1. It has the following

Cayley color graph:
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Definition 3.6. A partial automorphism of a Cayley color graph D∆(S) is a

bijection α between two tails of D∆(S), such that α(sg)= α(s)g for all s ∈ dom(α)

and g ∈ ∆.

A partial automorphism is roughly a color preserving isomorphism between two

subgraphs induced by tails.

Lemma 3.7. If α is a partial automorphism of D∆(S) then α(sr) = α(s)r for

all s ∈ dom(α) and r ∈ S.

P r o o f. Since dom(α) is a tail, s ∈ dom(α) implies sr ∈ dom(α). There are

g1, . . . , gn ∈ ∆ with r = g1 . . . gn. Hence

α(sr) = α(sg1 . . . gn) = α(sg1 . . . gn−1)gn = . . . = α(s)g1 . . . gn = α(s)r.

�

Lemma 3.8. If s is a vertex of D∆(S) then ss∗ is the unique idempotent for

which tail(s) = tail(ss∗).

P r o o f. If t ∈ tail(s) then by Lemma 3.3, t = sr for some r and so t = (ss∗)sr

which means that t ∈ tail(ss∗). Conversely, if t ∈ tail(ss∗) then t = ss∗r for some

r ∈ S and so t ∈ tail(s). Hence the idempotent ss∗ is a head for tail(s).

Suppose e and f are both idempotent heads of tail(s). Then e = fr for some

r ∈ S and so e 6 f since fe = ffr = fr = e. Similar argument shows that f 6 e

thus e = f . �

Lemma 3.9. The inverse of a partial automorphism of a Cayley color graph

D∆(S) is also a partial automorphism.

P r o o f. If α is a partial automorphism then

α−1(sg) = α−1(α(α−1(s))g) = α−1(α(α−1(s)g)) = α−1(s)g

for all s ∈ S and g ∈ ∆. �

Lemma 3.10. For all s ∈ S the map αs : tail(s∗) → tail(s) defined by αs(t) = st

is a partial automorphism of the Cayley color graphD∆(S). Furthermore, αs∗ = α−1
s

for all s ∈ S.
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P r o o f. It is clear that αs maps tail(s∗) onto tail(s). αs is injective since if

αs(s
∗t) = αs(s

∗r) then

s∗t = s∗ss∗t = s∗αs(s
∗t) = s∗αs(s

∗r) = s∗ss∗r = s∗r.

αs preserves the color of the edges because αs(tg) = stg = αs(t)g.

The domains of αs∗ and α−1
s are clearly the same. If t ∈ dom(αs∗) then t = sr for

some r ∈ S and so

αs∗(t) = s∗sr = α−1
s (αs(s

∗sr)) = α−1
s (ss∗sr) = α−1

s (sr) = α−1
s (t).

�

Proposition 3.11. Every partial automorphism α of the Cayley color graph

D∆(S) is αs for some s ∈ S.

P r o o f. Let e be the unique idempotent head of domα and s = α(e). We show

that α = αs. The domain of αs is tail(s∗) = tail(s∗s). We have e 6 s∗s since

es∗s = α−1(s)s∗s = α−1(ss∗s) = α−1(s) = e.

Also s∗s 6 e since

s∗se = s∗α(e)e = s∗α(ee) = s∗α(e) = s∗s.

Thus, e = s∗s and so α and αs have the same domain. If t ∈ domα then t = er for

some r ∈ S and so

α(t) = α(er) = α(eer) = α(e)er = st = αs(t).

�

Theorem 3.12. The set of partial automorphisms of D∆(S), with composition

and inverse as the operations, is an inverse semigroup isomorphic to S.

P r o o f. By Proposition 3.11 and Lemma 3.10, the range of the map s 7→ αs

is the set of partial automorphisms, and we have s∗ 7→ α−1
s . This map is clearly

multiplicative so it remains to show that it is injective.

If αs = αt then they have the same domain and so s∗s and t∗t are the same unique

head of this domain. Thus

s = ss∗s = αs(s
∗s) = αt(s

∗s) = αt(t
∗t) = tt∗t = t.

�
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4. The Cayley color graph of a groupoid

In this section G denotes a groupoid and ∆ a set of generators of G .

Definition 4.1. Let ∆ be a set of generators of the groupoid G . The Cayley

color graph D∆(G ) of G with respect to the generating set ∆ is the color digraph

with vertices G and edges

E = {(x, z, xz); x ∈ G , z ∈ ∆, (x, z) ∈ G
(2)}

such that the edge e = (x, z, xz) connects x to xz and has color z.

Example 4.2. If A = {a, b} then the transitive groupoid G = A × Z2 × A has

eight elements. ∆ = {(b, 0, a), (a, 1, b)} is a generating set. The Cayley color graph

has two strongly connected components:

(a, 0, a)
(a,1,b)

// (a, 1, b)

(b,0,a)

��

(b, 0, a)
(a,1,b)

// (b, 1, b)

(b,0,a)

��

(a, 0, b)

(b,0,a)

OO

(a, 1, a)
(a,1,b)
oo (b, 0, b)

(b,0,a)

OO

(b, 1, a)
(a,1,b)
oo

The proofs of the following two lemmas are similar to those of Lemma 3.3 and

Lemma 3.8 respectively.

Lemma 4.3. If x is a vertex of D∆(G ) then tail (x) = {xy; y ∈ G }.

Lemma 4.4. If x is a vertex of D∆(G ) then r(x) is the unique unit of G for

which tail(x) = tail(r(x)).

Note that every tail is strongly connected and every element of a tail is a head of

the tail.

Definition 4.5. A partial automorphism of a Cayley color graph D∆(G ) is a

bijection α between two tails of D∆(G ), such that α(xz) = α(x)z for all (x, z) ∈ G (2)

and z ∈ ∆.

Note that since (x, d(x)) ∈ G (2) we have (α(x), d(x)) ∈ G (2) and so d(α(x)) = d(x)

for all x ∈ dom(α). We are going to use this fact in the proof of Proposition 4.9.

The proofs of the following three lemmas are similar to those of Lemma 3.7,

Lemma 3.9 and Lemma 3.10 respectively.
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Lemma 4.6. If α is a partial automorphism of D∆(G ) then α(xy) = α(x)y for

all x ∈ domα and (x, y) ∈ G
(2).

Lemma 4.7. The inverse of a partial automorphism of a Cayley color graph

D∆(G ) is also a partial automorphism.

Lemma 4.8. For all x ∈ G the map αx : tail(x−1) → tail(x) defined by αx(y) =

xy is a partial automorphism of the Cayley color graphD∆(G ). Furthermore, αx−1 =

α−1
x for all x ∈ G .

Proposition 4.9. Every partial automorphism α of the Cayley color graph

D∆(G ) is αx for some x ∈ G .

P r o o f. Let u be the unique unit of the domain of α and x = α(u). We show

that α = αx. The domain of α is the same as the domain of αx since

dom(αx) = tail(x−1) = tail(x−1x) = tail(d(x)) = tail(d(u)) = tail(u) = dom(α).

If y ∈ dom(α) then y = uy and so

α(y) = α(uy) = α(u)y = xy = αx(y).

�

Theorem 4.10. The set of partial automorphisms of D∆(G ), with composition

and inverse as the operations, is a groupoid isomorphic to G .

P r o o f. By Proposition 4.9 and Lemma 4.8 the range of x 7→ αx is the set of

partial automorphisms, and we have x−1 7→ α−1
x . This map is clearly multiplicative

so it remains to show that it is injective.

If αx = αy then they have the same domain and so x−1x and y−1y are the same

unique unit in this domain. Thus

x = xx−1x = αx(x−1x) = αy(y−1y) = yy−1y = y.

�

Definition 4.11. Let E be a digraph with vertices E0 and edges E1. If c : E1 →

G is a function where G is a groupoid then the skew product graph E ×c G is the

digraph whose vertex set is E0 × G and edge set is {(e, x) ; e ∈ E1, x ∈ G , xc(e) ∈

G (2)}. If e is an edge from v to w, then the edge (e, x) connects (v, x) to (w, xc(e)).
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The group version of the following example can be found in [3, Theorem 2.2.3].

Example 4.12. Let ∆ = {z1, . . . , zn} be a set of generators of G . Let E be

the bouquet of n directed loops with a single vertex E0 = {u} and edges E1 =

{e1, . . . , en}. If c(ei) = zi for all i then the skew product graph E ×c G is isomorphic

to the underlying digraph of the Cayley color graph D∆(G ). The isomorphism

α : E×cG → D∆(G ) is given by the vertex map α(u, x) = x and edge map α(ei, x) =

(x, zi, xzi).

5. The groupoid of color permuting partial automorphisms

In [2] it is shown that the group of color permuting automorphisms of the Cayley

color graph of a group G is the semidirect product of G and a subgroup of AutG. We

prove a similar result for transitive groupoids. In this section G denotes a transitive

groupoid and ∆ a set of generators of G .

Definition 5.1. A color permuting partial automorphism of a Cayley color graph

D∆(G ) is a bijection α between two tails of D∆(G ) and a permutation ̺ of ∆, such

that α(xz) = α(x)̺(z) for all (x, z) ∈ G (2) and z ∈ ∆.

Note that a color permuting partial automorphism is color preserving if ̺ is the

identity permutation.

Let H = {π ∈ AutG ; π(∆) = ∆} be the group containing the automorphisms of

G preserving ∆. Let ι : H → AutG be the canonical embedding. Recall [6] that the

semidirect product G ×ι H is the groupoid G × H where

(x1, π1)(x2, π2) = (x1π1(x2), π1π2)

whenever x1 and π1(x2) are composable, and

(x, π)−1 = (π−1(x−1), π−1).

Lemma 5.2. For all (x, π) ∈ G ×ι H the map α(x,π) : tail(π−1(x−1)) → tail (x)

defined by α(x,π)(y) = xπ(y) is a color permuting partial automorphism α(x,π) of

D∆(G ). Furthermore, α(x,π)−1 = α−1
(x,π) for all (x, π) ∈ G ×ι H .

P r o o f. α(x,π) is clearly a bijection. The restriction ̺ = π | ∆ of π is a

permutation of ∆. If z ∈ ∆ and (y, z) ∈ G
(2) then

α(x,π)(yz) = xπ(yz) = xπ(y)π(z) = α(x,π)(y)̺(z).

690



The domains of α(x,π)−1 and α−1
(x,π) are clearly the same. If y ∈ dom(α(x,π)−1) then

y ∈ tail (x) and so y = xx−1z for some z ∈ G which implies

α(x,π)−1(y) = π−1(x−1)π−1(xx−1z) = π−1(x−1z) = α−1
(x,π)(xx−1z) = α−1

(x,π)(y).

�

Note that r(π−1(x−1)) = π−1(x−1x) is also a head for the domain of α(x,π).

Proposition 5.3. Every color ̺-permuting partial automorphism α of D∆(G )

is α(x,π) for some (x, π) ∈ G ×ι H .

P r o o f. Let u be the unique unit of the domain of α and x = α(u). To define

the automorphism π ∈ H , suppose that y ∈ G and write y = z1 . . . zn for some

z1, . . . , zn ∈ ∆. Since G is transitive, there is a t ∈ dom(α) such that ty ∈ dom(α).

The definition π(y) = ̺(z1) . . . ̺(zn) does not depend on the choice the generators

z1, . . . , zn because if y = w1 . . . wm for some w1, . . . , wm ∈ ∆, then

̺(z1) . . . ̺(zn) = α(t)−1α(t)̺(z1) . . . ̺(zn) = α(t)−1α(tz1 . . . zn)

= α(t)−1α(tw1 . . . wm) = α(t)−1α(t)̺(w1) . . . ̺(wm)

= ̺(w1) . . . ̺(wm).

It is clear that π is an automorphism of G and that π(∆) = ∆.

We show that α = α(x,π). Since α(uu) = α(u)π(u) = xπ(u), we have d(x) = π(u).

The domain of α(x,π) is the tail of π
−1(x−1x) = π−1(d(x)) = u which is the domain

of α. If y ∈ domα then y = uy = uz1 . . . zn for some z1, . . . , zn ∈ ∆ and so

α(y) = α(uz1 . . . zn) = α(u)̺(z1) . . . ̺(zn) = xπ(y) = α(x,π)(y).

�

Theorem 5.4. The set of color permuting partial automorphisms of D∆(G ),

with composition and inverse as the operations, is a groupoid isomorphic to the

semidirect product G ×ι H .

P r o o f. By Proposition 5.3 and Lemma 5.2, the range of the map (x, π) 7→ α(x,π)

is the set of color permuting partial automorphisms, and we have (x, π)−1 7→ α−1
(x,π).

This map is multiplicative because if (x1, π1) and (x2, π2) are composable then the

domain of α(x1,π1)(x2,π2) = α(x1π1(x2),π1π2) is the tail of (π1π2)
−1(d(x1π1(x2))) =

π−1
2 (x−1

2 x2) which is the domain of α(x1,π1). Also if y is in this domain then

α(x1,π1)(x2,π2)(y) = α(x1π1(x2),π1π2)(y) = x1π1(x2)π1(π2(y))

= x1π1(x2π2(y)) = α(x1,π1)(α(x2,π2)(y)).
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It remains to show that our map is injective. If α(x,π) = α(y,ξ) then they have the

same domain and so π−1(x−1x) = ξ−1(y−1y). Thus

x = xπ(π−1(x−1x)) = α(x,π)(π
−1(x−1x)) = α(y,ξ)(ξ

−1(y−1y)) = yξ(ξ−1(y−1y)) = y.

Also, if z ∈ G then tz ∈ dom(α(x,π)) for some t ∈ G and so

π(z) = π(t)−1x−1xπ(t)π(z) = (α(x,π)(t))
−1α(x,π)(tz)

= (α(y,ξ)(t))
−1α(y,ξ)(tz) = ξ(t)−1y−1yξ(t)ξ(z) = ξ(z).

�

Example 5.5. If G = {x, x−1, xx−1, x−1x} is the trivial groupoid with two units

and the generating set is ∆ = {x, x−1} then H is isomorphic to Z2. G ×ι H is

isomorphic to the groupoid A × Z2 × A of Example 4.2. The Cayley color graph of

G has two components:

x−1x
x−1

//
x−1

x
oo x

x−1

//
xx−1

x
oo
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