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NUMERICAL MODELLING OF SEMI-COERCIVE BEAM PROBLEM
WITH UNILATERAL ELASTIC SUBSOIL OF WINKLER’S TYPE*
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Abstract. A non-linear semi-coercive beam problem is solved in this article. Suitable
numerical methods are presented and their uniform convergence properties with respect to
the finite element discretization parameter are proved here. The methods are based on the
minimization of the total energy functional, where the descent directions of the functional
are searched by solving the linear problems with a beam on bilateral elastic “springs”.
The influence of external loads on the convergence properties is also investigated. The
effectiveness of the algorithms is illustrated on numerical examples.
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1. INTRODUCTION

The semi-coercive problem of a beam on a unilateral elastic subsoil means to min-
imize a convex, differentiable and non-linear functional. The functional is coercive
only if additional assumptions on external loads are formulated. The solvability and
the finite element approximation of the problem have been investigated in [10]. There
are some methods how to numerically solve the class of such problems. The methods
based on linear complementarity are presented in [5]. The augmented Lagrangian
method with different finite elements and meshes for the beam and the subsoil is
investigated in [6], [7]. The methods for quadratic programming can also be used
due to the dual formulations of the problems, see [9].

In this article, the total energy functional is minimized so that the descent di-
rections of the functional are searched by solving the linear problems with a beam

* The author would like to thank for the support from the grant 1ET400300415 of the
Academy of Sciences of the Czech Republic.
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on bilateral elastic “springs”. We obtain the so-called “descent direction method
without projection” and prove its uniform convergence properties with respect to
refinement of the partition. Since the problem is only semi-coercive, it is also useful
to investigate the influence of the load on the convergence. Mainly for “unstable”
cases of the load, the rate of convergence can be improved by adding the so-called
“projection” step. We obtain the “descent direction method with projection”, which
has the same convergence properties as the former method.

In Section 2, the formulations of the problem, its approximation and the basic
results of the article [10] are summarized. Moreover, two useful lemmas are added.
In Section 3, auxiliary linear problems with bilateral elastic “springs” are defined and
their uniform properties are derived. In Section 4, the descent direction methods with
and without projection are introduced and their uniform convergence properties are
proved. In Section 5, the approximated problem and algorithms are rewritten to
their algebraical forms and the reason of the “projection” step is explained. And in
Section 6, the effectiveness of the algorithms is illustrated by numerical examples.

2. OVERVIEW OF THE SEMI-COERCIVE BEAM PROBLEM ON
UNILATERAL ELASTIC SUBSOIL

2.1. Notation

We will use the Lebesgue spaces LP(f2), p = 2,00, Sobolev spaces H*(Q)) =
Wk2(Q), k = 0,1,2,3,4, and the spaces of continuously differentiable func-
tions C*(Q), where  is an open, bounded and non-empty interval in R'. The
spaces are described in the book [1]. Their standard norms are denoted as || - ||5.0,
[ lk2,.2 and || - [|or ), respectively. The ith seminorms, i = 0,1,...,k, of the
spaces H*(Q) are denoted as | - |; 2.o. The space of polynomials of the kth degree is
denoted as P.

Since we will mainly use the interval Q := (0,1) throughout the article, we will
denote the norms and seminorms of the Sobolev spaces H*(Q), k = 0,1,2,3,4,
without the symbol €2 for this particular choice of the interval.

With respect to the well-known imbedding theorem for the Sobolev space H?(f2),
see [1], we will assume that the functions v € H?(Q) also belong to C'(Q) to define
the values v(z), v/'(z), = € Q.

2.2. Setting of the problem

We consider a beam of the length [ with free ends which is situated in the interval
Q = (0,1), and assume that the beam is supported by a unilateral elastic subsoil
in the interval Qg := (2, 2,), 0 < 2; < 2, < I. Such a subsoil is active only if the
beam deflects against it. Let F, I and ¢ denote functions that represent, respectively,
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Young’s modulus of the beam material, the inertia moment of the cross-section of the
beam, and the stiffness coefficient of the subsoil. The aim is to find the deflection w*
of the axes of the beam caused by the beam load. The situation is depicted in Fig. 1.

AY

AT

Figure 1. Scheme of the subsoiled beam with axes orientation.

We will assume that the functions F, I, ¢ belong to the Lebesgue space L>°(Q)
and there exist positive constants Fy, Iy and gg such that

E(z) 2 Ey, I(z) 2 Iy ae. in Q, and g¢(z) > qo a.e. in Q.
Then we can define forms
a(vy,vs) / ElIv]vyde, wi,ve € HX(Q),

b(v1,v2) == / quivadx, vy, vy € HY(Q),
Qs
to represent the work of the inner forces and the subsoil, respectively. The forms a,
b are bilinear and bounded on the space H?((2).

The space of all continuous and linear functionals defined on H?(Q) will be de-
noted V* and its corresponding norm by || - ||.. The work of the beam load will be
represented by a functional L € V*.

The total potential energy functional for the problem has the form

(2.1) J(v) == %(a(v,v) +b(v",v7)) — L(v), veH*Q).

The functional J is Géateaux differentiable and convex on the space H?(Q). Its
Gateaux derivative at any point w € H?(2) and any direction v € H?(Q) has the
form

(2.2) J' (w;v) = a(w,v) + blw™,v) — L(v).
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The variational formulation of the problem can be written as the minimization
problem

(P) find w* € H2(Q): J(w*) < J(v) Yv € H*(Q),
or equivalently, with respect to (2.2), as the non-linear variational equation
(2.3) a(w*,v) +b((w*)~",v) = L(v) Yo e H*(Q).

Notice that for sufficiently smooth data, the problem means to solve a non-linear
differential equation of the fourth order with homogeneous Neumann boundary con-
ditions.

2.3. Solvability and dependence on the load

Since the beam does not have fixed ends (it is only laid on the subsoil), the
problem solvability depends on the beam load. The existence and uniqueness of the
solution w* of the problem (P) is ensured by the condition

(2.4) Lip)<0 Vpe P, p>0 in Q,,

where the polynomials of the first degree represent the rigid beam motions for which
the subsoil is not active. Notice that the functional .J is coercive on H?(f2) if this
condition holds.

For further analysis, it will be useful to rewrite equivalently the condition (2.4) in
the following way:

(2.5) F<0 and z <T <z,

where F' := L(1) is the load resultant and T := L(z)/L(1) is the balance point of the
load. The condition (2.5) means that the load resultant is situated in 5 and oriented
against the subsoil, which causes that the beam deflection activates the subsoil on
the set M C €5 with a positive one-dimensional Lebesgue measure, i.e. w* < 0in M.
In addition, the balance point T lies in the convex closure of the set M.

To determine the dependence of the change of the solution of problem (P) on the
change of the load, we will consider the class Ss¢,,, of the loads L € V* such that
T € [x;+0,2.—0], F < —¢ <0 and || L||« < 7, with respect to positive parameters 9,
&, n. If we assume that Ss¢ ., is non-empty then there exists a positive constant c
which depends on the loads from Ss ¢, only through the parameters d, £, n so that

(2.6) [wi —wsllae <Ly — Lolls V Ly, Ly € Sse,
where w} = w}(L;) solves the problem (P) with respect to the load L;, i = 1,2.
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The following lemma, which is also important for numerical modelling, describes
the dependence of the constant ¢ from the estimate (2.6) on the parameters d, &, n
for the limit cases § — 0 and £ — 0.

Lemma 2.1. Let n > 0 and 0 < §pax < %(mr —x;). Then there exists a positive
constant &, depending on 1 such that for any sequences {0 }i, 0 < 0 < Omax, and
{&}k, 0 < &k < &max, k = 0, the following implication holds: if 6, — 0 or & — 0
then ¢, — oo, where ¢, = ¢ (0k, &k, n) Is the smallest constant which satisfies (2.6)
for the parameters dy, &k, 1.

Proof. We will construct suitable sequences {L; x}x C V*, i = 1,2, to prove
the assertion. The corresponding load resultants, their balance points, and solutions
of the problems (P) will be respectively denoted by F;j, T;x, and w; g, i = 1,2.
Subsequences of these sequences will be denoted in the same way. For the sake of
brevity, some steps of the proof will be only sketched.

Case 1. Let n > 0 and 6 — 0. Then there exists &max > 0 such that ||L; x|« < 7,
i =1,2, where

Ll,k(v) = gkv((xl + l‘r)/Q), LQ,]@(U) = fk’l)(l'l + 5k)7 gk < gmaxa k > 0.

We will assume that there exists &y > 0 such that & > &nin, £ = 0, in this
first case. Then Fi = Fop = &, Thp = %(ml + x,), and To ;, = x; + 0. There-
fore, Li € Ss. ¢mmms ¢ = 1,2. The sequence {w; }i is bounded on H?(Q) by
Theorem 3.2 in [10]. Suppose for a moment that some subsequence of {ws 1} is
bounded on H?()). Then we can assume without loss of generality that there exists
w € H?(Q) such that ws ; — w in H*(Q) by the Rellich theorem. The functions ws
solve the equation

(2.7) a(wa,k,v) +b(wy 4, v) = Lo g(v) Yo € H?(Q).
The choice v(z) =z —x; € Py in (2.7) yields
b(w™,v) = lim b(wy ,,v) = lim Ly(v) = lim Fo (T, — x;) = 0.

k—o00 ’ k—o0 ’ k—o0 ’

Hence w > 0 in Q5. Then the choice v(z) =1 € Py in (2.7) yields a contradiction:
0= lim b(w;k, 1) = lim LQJC(].) = lim FQ’]C < _gmin < 0.
k— 00 ) k—o00 k—o0

Therefore, ||ws k|/2,2 — oo and by (2.6),

w1k — w2 kll2,2

ck
~ L1k — Lokl

— Q.
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Case 2. Let 1 > 0, 0 < dmin < 0k < Omax < %(xr —x;) and & — 0. Let us choose

X+ T,

L(v) :=mnp [U(xl) - 2v(

L1 x(v) :==L(v) — §kv<xl —;xr),

L27k(v) = Ll,k('U) — 5kv(xl),

) i,

where ¢, = §k(%($z + ) — (z + 5k))/5k > 0 and 79 > 0 is chosen such that
ILixll« < m, i = 1,2, for sufficiently large k. Then L(1) = 0, L(z) = 0, F1, =
& =0, Fop = =& —ep, Top = (2 +20), Toe = @1 4 Oky Lik € Ssin,enns and
Lip— LinV*, i=1,2.

By Theorem 3.2 in [10], the sequences {w1 k}x, {w1 x}x are bounded on H?().
Therefore, there exist subsequences {w;}r and functions w; € H?(2) such that
wik — w; weakly in H2(Q) and w; — w; in H*(Q) (by the Rellich theorem),
i =1,2. Since the functions w; j solve the equations

a(wik,v) +b(w; ,v) = Lix(v) Yove H?(Q), i=1,2, k>0,
the limit case k — oo leads to
a(w;,v) + b(w; ,v) = L(v) Yve H*(Q), i=1,2.

The choice v = 1 yields b(w; ,1) = 0. Thus wi,we > 0 in Q, and consequently,
w1, wp solve the Neumann problem

(2.8) a(wi,v) = L(v) Yve H*(Q), i=1,2.

Hence, there exists a polynomial p € P; such that w; — ws = p. Notice that if a
function v € H%(Q) is convex and v € P; in €, then L(v) > 0. From this result
and equation (2.8) it is possible to prove that w) > 0 almost everywhere in Q,,
i = 1,2. It means that the functions w1, wy are strictly convex in €25 and have just
one minimum in .

By Lemma 3.5 in [10], there exist sequences {x; k }k, {yik}r C Qs and their lim-
its x;, v, ¢ = 1,2, such that

Wi k(i) <0, wig(yir) <0 and z;p <Tip<yix Vk>20,i=12
Hence, w;(x;) = w;(y;) = 0, since w; are non-negative in g, i = 1,2. Consequently,
1 . 1
ri=y1=z(@+z), z2=y2= lim Tos < (a1 + z),

2 k—o0 2
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since w; are strictly convex in 2, ¢ = 1,2. Thus w; (%(ml —|—xr)) = 0and we(z;40) =
0 < wi(z; + 9). Therefore, wy # we and consequently, by (2.6),

o llwi kx — wa,k]l2,2
~ Lk — Lokl

This result holds for any subsequences {w; j }; with weak limits w; € H2(Q),i = 1,2,
which means that the whole sequence {cj }; converges to co.

Case 3. Let >0, 6 — 0, & — 0, and 0 < Spax < & (x, — 2;). Since Sy, exn C
Ss, ,n for sufficiently large k, we have ci(0max; §k, 1) < ¢k(0k, &k, ), which follows
from the estimate (2.6). By Case 2, ¢k (0max, &k, ) — o0. Hence, ¢k (0, &k, 1) — o0.

O

Notice that a small change of the load causes a relatively large “rigid” displacement
of the beam in Case 2 of the proof.

With respect to Lemma 2.1, the loads for which the balance point T is close to
the end points of the subsoil or the size of the load resultant is small in comparison
to V*-norm of the load, will be called unstable. Some unstable loads are illustrated

in [11] on numerical examples.

2.4. Approximation of the problem

Let us define a partition 7y,
O=ag<z1<...<aNy =1, h:= j:r%%)_fzv(xj —Zj—1), hmin = j=r1nlnN(a:] —Zj_1)
of the interval Q = [0,1], with nodal points zj, 7 =0,1,..., N, and parameters h,
hmin > 0. With respect to a positive parameter 6, we will consider the system 7y of
such partitions 75, for which the inequality 6h < Apin holds.

For a partition 7, € 7Ty with IV + 1 nodal points, we define the function space

Vi, C HQ(Q), Vi, == {Uh € Cl(ﬁ) vh|(:cj_1,;cj) ePs j=12... ,N},

i.e. the space of continuously differentiable and piecewise cubic functions.

For the sake of simplicity, we will assume that the function ¢, which represents the
stiffness coefficient of the subsoil, is piecewise constant in the interval 2, and that
the partitions 7, € 7y take into account the points of discontinuity of ¢q. Since the
evaluation of the term b(w,, ,vy), wn, vy € Vi, cannot be computed exactly due to
the non-linear term w), , an approximation of the form b must be used. The form b
will be approximated by a numerical quadrature on each subsoiled partition interval.
Its approximation has the form

(h)
(2.9) bp(v1,v9) = Z rivy(z)va(z),  vi,ve € HA(Q),
i=1
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where z;, 21 < 22 < ... < Zpy(n), are the points of the numerical quadratures and
the coefficients r; are equal to the products of the stiffness coefficients and weights
of the numerical quadrature. With respect to the assumption on 75, € 7y, there exist
constants ¢y, ca > 0 such that

(2.10) c1q0bh < 1 < eallqlloch,  i=1,2,...,m(h).

From a mechanical point of view, the subsoil is substituted by insulated “springs”.
We will suppose that the numerical quadrature is exact at least for polynomials of
the first degree.

Putting

VM = {UEHQ(Q): Hnga 3y17y27"'7y2p EﬁS:

p

{x€Qs: v (2)=0}= U[y2i17y2i]}a M >0,

i=1

there exist positive constants c1, co and ¢ = c3(M), which are independent of the
choice of 73, such that

(2.11) |bp (u, v)]
(2.12)  |b(v ", u) —bp(v™,u)
(2.13)  |b(v ", u) —bp(v™,u)

’LL||172||UH172 V’U,,U S Hl(Q),
lull12 Yu,v e HY(Q),
2’2”11,”272 YVue H2(Q), Vv e Vy.

c1lglloo.0,

<
| < cohf|v]l1,2
| < esh?||v|

, U
, U

Now, we set the approximated problem. For the sake of simplicity, we will not
consider numerical quadrature of the forms a¢ and L. The approximated problem
corresponding to the partition 75, € 7y has the form

find w;‘; eVy: Jh(w;‘;) < Jh(’l)h) Yy, € Vh,

(Prn) Tnon) = 1

1
ia(vh,vh) + =bn(vy, s vy, ) — L(vp).

2

Since the functional Jj, is convex and has the Gateaux derivative on the space V},
the problem (Py) can be rewritten equivalently to the nonlinear variational equation

(2.14) a(wy,vp) + bp((wy) ™, vn) = L(vy) Yoy, € V.
The existence of the solution of problem (P},) is ensured by the condition

(2.15) F <0 and 2z <T < zp@p)-
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This condition also ensures the uniqueness of the solution for sufficiently small ~. No-
tice that if the condition (2.5) holds and the discretization parameter h is sufficiently
small, then the condition (2.15) holds, too.

The set

(2.16) = fie{l,...,m(h)}: wi(z) <0},

which represents the active “springs”, is non-empty. In addition, the balance point T
belongs to the convex closure of the points {z;; i € A} }.

For the approximated problems (Py,), we have the following estimates and conver-
gence result:

(2.17) ||’LU* — w;||272 < (31(]\4)h2||w*||4727 w* € H4(Q) N VM, VT}L S 'Tg, h < ho,
||w* — 'LU;;HQ,Q < CQh||w*||3727 w* € HB(Q),VT}L S 'Tg, h < ho,
lw* — wllae — 0, w*e H2(Q), h — 0,

where w* and w}; are respectively the solutions of the problems (P) and (Py), and hg is
a sufficiently small parameter. The first of these estimates is numerically illustrated
in [11] for some numerical quadratures.

At the end of this section we add a lemma which describes when the functionals Jj,
are uniformly coercive on H%($2). The lemma will be also useful for the subsequent
analysis.

Lemma 2.2. Let F <0, z; < T < x, 0 < hg < min{T — z;,x, — T}, c € R, and
6 > 0. Then there exists a positive constant ¢ such that the following implication
holds:
Jh(uh) <c= HU,}LHQ,Q <¢ V7, €Ty, h < hy, Yup € Vj,.

Proof. Since the proof is similar to the first (existence) part of the proof of
Theorem 3.1 in [10], some steps will be done more briefly.

Suppose that the lemma does not hold. Then, by the definition of Jj, there exist
sequences {7, }x and {ug}r, ur € Va,, ||ukll2,2 — oo such that

(2.18) 0 < alug, ug) + bn, (uy , uy, ) < 2L(ug) + 2c.
If we divide (2.18) by [Ju||3 5, we obtain
a(ve, vk) + bn, (v, , v, ) = 0, v = up/|lukl2,2-

Hence, by the Rellich theorem and (2.11), there exist a subsequence of {vj} (de-
noted in the same way) and a polynomial p € P; such that v, — p in H?(Q2) and
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bn, (p~,p~) — 0. By the assumption on hg, (2.10) or eventually (2.12) for hy — 0,
we obtain p > 0 in the neighbourhood of the point T

If we divide (2.18) by |lugl|/2,2, then 0 < L(p) = Fp(T). Therefore p = 0, since
F < 0. However, this contradicts |vg]|2,2 = 1. O

3. LINEAR PROBLEMS WITH BILATERAL ELASTIC SPRINGS

In this section we will define the family of linear problems with bilateral elastic
“springs” and derive their uniform properties with respect to a refinement of the
partition. Such problems will be solved in each iteration of the algorithms which will
be presented below, in Section 4.

Let 73, € Ty be a partition of Q and Aj, C {1,...,m(h)} a non-empty set of indices.
Let us define the bilinear form

(3.1) b *(v1, v2) Z riv1(zi)ve(z;), wv1,v9 € HQ(Q),
i€Ap

where the coefficients r; and the spring points z; have been described in the previous
section. Let us define the functional

(32 T (un) = Ja(on,on) + 508 (wnon) = Lon).

The corresponding linear problem (P,’L4 ") with bilateral elastic springs has the form
(3.3) find wy, = wy(Ap) € Vi, + i (w) < T (on) Y up € Vi,

or equivalently

(3.4) find wp, = wp,(Ar) € Vi + a(wp,vp) + b;?h (wh,vp) = L(vy) Yop € V.

Lemma 3.1. Let § > 0, 73, € Ty, and card(Ay) > 2. Then the problem (P,’;"L) has
a unique solution.

If the condition (2.15) holds and card(Ay) = 1 then (P;:xh) has a solution if and
only if z; = T, where i € Ay,. In such a case, if wy,(Ay) solves (P;th) then wp, (Ap)+p,
where p € Py, p(T) = 0, also solves (P;Lq“).

Proof. If 7, € 7y and card(Ay) > 2 then there exists ¢ > 0 such that the
inequality

(3.5) cllol3, < a(v,0) + b (v,0) Vo € HX(Q)
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holds. The proof of the inequality (3.5) is quite similar to the proof of the Poincaré
inequality, see [4] and also the proof of Lemma 3.2. Notice that if bﬁh(l, 1) — 0 for
h — 0, then ¢ — 0.

The inequality (3.5) yields that the functional J;L4 " is coercive on V},. Since Jy is
also strictly convex and differentiable on V},, the problem (P;;‘ ") has a unique solution
by the well-known theorems of the variational calculus, see for example [3].

Suppose that A, = {i}, i € {1,2,...,m(h)}. Then the choices v;, =1 and v, =
in the equation (3.4) and the definitions of T', F' yield that z; = T and wp(z;) = F/r;,
provided the problem (P;:‘h) has a solution wy. Let us define an auxiliary Neumann
problem

(36) find wy, € Vj, : a(ﬁ)h,vh) = L(Uh) — b;?h (F/Ti,’l)h) Yo € V.
Such a problem has a solution, since
L(p) = b, (F/ri,p) =0 Vpe P

If wy, is a solution of the problem (3.6) then the other solutions have the form wp, +p,
p € Pi. Therefore, we can assume that there exists a solution wy, of (3.6) such that
wp(z;) = F/r;. Now, it is easy to show that the functions wy, + p, where p € Py,
p(T) = 0, also solve (P**). O

Corollary 3.1. Let the condition (2.15) hold. Then the solution w} of the prob-
lem (Py) also solves the problem (P;:"’/), where A} is defined by (2.16).

To show some uniform properties of the problems (P;L4 ") with respect to 7, € 7o
and Ay, we introduce the notation

A= J{An C {1,....m(h)}: card(4,) > 2},
h

A, = U{Ah c{1,...,m(h)}: card(A;) > min{m(h), max{2, o/h}}}, 0> 0.
h

Notice that the parameter p means the “relative” number of the spring points, since
Jer,c0 > 0: ei/h <m(h) <co/h V1, € Ty

If {Ap}n C A is such a sequence that card(Ax)h — 0, or equivalently b;?h(l, 1)—0
(see the estimate (2.10)), then {Ax}n ¢ A, for any o > 0.

Lemma 3.2. Let 6,0 > 0. Then there exist positive constants ¢y, co depending
on 6,0 > 0 such that for any 1, € Ty and any Aj, € A, the estimate

(3.7) cillvall3s < a(on,va) + 63" (vn, vn) < c2llvnll3, Von € Vi

holds.
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Proof. The second inequality in (3.7) follows from (2.11), since b;?h (vn,vp) <
b (vn, vr). Suppose that the first inequality in (3.7) does not hold. Then there exist
sequences {7, }k, {An, }k, and {vp, }i such that

1
alug, ug) + b;?’”“ (ug,ug) < —, k=1, ug:= Ve
* k l[vn]l2,2
Hence, by the Rellich theorem and (2.11), we obtain
A 1y
(3.8) F{up Y C {uptp: up —p € Ppin H*(Q) and bh,:/k (p,p) — 0.

Since ||ug|l2,2 = 1, we find that p # 0, i.e. there exists at most one point z € R
such that p(z) = 0. Therefore, for a sufficiently small € > 0 there exist py > 0 and
0 < ¢ < p such that

Ip| = po in Q. and Card(flhk,) > 0/hys,

where Q, := Q, \ (z — &,z + ¢) and flhk, = {i € Ap,,: 2F € Q,}, zF being the

spring points of the partition 73,,. Then, by the estimate (2.10), there exists a
positive constant ¢ such that

Anys 2 - 9
b ¥ (psp) = chiopy > 1> capg > 0.
iEAhk,
However, this contradicts (3.8). Therefore, the estimate (3.7) holds. O

Corollary 3.2. Let 6,0 > 0. Then there exists a positive constant ¢ depending
on 0, o > 0 such that for any 7, € Ty and any A € A,

(3.9) [lwn(Ap)ll2.2 < e||L|l«,  wr(Ap) solves (P;?’L).

Proof. The proof immediately follows from the equation (3.4) and the esti-
mate (3.7). O

Let 7, € Tp and v € H?(£2). Then we can introduce the notation
(3.10) Ap(v) :={ie{1,...,m(h)}: v(z) < 0}.

In particular, we will be interested in the relative cardinality of the set Ay (wp),
where wy, solves the problem (P,’f”/) for some Ay, € A.

Lemma 3.3. Letv € H?(Q) andv < 0 in a non-empty open interval (y1,y2) C Qs.
Then there exists a positive constant o such that for any 7, € Ty, h < %(yg - 1),
we have Ap(v) € A,.

162



Proof. The proof clearly follows from the definition of the partitions 7, € 7y.
Notice that the size of the parameter o depends on the length yo — y;. O

Lemma 3.4. Let ' < 0 and 0,0 > 0. Then there exist positive constants ¢ and
ho such that for any 7, € Ty, h < ho, and any Ay, € A,,

(3.11) AN Ah(wh) S .Ag,
where wy, solves the problem (P;;"L).

Proof. Suppose that (3.11) does not hold. Then there exist sequences {73, },
hi — 0 and {Ax}r C A,, Ar = Ap,, such that

(3.12) hicard(Ax N Ag(wy)) — 0,  Ag(wy) = Ap, (wp,).

By Lemma 3.2, there exists ¢; > 0 such that ||wgll22 < ¢1 for any k& > 0. If we
choose v, = 1 in the equation (3.4) and denote the coefficients and spring points of
the form by, as r¥ and 2F, then by the estimates (2.10) and (3.12) we obtain

F= bf: (wi, 1) = Z rRwg (2F)
zEAkﬂAk(wk)
2 — cohi||willo(m) card(Ax N Ag(wy)) — 0, 2> 0.

However, this contradicts F' < 0. Therefore, (3.11) holds. O

To show the other uniform properties of the problems (P;;‘“), we will define an
auxiliary problem (P;:‘;i) with the “rigid” beam:

(3.13) find p, € Py : J;:‘h (pn) < J;:‘h (p) Vpe Py,
or equivalently
(3.14) find pr, € Pr: b (pn,p) = L(p) Vpe P

Notice that the problem (P;ng) means to solve a linear system of two equations with

two unknowns.

Lemma 3.5. Let 7, € Ty and Ay, € A. Then py(x) = t1z + to, where
F -F
(3.15) t1 = Tot Z ri(T —2z;) and to= ot Z rizi(T — z;),
i€EA i€Ap
with
(3.16) det = > rrj(zi—2)?>0, F=L(1), T = L(x)/F.
i,jEAR, i<

Proof. The relations (3.15) can be easily derived if we choose p =1 and p =«
in the equation (3.14). O
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Lemma 3.6. Let F' < 0 and 6 > 0. Let {m,, }x C Tp and {Ar}r C A, Ax = Ay,
be such sequences that

(3.17) hiy — 0 and hgcard(Ag) — 0.

Then there exists a positive constant ¢, which is independent of the choice of the
above sequences with the property (3.17), such that

—pr(T)

3.18 T)— — d S O card(AL)’
(3.18) Pr(T) = =00, Ipill2z2 — 00 and lpella2 < eq— "

where {py }r, is the corresponding sequence of the solutions of the problems (P,’i ")

Proof. Since the polynomial space P; has a finite dimension and since

there exist c¢1,co > 0 such that

(3.19) cillpllz2 < max{ip(T)|, [P} < c2llpll22 Vp € Pr.
Let us denote ny := card(Ay) > 2. The coefficients and spring points of the form bf:

will be denoted by ¥ and 2%, i =1,...,ny, 2f < ... < zE . The determinant (3.16)
will be denoted by dety, for the problem (P,’i *.)- Let

(3.20) dr .= zéﬁrl—zf, i=1,...,n, —1,
i.e.
zf:zf—i—de, 1=2,...,Ng.
j<i
Since 7y, € Ty, there exists ¢; > 0 such that

(3.21) d¥ > crhy, Yk>0,i=1,...,n.

We will also use the notation

N N o 2
(322) k=3 rh =S Y and of = rgc(de),
i=1 i=1  j<i i=1 j<i
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where df := 0. Then

Nk
(3.23) > k(T - 2f)?
i=1

=00(T = 2{)* = 207(T — 27) + 0}
1
k_k kN2
2 7(0002 = (07)%)
09
1 &
_ ko k k ko k
DITAS IO DIy
o5 . — — — —
i1,i2=1 71 <@1 J1<1i1 J2<iz
1 2
_ kK ko k
- ¥ Ao X
0 41 ,ia; i1 <ia J1<i1 J2<iz

2
1 1
2 Y (X ) - Faen
) )

11,02 ; 11 <i2 i1 <j<ia

Hence, by Lemma 3.5, the assumption (3.17) and the estimate (2.10), we obtain
F &

pie(T) = — er(T — 20?2 < F/of < cF/(hycard(Ag)) — —oco, ¢> 0,
detk im1

which implies ||pg||2,2 — co. The estimates (3.23), (3.21), and (2.10) also yield

&k k2
Eri(T_Zi) h2
M

2
MTQCQTLQ Z ( Z 1)

E 7“? k iy ias i1 <ia Nii<j<ia

1
= Ecghi(ni —1), >0

Hence, by the Cauchy-Schwarz inequality, Lemma 3.5, and the assumption (3.17),

we obtain
ngk ngk 71/2
/ > (T = 27) > (T — zf)?
P} _ li=l < | =t
— (T ng = ng
pi(T) Z:lrf(T — 2k)2 Z:lric
<es(hi(ni —1)"Y2 < 64, c3 >0, ¢y = c3,
O i e e
which implies (3.18) due to the estimate (3.19). O
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Lemma 3.7. Let 0 > 0. Then there exists a positive constant ¢ > 0 such that

the estimate

bA“v,l 2 bA’Lv,x 2
(3.24) c||vh||§’2 éa(vh,vh)+< h 313h )> —|—< h (hgh )> Yup € Vi

holds for any 1, € Ty and A, € A.

The proof of Lemma 3.7 is based on the generalized Poincaré inequality, see [4].
The denominator A% in (3.24) ensures the validity of the estimate for h — 0.

Corollary 3.3. Let 6 > 0. Then there exists a positive constant ¢ > 0 such that
the estimates

(3.25) lwn —prllz2 < cl|lL] and a(wn,wp) < | L2

hold for any 13, € Ty and A}, € A, where wy,, py, solve respectively the problems (P;;‘h ),
(Pin).

Proof. By Lemma 3.7 and the equations (3.4) and (3.14) we obtain

cllwn = pall32 < alwn, wi) < a(wp, wy) + b (wh, — Phy Wi — Dh)

a
= L(wp — pn) < || L|l+[lwn — pall2.2,
which yields the first estimate in (3.25) and consequently also the second. O

Corollary 3.4. Let the assumptions of Lemma 3.6 be fulfilled. Then

T (w
(3.26) lnlloe _q g Tuclo®) —F/2, k— oo,
Pk |2,2 w(T)

where {wy }k, {px}r are respectively the corresponding sequences of the solutions of
the problems (P;:C’“) and (Plikr)'

Proof. By the estimate (3.25) and the limits (3.18) we obtain

[willz2 _ [lpellz2 + [we = Prll22 1
Pl Pk ll2,2 ’
llwg|2,2 S lpkll2,2 — llwe — prll2,2 1

= b)
llpkl2,2 llpkl2,2

i.e. the first limit in (3.26) holds. Notice that due to (3.14),

Talpr)  —Lpw)
pe(T) — 2pi(T) /2,
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which implies J}ﬁf‘ (pr) — —oo by (3.18). In addition, due to (3.4) and (3.14),

Tk (wy) _ Tk (pr) — L(wk — pr) /2 _

Ji (o) - Ji (pk) !
and by Lemma 3.6 and Corollary 3.3,
w (T wi(T) — pi(T
(3.27) lim p:((T)) =1+ lm % —1.
Therefore,
lim L?: () = lim J;?: (i) = —E.
k—oo  w(T) k—oo pi(T) 2

O

Corollaries 3.3 and 3.4 show that the problems (P}ﬁc’“) and (P;Lt’fr) have many
common properties for the limit case hy card(Ax) — 0. This fact will be used to
prove the following theorems and lemmas.

Theorem 3.1. Let F < 0, z; < T < z,, and 6§ > 0. Then there exist positive
constants o and hg such that for any 1, € Ty, h < hg, and any Ay, € A we have

Ah(wh) S .Ag,

where wy, solves the problem (Pf”).

Proof. Assume that Theorem 3.1 does not hold. Then there are sequences
{Thy, }ky P — 0, and {Ar}r C A, Ax = Ap,, such that

(328) hk Cal"d(Ak (wk)) — 0, Ak(wk) = Ahk (whk).

Let us denote py, := pp, as the solutions of the problems (P;i’jr), k>0.
Suppose that there exist g1 > 0 and a subsequence of { Ay}, (denoted in the same
way) such that
A € A.91 Vi >0.

Then, by Lemma 3.4, there exists g2 > 0 such that Ag(wy) € A,, for sufficiently
large k, which contradicts (3.28).
Suppose that there exists a subsequence { Ay} such that

hy card(Ag) — 0.

By Lemma 3.6, pi(T') — —oo. Therefore, pp — —oo in [z;,T] or in [T, z,], since
T € Q, = (z1,2,). Hence, by Corollary 3.3, there exists a sufficiently small £ >
0 such that wy < 0 in [2;,T — €] or in [T + €, z,] for sufficiently large k, which
contradicts (3.28) due to Lemma 3.3. O
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Lemma 3.8. Let F < 0 and z; < T < z,. Then there exist positive constants g
and hg such that {Ap(w},)}h<ho C A, where wj, solves the problem (Py,).

In addition, if 7, € Ty, Ay, € A and Ap(wp) = Ap, where wy, solves the prob-
lem (P{*"), then wy, also solves the problem (Py,).

Proof. Let w}, w* solve respectively the problems (P;) and (P). Since w} — w*
in H2(Q) by (2.17) and since w* is negative somewhere in Q4 by Lemma 3.5 in [10],
there exist g, ho > 0 such that A, (w}) € A, for h < hy by Lemma 3.3.

If Ap(wp) = Ap, and wy, solves the problem (P;;"L) then

L(v) = a(wp,v) + bf"(wh,v) = a(wp,v) + bp(w;, ,v) Vv e H?(Q).

Thus the function wy, also solves the problem (Py). O

By the next lemma, we estimate the difference between the solution w; of the
problem (Pj,) and its approximations generated by the algorithms, which will be
presented in Section 4, see the proof of Theorem 4.2.

Lemma 3.9. Let ' < 0, z; < T < x,, and ¢,0 > 0. Then there exist positive
constants ¢ and hg > 0 such that for any 1, € Ty, h < hg, and any up, € Vp,

[[un]

2,2 < ¢, we have
(829)  elwh —unl3a < alw) — wnowh —un) + bu (W) — g, wj, - up),

where w;}, solves the problem (Py,).

Proof. Since the proof is similar to the proof of Theorem 4.5 in [10], some steps
will be done more briefly. By Lemma 3.8 and Corollary 3.2, there exist ¢;,co > 0
such that for any 7, € 7y with sufficiently small A we have

(3.30) [[wp]

22<c and ||wj —upl22 < ca.

Suppose that the lemma does not hold. Then there exist sequences {m, }x, ke — 0,
{wy;, }x and {up, }1 such that

(3.31) a(wy, — ug, wy, — ug) + bp(wy, — uy , wr —ug) — 0,
where
wy,, Up,,
(3.32) Wp 1= e, U= e, lwg — ukll2,2 = 1.
[wh,, = tnsllz,2 wh, — unll2,2
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All subsequences of these sequences will be denoted in the same way. By the Rel-
lich theorem, (3.31), and (3.32), there exist subsequences {wy}r and {u}x, and a
polynomial p € P;, p # 0, such that wy — ux — p in H?(Q). By Lemma 3.8,

(3.33) Jo1>0: Ay, (wy;,) € Ay,
Suppose that |[w}; — up,[|2,2 — 0. Then
(3.34) dps > 0: Ahk (w;;k) N Ahk ('U'hk) S .A,_)Q

for sufficiently large k by (3.33). Since

Ay, (Wi, YJNAp, (un
by, (W — uy , wi — ug) > bh,:’“(w”“)m ’k(u”“)(wk — Uk, Wk — U),
(3.31), (3.34), (2.11), and (2.10) yield that p = 0, which contradicts p # 0.
Therefore, we can assume that the sequences {wy }x and {uy}r are bounded due

to (3.30). It means that there exist their subsequences which converge to functions w
and v = w — p in H*(Q) by the Rellich theorem. Then, by (3.31) and (2.12),

(3.35) w” —(w—p)” =0 in Q.

Since wj;, — w* in H?*(Q), w* solves the problem (P), by (2.17), and since w* < 0
somewhere in 2, also w < 0 somewhere in Q4. Therefore, (3.35) yields that p = 0
which contradicts p # 0. ]

4. DESCENT DIRECTION METHODS WITH AND WITHOUT PROJECTION

In this section, two methods are presented as a numerical realization of the prob-
lem (P5). The methods are based on the minimization of the total energy func-
tional Jj, where the descent directions of the functional are searched by solving
linear problems of type (P,‘;‘") presented in the previous section. The difference be-
tween the methods is in the “projection step”. The step is useful mainly for unstable
loads as we will see in Section 5.

Since the uniform convergence properties of the methods with respect to refinement
of the partition are derived, the corresponding algorithms are first described in the
functional form. Their algebraical form will be presented later, in Section 5. We will
assume that the solvability conditions (2.5) hold.

4.1. Descent direction method without projection
Let 75, € Ty be a partition and z;, i € {1,2,...,m(h)}, the corresponding set of
springs.
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Algorithm 1

Initialization
wh,o = 0,
Ano={1,2,...,m(h)}.

Iteration k= 0,1, ...
Shk € Vi, Whk + Sk solves (P:h”“),
Qp i = arg Oglaigl Jn (W + asp k),
Wh,k+1 = Wh,k + O, kSh,k,
Ap 1 = An(Wh k1)-

In the remaining part of this subsection, we show that Algorithm 1 is well-defined,
i.e., the problems (1:’;;1 "*) are uniquely solvable and wy,  — w* in H?(Q2) uniformly
with respect to sufficiently small h.

Let up € Vi, Ap(up) € A, w, € V3, solve the problem (P;:"L(u“)) and let s;, =
wp, — up. It will be useful to introduce the notation A§ := Aj(un + asp). Then
A9 = Ap(up) and A} = Ap(wp). Notice that the equality

(up + asp)(z:) = awp(zi) + (1 — a)up(z;)
yields the inclusion
(4.1) AVNAL cAINAY Yaelo1]
and the implication
(4.2) A} C A = AY C AY Yae0,1].

0
Lemma 4.1. Let up, € V3, A?L = Ap(up) € A, wy, € Vj, solve the problem (P,f”)
and let sy, := wp, — uy. Let

ap = arg min Jp(up + asy).
g min Ji( )

Then
/ AY A9
(4.3) Jp(un; sn) = 2J;, " (wn) — 2J;, " (un)
(44) = - G(Sh, Sh) - b:% (Sh; Sh) < 0)

where Jj (up; sp) = 0 if and only if uy, solves the problem (P},), and

Aj
a(sn, sn) +b)," (sn, 5n)

AQUATH
a(sp,sn) +0," """ (sn,sn)

(4.5) an > >0, s, #0.
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h

Proof. By Lemma 3.1, the problem (P: ) has a unique solution wy. Then the
choice vp, = sp, in the variational equation (3.4) yields

Iy, (un; sn) = aun, sn) + bn(uy, , sn) — L(sn)
0
= alun, sn) + b " (un, sn) — L(sn)

AS,
= —a(sn,sn) — b, " (sn,sn) < 0.

The choices v, = uy, and vy, = wy, in the variational equation (3.4) yield the equal-
ity (4.3). By the inequality (3.5), J} (up; sp) = 0 if and only if s, = 0, i.e. if up, = wy,.
By Lemma 3.8, it means that in such a case, uj, solves the problem (Py).

Let us denote ¢(a) := Jp(un + asp) and let s, # 0. Since Jj, is a convex and
differentiable functional on Vj,, there exists a; which minimizes ¢ in [0,1]. The
inequality (4.4) yields a, > 0 and ¢'(a,) < 0. If o, = 1, then the inequality (4.5)
holds. Otherwise,

(4.6)  0=¢'(an) = alup + ansp,sn) + bn((up + ansy) ™, sn) — L(sn)

up + onsp) T — Uy,
» Sh .
Qp

= J; (up; sn) + ap, [a(sh, sp) + bh((

Notice that

bh((uh +ansn)” —uy, ’ Sh)
an

AVnATh AIN\ATR ATP\ A9

= bhh h (sh,sh) —bhh h (uh,sh)/ah—i—bhh \ ’L(uh—f—ahsh,sh)/ah
AVQUATR ATR\ A9 ANAT

:bhh h (Sh,sh)—l-bhh \ h(uh,sh)/ah—bhh\ h (uh—l—ozhsh,sh)/ah.

Ifi € Ay»\ AY then up(z;) = 0 and sp(2;) < 0. If i € A)\ AY* then (up+aysy)(z;) >
0 and sp(z;) > 0. Therefore,

apy A0 0\ A%h
b:" \An (up,sn) <0 and b;?”'\Ah (up + apsp, sp) = 0.
Hence,
- o an
bh((Uh +apsp)” —up, 7Sh) < nghuAh (s, 51)
o,
and (4.6) yields the estimate (4.5). O

Notice that if A} C A9, then the implication (4.2) and the estimate (4.5) yield
ap = 1.

By the next lemma we can estimate the relative cardinality of the sets Ay ; which
are generated by Algorithm 1, see the proof of Theorem 4.1.
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Lemma 4.2. Let ¢, 6 be positive constants and let the solvability condition (2.5)
hold. Then there exist positive constants hg, 0 such that for any 7, € Tp, h < hy,
and any up, € Vi, ||upll2,2 < ¢, A) = Ap(up) € A, we have

(4.7) Ayt = Ap(up + ansp) € Ay,

where o, = arg inlg Jn(up + asp), sSn = wp, — up, and wy, € V3, solves the prob-
0 1

SO

lem (P:g).

Proof. Assume that the lemma does not hold. Then there are sequences {73, },
hie = 0, {ortk, o — 0, {urte, ur € Vi, llunlzz < ¢, A} = Ap, () € Ay, such
that

(4.8) Al = Ay, (up + agsg) € Ap, V=0,

where {ay}i, {sk}r, and {wg}x are the corresponding sequences for the sequences
{7h, }r and {uy},. For the sake of simplicity, all subsequences of these sequences will
be denoted in the same way. Relation (4.8) implies that

(4.9) card(A3*) < card(AY) Vk > 0.

Suppose that there exist g1 > 0 and a subsequence {A%}; such that A) € A,,.
Then, by Lemma 3.4, there exists p» > 0 such that A) N A} € A,, for sufficiently
large k. Hence, by (4.1) we obtain A}* € A,,, which contradicts (4.8). Therefore,
we can assume that

(4.10) hy card(AY) — 0, k — oo.
Corollary 3.4, (4.10) and the boundedness of uy yield

l|skll2,2
|k

(4.11) [will2,2 — o0, skl

2,2 — 00, and ,

2,2

0
where pi, € P; solves the problem (P,i ’“T) defined in Section 3. Consequently, by
Corollary 3.3 we obtain

(4.12) a(sks sk)/||skll3.2 — 0.

Since ||uk||2,2 < ¢, there exists ¢g > 0 such that Jy, (ux) < ¢o for any k > 0 and
since Jp, (ux) = Jp, (ur + arsk), we have

(4.13) Je1 > 08 Jug + Oék;Sk;”272 <ep VEZ=0
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by Lemma 2.2. The boundedness of {uy}x, (4.13), and (4.11) yield
(4.14) Jeo > 0: |lagskll2e <c2 VE>0 and ai — 0.
Suppose that

(415) deg > 0: ||Oék8k|

22=c3 Yk 2=0.

Then by the Rellich theorem, (4.12), (4.14), and (4.15) there exist a subse-
quence {aysi}r and p € P, p # 0, such that ags; — p and consequently axpr — p
in H2(Q)). Since the sequences {uy}r and {up + aisk}r are bounded, there exist
their subsequences with weak limits u and u +p in H?({2). We can also assume that
up — u and uy, + agsi — u + p in H'(Q) by the Rellich theorem. The functions u
and u + p are non-negative in 0, by virtue of the assumptions (4.8), (4.10), and
Lemma 3.3.

Due to the assumption F' < 0 we have A} N A} # (), see the proof of Lemma 3.4.
Hence and by (4.1) we obtain A} N A2* # 0, i.e., there exists a sequence {ij} such
that ir € A} N Ap*. Therefore, there exist a subsequence {2z} }; and z € Q, such
that sz — z. Non-negativity of u and u + p yields

(4.16) u(z) =0 and p(z)=0

and consequently,

=0, z#ux,x,., =0, z#x,x.,
(4.17) W(z)¢ =0, z=umx, and ' (2)+p'(2)S =20, z=u,
<0, z=u,, <0, z=uxa,.

Since p # 0, there exists just one such point z, by virtue of (4.16). Moreover,
by (4.17), z = x; or z = z,. In both cases, p < 0 in Q, since px(T) — —oo by
Lemma 3.6.

Let g () := Jp, (ur + ask). Since o, — 0, the definition of ay, yields

0 = ¢ (k) = alug + aksk, k) + bp, ((uk + agse) . sk) — L(sk)

for sufficiently large k. If we multiply this equality by aj then for £ — oo we obtain
a contradiction 0 = —L(p) = —Fp(T) < 0 by (2.11) and the non-negativity of u + p.
Suppose that

(4.18) lokskll2,2 — 0 for k — oc.
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Then by the estimates (4.5) and (4.3) we obtain

APE\AY

0< (]. —ak)J}’Lk(uk;sk) +akbhk (sk,sk)

0 0 XL 0
= 21— ) (JF (wie) — T (ug)) + by (s ).

If we divide this inequality by —wg(T"), we obtain by Lemma 3.6, Corollary 3.4,
(2.10), (3.27), (4.9), (4.10), (4.11), and (4.18)

T A\ 40
0< F+ klim {'OékSk'Q,Q [pellzz pi(T) lisellz.2 bAk \Ak( N X )}
o0 2,2

—pi(T) wi(T) [[prll22 ™ skll22” [|skl

2,2
3
" hy, card(AY) ¢

AR\AY

< F+ceq lim ||agsg|
k—oo

< F+cs lim ||agsg|
k—oo

22 = F < 0,
which is a contradiction. Therefore, (4.7) holds. O

Theorem 4.1. Let the condition (2.5) hold and let @ > 0. Then there exist
positive constants o, ¢, and hy such that for any 1, € Ty, h < hy,

(4.19) Apk € Ay and  |[lwp i

2’2<C Vk}O,

where the sets Ay, i, and the functions wy, , are generated by Algorithm 1.

Proof. The theorem will be proved by mathematical induction. By Lemma 2.2,
there exist ¢ > 0 and hg > 0 such that for any 7, € Ty, h < hg, the implication

(4.20) Jh(uh) <0= ||uh||272 <c Yu, eV

holds. Since ||wp,oll2,2 = 0 < ¢ and Apo = {1,...,m(h)}, there exist o > 0 and
0 < hy < ho (which depend only on 6 and ¢) such that Ay 1 € A, for any 7, € Ty,
h < hy, by Lemma 4.2. Suppose that

Ah’iEAg V’Th€lfg, hghl, iIO,l,...,k.

Since
Jn(wng) < ... < Jp(wp1) < Jn(wno) <0, h < hy,

also ||wp, k2,2 < ¢ by the implication (4.20), which by Lemma 4.2 yields A, 41 € A,
for any 7, € Ty, h < hy. O
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Lemma 4.3. Let the condition (2.5) hold and let § > 0. Then there exist positive
constants ¢ and hg such that

(4.21) Qp g 2 C V1, €Ty, h<hg, Vk=0, Shr 70,

where the numbers oy, i, and the functions s, are generated by Algorithm 1.

Proof. Let spk, Whi, Qhk, Ank, k = 0, be generated by Algorithm 1. By
Theorem 4.1, there exist g, hg > 0 such that Ay, € A,, h < ho, for any & > 0.
Hence, by Lemma 3.2, there exist c¢1,ca > 0 such that

Ap
a(vav)""bh}’k( ) ) 261”””%,2)
<

v,V
AnkUAR k41 v

a(“v“)“‘bh (v,v) C2||UH§,2

for all v € H?(2) and for all k£ > 0. Then the estimate (4.5) in Lemma 4.1 yields

Ap ke
a(Sn,ks Shk) + 05, (Sh,ks Shok) c1
Qp g = A rUAn i >—=>0 Vk>=0, spp#0.

a(Sh,ks5nk) + by, (Sh,ks Shk) €2

O

Lemma 4.4. Let the condition (2.5) hold and let 6 > 0. Then there exist positive
constants ¢ and hgy such that

(422) Jh(wh’k;Jrl) < Jh(wh,k) — CHSh,kH%Q V1, € 7—9, h<hy, VkE=0,

where the functions sy i, wp, , are generated by Algorithm 1.
Proof. Let si = sp.k, Wk = Whk, 0k = Qh ks, Ax = Ank, k > 0, be generated by
Algorithm 1. Let ¢k () := Jp(wi + asg). By the definition of ay,

0> ¢ (an) = alwryr, s1) + bn(wyy, sx) — Lsk).

Hence, by the definition of Ay, Ak41, and wgy1,

1

Jp(wit1) = Jp(wi) + arel(ar) — §Oéia(5k, Sk)
1

_ 1 _ _
+ ibh(warl’wk"‘l) — ibh(wk ,wk) — akbh(wk+175k)-
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Notice that

1 _ 1 _ _
—bh(warl? wk+1) — Ebh(wk ,wk) — akbh(warl’ Sk)

2
1 Akt 1 Ay
= §bh (Wi + Sk, Wi + aksk) — Ebh (wg, wi)

Akt
— agby, T (wr + ansk, Sk)

= — AR (o) B (i) — bt (e )
= Lt ) - Lo o

+ %b’:k“\‘“<wk7wk> - %b;i"“\“"““ (wr, wy)
< - %aibf"*mA"(SmSk%

since —aysk(z;) > wi(z;) and consequently, ais%(zz) > wi(zi) ifi € Agr \ Ag-
Therefore,
1 ApNAgi1

(4.23) Jh(wk+1) < Jp(wg) — 50&% (a(sk, sk) + bh (s, Sk)).

By Theorem 4.1 there exist o1 > 0 and hy > 0 such that A, € A,, for any k£ > 0 and
any 75, € Tp, h < hy. Therefore, by Lemma 3.4 there exist 0 < o < g1 and 0 < hg <
hi such that Ax N Ag(wy + si) € A, and consequently (see (4.1)), Ax N Ap11 € A,
for any k > 0 and any 7, € 7y, h < hg. Then, by Lemma 3.2, there exists ¢ > 0 such
that

cllskll3o < alsi, si) + byt (sp,s1) Y € To, h < ho, VE 0.
Hence, by (4.23) and Lemma 4.3, we obtain (4.22). O

Theorem 4.2. Let the condition (2.5) hold and let § > 0. Then there exists
ho > 0 such that the sequence {w, i, } , generated by Algorithm 1 converges uniformly
(with respect to h) to the function wj solving the problem (P,) in H*(Q) for any
T € Tp, h < hyg.

In addition, for any fixed 7, € Ty, h < hg, there exists an iteration ko = ko(h) > 0
such that wp, gy + Sh,k, = W} .

Proof. Let si = Sp.k, Wk = Whk, 0k = Qhk, Ax = Ank, k > 0, be generated by
Algorithm 1. By Lemma 4.4, there exist ¢; > 0 and hg > 0 such that

k—1
(4.24) Tn(wyy) < Jn(we) < —c1 Y _|Isill3e V7a € To, < ho, V>0
=0
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By (2.17),
Ju(w)) = —L(w})/2 — ~L(w")/2 = J(w’), h— 0,

where w* solves the problem (P). Hence, by (4.24) there exists ¢z > 0 such that
(4.25) S llsil3s<ca V€ Tp, h< h,
=0

and consequently ||si||2,2 — O uniformly with respect to h for k — oco. Since wy +
sy, solves the problem (P;L4 *), the variational equations (2.14) and (3.4) yield

a(w), — wg, wy, —wk)—f—bh((w,t)_ —wy ,w;, —wk) = a(sg,wy, —wk)—i—bﬁ’“ (Sk, wy, —wg).

Hence, by Theorem 4.1, Lemma 3.9, and (2.11), there exists ¢z > 0 such that

lwy — will2,2 < csllskll2,2 =0 V7 € Tg, h < hoy, YE 20,
which implies the uniform convergence of the sequence {ws, 1 }r to the function wj
solving the problem (Py).

Since wr — wj, also Ay — A} and consequently, Ay(wy + sx) — Aj. Since
card(Ax) < m(h) < oo for any fixed h < ho, there exists kg > 0 such that Ay, =
A, (Wky + Sk ). Then, by Lemma 3.8, wy, + s, = wy,. O

Remark 4.1. The convergence result of Algorithm 1 holds for parameters h <
ho, for some hg. Taking into consideration the analysis in [10], we can assume that
the size of hy depends on the stability of the load, i.e., how much the balance point T’
is close to the end points x;, z, of the subsoil and how much the size of the load
resultant F' is relatively close to zero.

Remark 4.2. Numerical examples show that Algorithm 1 converges for almost
all initial choices of Ay, ¢. However, the initial choice Ay o = {1,...,m(h)} ensures
in the tested examples that «j , = 1 for any k£ > 0 due to inclusions Ap, 11 C Ap .
These inclusions are shown in [8] for a particular choice of the load.

Remark 4.3. We can also substitute ay ;. by

Qp k1= 212118 In(Wh i + asn k).
The corresponding algorithm will be denoted Algorithm 2 and it is shown on numeri-
cal examples that we can expect the same convergence properties as for Algorithm 1.
However, it is necessary to generalize Lemma 4.2 to use Algorithm 2 correctly. The
comparison of the algorithm will be illustrated by numerical examples in Section 6.
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There are many numerical methods how to find the values ay, i or &y ; which do
not depend on the parameter h. Here, the regula falsi method has been used.

Algorithms 1, 2 can also be used for coercive beam problems with the same con-
vergence result which can be proved without Lemma 4.2 and without the restricted
assumption on the parameter h.

Remark 4.4. The descent direction method without projection can also be
characterized as a semismooth Newton method with damping. The semismooth
Newton method was introduced in [2].

4.2. Descent direction method with projection
First of all, we will define the class of auxiliary problems which are specified by a
partition 7, € 7y and by a function v, € Vj,:

(P;:h’) find pp, :ph(vh) € Pr: Jh(’l)h +ph) < Jh(’l)h +p) Vpe Py,
or equivalently
(4.26) find p, = pn(v) € Pi: by ((vn +pn)~,p) = L(p) Vpe€ Pr.

The problem (P;") means to solve a system of two non-linear equations with two
unknowns. Similarly to the problem (P), it is possible to prove that the condi-
tion (2.15) ensures the existence of a solution and the uniqueness of the solution
holds for sufficiently small parameters h. Notice that if wj; solves the problem (Py)
then the problem (P, ’t) solves the zero polynomial.

Lemma 4.5. Let the solvability condition (2.5) hold and let ¢, > 0. Then there
exist positive constants ¢ > 0 and hg such that for any 7, € Ty, h < hg, and any
U € Vh7 |Uh|2,2 < c,

(4.27) Ap(vp +pn) € Ay,
where py, solves (P;").
Proof. We start with the well-known inequality
(4.28) Jep > 0: |v|§72 > iean> |lv +p||§72 Vo e H*(Q),
pclr

which can be proved by the Poincaré inequality. Notice that

vh +p+pr(vn +p) =vn +pr(ve) Vp € Py,
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where pj,(vs + p) solves (P, 7). Thus Ap(vs + pn(vn)) = An(vw + p + pa(vn + p)).
Therefore, by virtue of the assumption |vj|2,2 < ¢ and the inequality (4.28) we can
assume that ||vp|l22 < & € > 0, for any v, € V.

Suppose that Lemma 4.5 does not hold. Then there exist sequences {71, }x, hr —
0, and {vi}k, vk = vn,, ||Vk|l2,2 < ¢, such that

(4.29) hy card(Ag) — 0

where Ay = Ap, (v, +pi) and py, solves (P;*). The choice p = 1 in the equation (4.26)
and the estimate (2.10) yields

F= Z (v + pr)(2F) = o min (vg + pi) (2F)hi card(Ag), ez > 0.
icAy €A

Hence, by (4.29) and the boundedness of {vj}, we obtain that there exists a point
z € [z1, 2] such that pr(z) — —oo. If z € Qj, then the assumption (4.29) cannot
hold by virtue of Lemma 3.3. Therefore, z = x; or z = z,.

Let us consider the former case. For the latter, we obtain a similar contradiction.
Then pg(x;) — —oo and pg(z) 4 —oo for z > x;. Hence, pi(z) — oo for z > z;. It
means that zf — x; for all ¢ € Ay, since the functions vy are uniformly bounded.
Therefore, 2 < T for all i € Ay, where k is sufficiently large. If we choose p = x in
the equation (4.26), we obtain

> i (ve + pi)(2)2f

€Ay
T = & < maxz <T,
> ori(oe +pr)(2f) T icAy
i€A}
which is a contradiction. O

The descent direction method with projection is obtained from the previous
method by adding the “projection” step, where the problem of type (P.") is solved
in:

Algorithm 3
Initialization

w0 = pr(0), pr(0) solves (PP),
Anp,o = An(wn,)-
Iteration k= 0,1, ...
Sh.k € Vi, Whk + Shk solves (P}f””“),
Qp = Arg min, In (Wi + asn k),

S A

Wh,k = Wh,k + Qb kSh,k)
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Phk = Pr(Wn,k), Ph(Wn k) solves (P, "),
Wh,k+1 = Wh,k + Ph,k,
Ap k41 = Ap(Wh k+1)-

Lemma 4.6. Let the condition (2.5) hold and let § > 0. Then there exist positive
constants o, c¢1, co, and hgy such that for any 7, € Ty, h < hg, and any k > 0, we have

(4.30) Apk € Ay,
(4.31) Qpk 2 €1,
(4.32) Jn(wn k1) < Jn(wnr) = collsnkll3 2,

where Ap, ., ok, Sh.k, and wy, i, are generated by Algorithm 3.

The proofs of (4.30)—(4.32) are quite similar to those of (4.19), (4.21), and (4.22)
for Algorithm 1. Only instead of Lemma 4.2, we use Lemma 4.5 and the inequality

Jn(wn k41) < Jn(0n,x),

which follows from the definition of the problem (P;LD R,
In the same way as for Algorithm 1, we obtain the following convergence result
for Algorithm 3.

Theorem 4.3. Let the condition (2.5) hold and let § > 0. Then there exists
ho > 0 such that the sequence {w, i, } , generated by Algorithm 3 converges uniformly
(with respect to h) to the function wj, solving the problem (Py) for any 1, € 7g,
h < hg.

In addition, for any fixed 7, € Ty, h < hg, there exists an iteration ko = ko(h) > 0
such that wp, gy + Sh,k, = W} -

For an implementation of the “projection” step in Algorithm 3, i.e., for an im-
plementation of the problem (P;"), we can use a minor modification of Algorithm 1
with the same convergence results:

Initialization

pho € Pr, bp(vn + pro,p) = L(p) Vp € P,
Apo = Ap(vp + phryo)-
Iteration k =0,1,...
Dk € P, bfh’k(vh + Phk + Phkp) = L(p) Vpe Py,
apk = argoglaigl In(vn + phk + P k),

Dh,k+1 = Ph,k + Qh kPh k)
Ap k41 = An(vn + Dhok+1)-
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Remark 4.5. Due to the projection step, the functions wy, ;, generated by Al-
gorithm 3 have some common properties with the unknown function wj as we see at
the end of the next section.

Again, it is possible to substitute oy, ;; by

Qp g = arg m>118 Jn(wn ke + asp k)

oz

in Algorithm 3.
The projection step cannot be applied for coercive problems, since the polynomials
of the first degree do not belong to the tested functions for such problems.

5. ALGEBRAIC FORMULATION OF THE PROBLEM

5.1. Rewriting the approximated problem
Let 7, € Ty be a partition with nodal points

O=zp<n<...<y=z1<...<zp=z; <...<zazy =1

and let 27 < zo < ... < z,, be the corresponding points which are obtained from the
chosen numerical quadrature.

The functions vy, € V3, will be standardly represented by the vector v € R™,
n = 2N + 2. The form a and the functional L will be represented by the stiffness
matrix K € R™"™ and by the load vector f € R™. Notice that the matrix K is
symmetric and positive semi-definite.

Let the polynomials p = 1 and p = x be represented by the vectors p1,p, € R™.
Then the matrix R := (p1,p.) € R"*? represents all polynomials from P; and forms
the kernel of K, i.e. KR =0.

The matrix which transforms the function values and the values of the first deriva-
tives at the nodal points x;, j = 0,1,..., N, onto the points z;, i = 1,...,m, will
be denoted by B € R™*". Let D € R™*™ be a diagonal matrix containing the
coefficients r;, i.e. the products of the weights of the numerical quadrature and the
stiffness coefficients of the subsoil.

The Euclidean scalar product and norm in R¥, k > 1, will be denoted by (-,-)x
and || - |-

For the sake of simplicity, the corresponding functional and the unknown vector
in the algebraic formulation will be denoted in the same way as in the continuous
problem (P). Then the algebraic formulation of the problem (Py) has the form

find w* € R™: J(w*) < J(w) YweR",

P
®) J(w) = %(Kw,w)n + %(D(Bw)*, Bw)), — (frw)n,
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where u~ € R is the negative part of u, i.e.

(u™); == min{0,u;}, ¢=1,2,...,m.
The problem (P) can be rewritten equivalently as the non-linear system of equations:
(5.1) find w* € R": Kw* 4+ BT D(Bw*)™ = f.

Let a set Ap, C {1,2,...,m} of indices be represented by the diagonal matrix A €
R™>*™ guch that A; = 11if i € Ay, otherwise A;; = 0. The algebraic representation
of a set Ay (vy) will be denoted by A(v).

We also introduce the notation

(5.2) G::BR:(1 Lo 1>T, e::RTf:F<1).

21 R2 ... Zm T

Then the auxiliary problems (P;:‘h) and (Ph¥") have the following algebraical
forms:

(5.3) (PY)  find w = w(A) € R": (K + BTDAB)w = f;
(PY) find ¢ = c(v) € R?*: GTD(Bv+Ge)™ =e

The corresponding algebraical formulations of Algorithms 1, 3 are the following:

Algorithm 1 Algorithm 3

Initialization Initialization
w® =0, w® = Rc©® | ¢ solves (PY),
A(O), (A(O))m = 1, 1= {1,...,m}. A(O) ZA(’LU(O)),

Iteration k =0,1,... Iteration k= 0,1,...
s (k) 4 s(F) golves (PA®), sk w4 s(F) solves (PA®),

= i (k) (k) = i (k) (k)

(k) au"gorgnalg1 J(w'™ + as®), (k) au"gorgnalg1 J(w'™ + as®),
Afjegr) = A(w* D). ¢ ¢®) solves (PP,

WD = G 4 Rk,
Aperr) = A(w™HD).

5.2. Analysis of the projection step

To explain the reason of the “projection step”, we will consider the set

(5.5) A:={\eR™: A<0, GTD) =¢}.
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First of all, we derive some basic properties of the set A. Clearly, the set A is closed
and convex in R™.

Lemma 5.1. Let F' < 0 and z1 < T < z,,. Then the set A is non-empty and
bounded in R™.

Proof. The assumptions of the lemma ensure that there exists a solution w* of
the problem (P). If we multiply the equation (5.1) by the vectors in the form (Ra)?,
a € R?, we obtain that (Bw*)~ € A by (5.2).

The boundedness follows from the definition of the set A and the estimate (2.10):

m

—F=—e1=—(G"DN)1 =Y 71ilXi| = c|Mm, ¢>0.

i=1

U
Lemma 5.2. Let FF <0, 21 <T < zy,, and A € A. Let
AN ={ie{L,2,...,m}: \; <O0}.

Then
(5.6) iénAi(Ii\) 2z <T < ig}lﬁ);) Zi.

Proof. The equation GT D\ = e yields that

T = Z ri)\izi/ Z i\
i€A(N) i€A(N)

Hence, we obtain (5.6). O

The following lemma says that the diameter of the set A is small for unstable
loads.

Lemma 5.3. Let {F)}i, {Tk}x be the sequences of the load resultants and their
balance points such that Fy, < 0, z1 < Ty < 2, for any k > 0. Let {Ax}r be the
sequence of the corresponding sets defined by (5.5). If T, — z1 or T, — zm, or
F). — 0, then diam(Aj) — 0.

Proof. Let Ty — z1. Then by the definition of the set Ay we obtain

m

o—zm —Ti) =mM(z1 = T) + ) ridf(zi = Th) VA¥ € Ag, VE>1

=2
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The first term on the right-hand side is non-negative and tends to zero for k — oo.
The second term is non-positive for sufficiently large k and therefore, \¥ — 0 for

i =2,...,m. Since it also holds
m

(5.7) Fp=Y_mA VA e, VE>1,
i=1

we obtain

m

- 1 - -
k k E k k k k A

— = —— 3 S — A ) — \Y s s

Al Al " < T (A’L )\1) 0 )\ A S k

which means that diam(Aj) — 0.
Similarly, we can prove the assertion for the case Ty, — z,,. For the case F, — 0
the assertion also holds, since the equation (5.7) yields A¥ — 0 for any \¥ € A,. O

Since A is closed, convex, and non-empty set, we can define uniquely the projec-
tion P of the space R™ onto the set A with respect to the scalar product (D-, ),

in R™:
(5.8) (D(n—Pm), A= P(n), <0 YAeA

Let v € R™ and let ¢ = ¢(v) € R? solve the problem (P?). Then the vector (Bv+Ge)~
belongs to A and

(D(Bv — (Bu+Ge) "), A — (Bu+Ge)™), =
= (D((Bv+Ge)" = Ge),A = (Bu+Ge)™)
= (D(Bv+Ge)t,A), + (¢, GTD((Bv + Ge)~ — \))
= (D(Bv+Go)*, )\)m <0 VAeA.

2

Therefore, by Definition 5.8 of the projection P,
P(Bv) = (Bv+ Gc)™.

It means that for the vectors w®*) k > 0, generated by Algorithm 3, and for the
solution w*, we obtain (Bw®))~ (Bw*)~ € A. Thus, these vectors have the com-
mon properties specified by the above lemmas. Mainly, for unstable loads, the vec-
tors (Bw(®))~ are close to the vector (Bw*)~, which means that the vectors Buw*)
have a set of the active “springs” similar to that of the vector Bw*. Therefore,
we can expect better convergence properties for Algorithm 3 than for Algorithm 1
for such loads. This will be also demonstrated by numerical examples in the next
section.
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The set A is also important for the dual formulation of the problem, see [9], since
the vectors —\, where A € A, can represent admissible Lagrange multipliers.

6. NUMERICAL EXAMPLES

In this section, convergence results of Algorithms 1-3 will be demonstrated by
numerical examples.

We will consider the beam of the length 1 m with the parameter EI = 5105 Nm?.
The subsoil is situated in the interval (z;, x,), where ; = 0.1m and z, = 0.9 m, and
its stiffness coefficient is ¢ = 5% 108 Nm 2. At the end points 0, [ of the beam, we will
consider point loads Fy and F;, which will be specified for the particular examples.
The interval (0,1) will be divided into 10 %27, j = 2,3, ...,8, equidistant parts. The
situation is depicted in Fig. 2.

lF 0 F l‘L
0 01 T, T 09 1m
Figure 2. Scheme of the tested problem.

We use the following stopping criterion:

[Ea [P

(A1

where ¢ = 107% and 7(*) is the kth residuum of the algorithms. For an approximation

<e 8= f— Kw® — BTD(Bw®)

of the bilinear form b, the reference numerical quadrature

1
[ et~ el-v5/3) + o(v313)
-1

is used. The linear problems with bilateral elastic springs are solved by the Cholesky
factorization.

Example 1. Let F; = —5000N and F; = —5000N. Such a load fulfils the
solvability condition (2.5) and is stable, since the balance point 77 = 0.5 m is situated
in the centre of the subsoil interval. The dependence of the number of outer iterations
on the refinement parameter j of the partition is shown in Tab. 1.

Notice that the number of outer iterations does not depend on j and is practi-
cally the same for all the algorithms. The number of iterations for the “projected”
step in Algorithm 3 are about four. The approximated solution for j = 8, i.e. for
2560 elements, is depicted in Fig. 3.
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Example 2. Let F;, = —5000N and F; = —1000N. Such a load fulfils the
solvability condition (2.5) and is not too stable, since the balance point 75 = 0.1667 m
is close to the end point x; of the subsoil. The dependence of the number of outer
iterations on the refinement parameter j of the partition is shown in Tab. 1.

Ex.1 |[2(3]|4]5|6]|7]|8 Ex.2 |2|3]4]|5|6|7]8
ALGl (43|44 |14|4|4 ALGl [6|6|7|8|7|8]|8
ALG2 [3(3|3|3|3|4]|4 ALG2 |5|5|6|6|6|6|6
ALG3 |3(3|3[3|3|3]|3 ALG3 2222|222

Table 1. Numbers of outer iterations for Examples 1 and 2.

Notice that the number of outer iterations does not depend on j. The number
of outer iterations for Algorithm 3 is smaller than for Algorithms 1, 2, which is the
expected result.

The approximated solution for j = 8 is depicted in Fig. 3.

1ryx 107 1ryx 107
0.5
ol
~05
1t
71'5 L
2002 04 06 08 1" 2002 04 06 o0s 1"

Figure 3. Approximated beam deflections w for Examples 1 and 2.

7. CONCLUSION

The descent direction methods with and without projection have been introduced
and analysed. The methods can be generalized to the problems with more parts of
the subsoil and also for two-dimensional models of thin elastic plates.

The methods have been illustrated by numerical examples. Other numerical ex-
amples, which confirm some theoretical results, can be found in [11].
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