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Abstract. We consider the singular boundary value problem

(tnu
′(t))′ + t

n
f(t, u(t)) = 0, lim

t→0+
t
n
u
′(t) = 0, a0u(1) + a1u

′(1−) = A,

where f(t, x) is a given continuous function defined on the set (0, 1]× (0,∞) which can have
a time singularity at t = 0 and a space singularity at x = 0. Moreover, n ∈ N, n > 2, and
a0, a1, A are real constants such that a0 ∈ (0,∞), whereas a1, A ∈ [0,∞). The main aim
of this paper is to discuss the existence of solutions to the above problem and apply the
general results to cover certain classes of singular problems arising in the theory of shallow
membrane caps, where we are especially interested in characterizing positive solutions. We
illustrate the analytical findings by numerical simulations based on polynomial collocation.

Keywords: singular mixed boundary value problem, positive solution, shallow membrane,
collocation method, lower and upper functions

MSC 2010 : 34B16, 34B18

1. Introduction

We investigate the solvability of the singular mixed boundary value problem

(tnu′(t))′ + tnf(t, u(t)) = 0, 0 < t < 1,(1.1a)

lim
t→0+

tnu′(t) = 0, a0u(1) + a1u
′(1−) = A,(1.1b)

*The first author was supported by the grant No. A100190703 of the Grant Agency of the
Academy of Sciences of the Czech Republic and by the Council of Czech Government
MSM 6198959214; the second and the third author were supported by the Austrian
Science Fund Project P17253.
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where n ∈ N, n > 2, a0 ∈ (0,∞), a1, A ∈ [0,∞) and we denote lim
t→1−

u′(t) by u′(1−).

For the given function f(t, x) we make the following assumption:

A1: The data function f(t, x) is continuous on (0, 1]× (0,∞) and can have a time

singularity at t = 0 and a space singularity at x = 0.

Definition 1.1. A function f(t, x) has a time singularity at t = 0, if there exists

x ∈ (0,∞) such that
∫ ε

0

|f(t, x)| dt = ∞, ε ∈ (0, 1).

A function f(t, x) has a space singularity at x = 0, if

lim sup
x→0+

|f(t, x)| = ∞, t ∈ (0, 1).

We focus our attention on the existence of positive solutions of problem (1.1) which

are characterized in the following definition.

Definition 1.2. A function u is called a positive solution of problem (1.1) if

u satisfies the following conditions:

(i) u ∈ C[0, 1] ∩ C2(0, 1),

(ii) u(t) > 0 for t ∈ (0, 1),

(iii) u satisfies equation (1.1a) and boundary conditions (1.1b).

We want to prove a general existence theorem for problem (1.1) which will enable

a unified approach to the existence and localization of positive solutions for certain

classes of singular problems, such as

(t3u′(t))′ + t3
(

1

8u2(t)
− µ

u(t)
− λ2

2
t2γ−4

)

= 0,(1.2a)

lim
t→0+

t3u′(t) = 0, a0u(1) + a1u
′(1−) = A.(1.2b)

With µ > 0, λ > 0, γ > 1 problem (1.2) is a special case of (1.1). Boundary value

problems (1.2) arise in the theory of shallow membrane caps and are investigated

in [14], [15], [16], and [21]. Equation

(1.3) u′′(t) +
3

t
u′(t) +

q(t)

u2(t)
= 0,

where q is continuous on [0, 1] and positive on (0, 1), augmented by boundary con-

ditions (1.1b) was studied in [2]. It describes the behavior of symmetric circular
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membranes and can be easily transformed to the special case of (1.1). Finally, the

problem posed on a semi-infinite interval,

z′′(s) +
1

s3

(

λ2

8sγ−2
− 1

32z2(s)
+

µ

4z(s)

)

= 0, 1 < s <∞,(1.4a)

lim
s→∞

|z(s)| <∞, b0z(1)− b1z
′(1−) = A,(1.4b)

also arises in the membrane theory and for A > 0 it was discussed in [1] and [8]. It

can be written in the form (1.2), where a0 = b0, a1 = 2b1, by using the substitution

(1.5) s =
1

t2
, z(s) = z

( 1

t2

)

=: u(t).

2. Existence theorems for problem (1.1)

Our analytical approach is based on the lower and upper functions method which

is here extended to the general singular problem of the form (1.1). In the sequel, we

shall use the following definitions:

Definition 2.1. A function σ is called a lower function of equation (1.1a), if

σ satisfies the following requirements:

(i) σ ∈ C[0, 1] ∩ C2(0, 1),

(ii) (tnσ′(t))′ + tnf(t, σ(t)) > 0, t ∈ (0, 1).

If the inequality in (ii) is reversed, σ is called an upper function of equation (1.1a).

If σ satisfies (i), (ii) and

(iii) lim
t→0+

tnσ′(t) > 0, a0σ(1) + a1σ
′(1−) 6 A,

then σ is called a lower function of the boundary value problem (1.1). If the inequa-

lities in (ii) and (iii) are reversed, then σ is called an upper function of the boundary

value problem (1.1).

In general, σ′(t) can become unbounded at the endpoints of the integration inter-

val, t = 0 and t = 1. For more general definitions of lower and upper functions, see

e.g. [12], [17] or [22].

For the next two theorems we need the following assumptions:

A2.1: σ1 and σ2 are a lower and an upper function of problem (1.1), respectively.

A2.2: 0 < σ1(t) 6 σ2(t) for t ∈ (0, 1).

A2.3: There exists p < 2 such that lim
t→0+

tph(t) <∞, where

h(t) = sup{|f(t, x)| : σ1(t) 6 x 6 σ2(t)}.
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Note that σ1 and σ2 can vanish at t = 0 and t = 1. Since f(t, x) may exhibit

singularities at t = 0 and x = 0, we easily see that h can become unbounded, i.e.

(2.1) lim sup
t→0+

h(t) = ∞, lim sup
t→1−

h(t) = ∞.

Theorem 2.2. Assume that A1 and A2.1–A2.3 hold.

(i) Let h be bounded on [0, 1]. Then problem (1.1) has a positive solution u such

that u ∈ C1[0, 1] and u′(0) = 0. Moreover,

(2.2) σ1(t) 6 u(t) 6 σ2(t), t ∈ [0, 1].

(ii) Let h satisfy (2.1). Furthermore, let us assume that there exists a constant

δ1 ∈ (0, 1) such that

(2.3) (tnσ′

1(t))
′
> 0, (tnσ′

2(t))
′
6 0, t ∈ (0, δ1),

σ1(1) = σ2(1), and there exist δ2 ∈ (0, 1), K ∈ R such that

(2.4) (tnσ′

1(t))
′ > K, (tnσ′

2(t))
′ 6 K, t ∈ (1 − δ2, 1).

Then problem (1.1) with A = 0 in (1.1b) has a positive solution u satisfying (2.2).

P r o o f. (i) For h bounded on [0, 1], (i) follows by arguing as in the regular case,

where f is continuous or satisfies the Carathéodory conditions on [0, 1]× [0,∞), see

e.g. Theorem 2.3 in [21].

(ii) Let h satisfy (2.1) and let (2.3), (2.4), and σ1(1) = σ2(1) hold. Now the proof

is carried out in five steps.

Step 1. We first show that A = 0: The condition lim sup
t→1−

h(t) = ∞ and A1

imply σ1(1) = 0. From σ1(1) = σ2(1) also σ2(1) = 0 follows. If a1 = 0, then

Definition 2.1 (iii) yields 0 = a0σ1(1) 6 A and 0 = a0σ2(1) > A. Therefore, A = 0.

If a1 > 0, Definition 2.1 (iii) yields σ′

2(1−) > A/a1. Due to A2.2, σ2(t) > 0 for

t ∈ (0, 1) and hence, σ′

2(1−) 6 0. Therefore, A = 0.

Step 2. Approximate solutions uk: Choose k ∈ N, 1/k 6 min{δ1, δ2}, and define

fk(t, x) :=































0, t ∈
[

0,
1

k

)

,

f(t, x), t ∈
[1

k
, 1 − 1

k

]

,

−K
tn
, t ∈

(

1 − 1

k
, 1

]

.
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Consider the equation

(2.5) (tnu′(t))′ + tnfk(t, u(t)) = 0.

We see that σ1 and σ2 are lower and upper functions of equation (2.5) subject

to (1.1b) and

hk(t) := sup{|fk(t, x)| : σ1(t) 6 x 6 σ2(t)}

is bounded on [0, 1]. By Part (i) of the proof, problem (2.5), (1.1b) has a solution

uk ∈ C1[0, 1] ∩ C2(0, 1) satisfying u′k(0) = 0 and

(2.6) σ1(t) 6 uk(t) 6 σ2(t), t ∈ [0, 1].

Step 3. Properties of the function h: We now derive some useful properties of h

which will be required in the next steps of the proof. Choose an interval [0, b] ⊂ [0, 1).

Due to A1 and A2.2, the function tnh(t) is continuous on (0, b]. Since p < 2 6 n, it

follows from A2.3 that lim
t→0+

tnh(t) = 0 holds. Therefore,

(2.7)

∫ b

0

snh(s) ds =: Mb ∈ (0,∞).

Thus, by de l’Hospital’s rule and A2.3,

lim
t→0+

1

tn−p+1

∫ t

0

snh(s) ds

= lim
t→0+

tnh(t)

(n− p+ 1)tn−p
=

1

n− p+ 1
lim

t→0+
tph(t) =: c0 ∈ (0,∞).

This yields the existence of ε ∈ (0, 1) such that

1

tn

∫ t

0

snh(s) ds 6 (c0 + 1)
1

tp−1
, t ∈ [0, ε].

Moreover, by (2.7),

1

tn

∫ t

0

snh(s) ds 6
1

εn

∫ b

0

snh(s) ds =
Mb

εn
for t ∈ [ε, b].

Finally, imply the last two inequalities

(2.8)

∫ b

0

1

tn

∫ t

0

snh(s) ds dt <∞.
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Step 4. Properties of the sequence {uk}: Consider the sequence of equations (2.5)
subject to (1.1b) with k ∈ N, 1/k 6 min{δ1, δ2}, where δ1 and δ2 are specified by (2.3)
and (2.4), respectively. From Step 2 we obtain the corresponding sequence {uk} of
their solutions which are approximations for u. Let us first discuss the convergence

properties of {uk}. Choose an interval [0, b] ⊂ [0, 1). Then there exists an index

k1 ∈ N, 1/k1 6 min{δ1, δ2}, such that

[0, b] ⊂
[

0, 1 − 1

k

]

, k > k1.

Due to boundary conditions (1.1b) and equation (2.5) we have

(2.9) tnu′k(t) +

∫ t

0

snfk(s, uk(s)) ds = 0, t ∈ [0, b], k > k1.

The inequality

(2.10) |fk(t, uk(t))| 6 h(t), t ∈
[

0, 1 − 1

k

]

, k > k1,

condition (2.7) and equality (2.9) yield

(2.11) |tnu′k(t)| 6

∫ t

0

snh(s) ds 6 Mb, t ∈ [0, b], k > k1.

According to (2.6) and (2.11) the sequences {uk} and {tnu′k} are bounded on [0, b].

Moreover, by (2.7) and (2.8), for each ε > 0 there exists a δ > 0 such that for any

t1, t2 ∈ [0, b] with |t1 − t2| < δ and any k > k1 we have

|tn1u′k(t1) − tn2u
′

k(t2)| 6

∣

∣

∣

∣

∫ t2

t1

snh(s) ds

∣

∣

∣

∣

< ε

and

|uk(t1) − uk(t2)| 6

∣

∣

∣

∣

∫ t2

t1

1

tn

∫ t

0

snh(s) ds dt

∣

∣

∣

∣

< ε

holds. Hence, the sequences {uk} and {tnu′k} are equicontinuous on [0, b]. The

Arzelà-Ascoli theorem now implies that there exists a subsequence {uℓ} ⊂ {uk} such
that

lim
ℓ→∞

uℓ = u, lim
ℓ→∞

tnu′ℓ = tnu′

uniformly on [0, b]. Finally, by the diagonalization principle, we find a subsequence1

{uk} satisfying

(2.12) lim
k→∞

uk = u, lim
k→∞

tnu′k = tnu′

locally uniformly on [0, 1).

1 For simplicity, the previous notation {uk} for this subsequence is used.
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Step 5. Properties of the function u: We now prove that the limit function u is a

positive solution of problem (1.1) satisfying (2.2). Due to (2.6) and (2.12) we have

σ1(t) 6 u(t) 6 σ2(t), t ∈ [0, 1), u ∈ C[0, 1),(2.13a)

tnu′(t) ∈ C[0, 1), lim
t→0+

tnu′(t) = 0.(2.13b)

Choose t ∈ (0, 1). Then there exists kt > k1 such that

f(t, uk(t)) = fk(t, uk(t)), k > kt,

and hence, by A1 and (2.12),

lim
k→∞

fk(t, uk(t)) = lim
k→∞

f(t, uk(t)) = f(t, u(t)).

Consequently, the sequence {fk(t, uk(t))} is pointwise converging on (0, 1). Further-

more, for an arbitrary interval [0, b] ⊂ [0, 1) we have, by (2.10),

|tnfk(t, uk(t))| 6 tnh(t), t ∈ [0, b], k > k1.

Therefore, due to (2.7), we can use the Lebesgue dominated convergence theorem

for the sequence of equalities (2.9). Having in mind that b ∈ (0, 1) is arbitrary and

letting k → ∞, we conclude that

tnu′(t) +

∫ t

0

snf(s, u(s)) ds = 0, t ∈ [0, 1).

Thus u ∈ C2(0, 1) and u satisfies equation (1.1a) for t ∈ (0, 1). By Step 1, we have

σ1(1) = σ2(1) = A = 0 and consequently, by (2.13a), lim
t→1−

u(t) = 0 follows. For

u(1) = 0, we can see that u ∈ C[0, 1] is a positive solution of problem (1.1), which

completes the proof. �

Theorem 2.3. Assume that A1 and A2.1–A2.3 hold.

(i) Let h be bounded at t = 0 and let us assume that lim sup
t→1−

h(t) = ∞ and

condition (2.4) hold. Then problem (1.1) with A = 0 in (1.1b) has a positive solution

u ∈ C1[0, 1) which satisfies estimate (2.2) and u′(0) = 0.

(ii) Let h be bounded at t = 1 and let lim sup
t→0+

h(t) = ∞ and condition (2.3) hold.

Then problem (1.1) has a positive solution u ∈ C1(0, 1] which satisfies estimate (2.2).

P r o o f. We use arguments similar to those from the proof of Theorem 2.2.
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(i) Since h is bounded at t = 0, we define

fk(t, x) :=















f(t, x), t ∈
[

0, 1 − 1

k

]

,

−K
tn
, t ∈

(

1 − 1

k
, 1

]

,

where k ∈ N, 1/k 6 δ2, and δ2, K are given by (2.4). As in Steps 2–4, we construct

the sequence {uk} of solutions of equations (2.5) subject to (1.1b) which satisfy (2.6)
and (2.12). By Step 5, the limit function u is a positive solution of problem (1.1)

satisfying (2.2). Since h is bounded at t = 0, we have

sup
{

|h(t)| : t ∈
[

0,
1

2

]}

=: M <∞

and therefore,

|u′(t)| 6
1

tn

∫ t

0

snh(s) ds 6
M

n+ 1
t, t ∈

[

0,
1

2

]

.

For u′(0) = 0, u ∈ C1[0, 1) follows.

(ii) Since h is bounded at t = 1, we set

fk(t, x) :=















0, t ∈
[

0,
1

k

)

,

f(t, x), t ∈
[1

k
, 1

]

,

where k ∈ N, 1/k 6 δ1, and δ1 is specified by (2.3). As in Step 2 we derive the

sequence {uk} of solutions of equations (2.5) subject to (1.1b) and satisfying (2.6).
Moreover, similarly to Step 3, we obtain

∫ 1

0

snh(s) ds <∞,

∫ 1

0

1

tn

∫ t

0

snh(s) ds dt <∞,

and we deduce, as in Step 4, that

lim
k→∞

uk = u, lim
k→∞

tnu′k = tnu′

holds uniformly on [0, 1]. Therefore, u ∈ C[0, 1] ∩ C1(0, 1] and u satisfies (1.1b) and

(2.2). By the Lebesgue dominated convergence theorem, as in Step 5, we conclude

that u ∈ C2(0, 1) satisfies equation (1.1a) for t ∈ (0, 1) and the result follows. �

Note that the existence of nonnegative solutions for mixed problems, where f may

be singular just at x = 0, was also proved in [3].
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3. Singular membrane problems

In this section we use Theorems 2.2 and 2.3 to prove the solvability of singular

membrane problems. We study the boundary value problem

(tnu′(t))′ + tn
( a

u2m(t)
− b

um(t)
− ct2r

)

= 0,(3.1a)

lim
t→0+

tnu′(t) = 0, a0u(1) + a1u
′(1−) = A,(3.1b)

where a ∈ (0,∞), b, c ∈ [0,∞), r ∈ (−1,∞), m,n ∈ N, and n > 2. Problem (3.1)

covers the membrane problem (1.2) and, after substitution (1.5), also the infinite

interval problem (1.4).

In order to be able to utilize the results formulated in Theorems 2.2 and 2.3, it

is necessary to show how to find proper lower and upper functions of the above

problem. We begin with lower and upper functions of equation (3.1a), the choice of

which depends on the parameters a, b, c, r, n, and m.

Lemma 3.1. Assume that c1 ∈ (0, x
−1/m
1 ], where x1 = 1

2 (b +
√
b2 + 4ac)/a. For

t ∈ [0, 1], we define

(3.2) σ1(t) :=

{

c1, r > 0,

c1t
−r/m, r ∈ (−1, 0).

Then σ1 is a lower function of equation (3.1a).

P r o o f. Since c−m
1 > x1 and x1 is a positive solution of the equation ax

2 − bx−
c = 0, we have

(3.3)
a

c2m
1

− b

cm1
− c > 0.

Let r > 0. Then σ1(t) ≡ c1 and, by (3.3),

(tnσ′

1(t))
′ + tn

( a

σ2m
1 (t)

− b

σm
1 (t)

− ct2r
)

> tn
( a

c2m
1

− b

cm1
− c

)

> 0, t ∈ (0, 1).

Let r ∈ (−1, 0). Then σ1(t) = c1t
−r/m and, by (3.3),

(tnσ′

1(t))
′ + tn

( a

σ2m
1 (t)

− b

σm
1 (t)

− ct2r
)

> tn+2r
( a

c2m
1

− b

cm1
− c

)

> 0, t ∈ (0, 1).

This means σ1 satisfies conditions (i) and (ii) of Definition 2.1. �
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Lemma 3.2. Let us assume that c2 ∈ [x
−1/m
1 ,∞), where x1 is defined in

Lemma 3.1. For t ∈ [0, 1] define

(3.4) σ2(t) :=







c2 +
c

n
(1 − t), r > 0,

c2, r ∈ (−1, 0].

Then σ2 is an upper function of equation (3.1a).

P r o o f. Let r ∈ (−1, 0]. Then σ2(t) ≡ c2. Since 0 < c−m
2 6 x1, we have

(tnσ′

2(t))
′ + tn

( a

σ2m
2 (t)

− b

σm
2 (t)

− ct2r
)

6 tn
( a

c2m
2

− b

cm2
− c

)

6 0, t ∈ (0, 1).

Let r > 0. Then σ2(t) = c2 + c
n (1 − t) and

(tnσ′

2(t))
′ + tn

( a

σ2m
2 (t)

− b

σm
2 (t)

− ct2r
)

6 tn−1(−c+ tψ(t)), t ∈ (0, 1),

where

ψ(t) =
a

[c2 + c
n (1 − t)]2m

− b

[c2 + c
n (1 − t)]m

.

If ψ(t) is positive for some t ∈ (0, 1), we can conclude

−c+ tψ(t) 6 −c+
a

c2m
2

− b

cm2
6 0

and thus, by Definition 2.1, the function σ2 is an upper function of (3.1a). �

We now specify the c1 and c2 in σ1 and σ2 from Lemmas 3.1 and 3.2, respec-

tively, in order to satisfy condition A2.2 and Definition 2.1 (iii). For σ2 we take

Definition 2.1 (iii) with the reversed inequalities.

Lemma 3.3. Let A > 0 and x1 be as in Lemma 3.1. Set r
− := max{0,−r} and

c1 := min
{ Am

a0m+ a1r−
, x

−1/m
1

}

, c2 := max
{ 1

a0

(

A+
a1c

n

)

, x
−1/m
1

}

.

Then σ1 and σ2 given by (3.2) and (3.4) are, respectively, lower and upper functions

of problem (3.1) and satisfy A2.2.

P r o o f. By Lemmas 3.1 and 3.2, σ1 and σ2 are lower and upper functions of

equation (3.1a). We see that A2.2 holds and (3.2), (3.4) yield

lim
t→0+

tnσ′

1(t) = 0, lim
t→0+

tnσ′

2(t) = 0.
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Finally,

a0σ1(1) + a1σ
′

1(1−) =







a0c1 6 A, r > 0,

c1

(

a0 − a1
r

m

)

6 A, r ∈ (−1, 0),

a0σ2(1) + a1σ
′

2(1−) =







a0c2 > A, r ∈ (−1, 0],

a0c2 − a1
c

n
> A, r > 0.

�

Lemma 3.3 deals with the case A > 0. In the next two lemmas we will discuss the

case A = 0, where constant lower and upper functions do not exist.

Lemma 3.4. Let A = 0 and a1 > 0. Set k := 1 + a1/(a0 − a1(r/m)) and for

t ∈ [0, 1] define

(3.5) σ1(t) :=







ν
(

1 − t2 + 2
a1

a0

)

, r > 0,

νt−r/m(k − t), r ∈ (−1, 0),

σ2(t) := β
(

1 − t2 + 2
a1

a0

)

.

Then there exist constants ν∗, β∗ ∈ (0,∞) such that for each ν ∈ (0, ν∗) and β > β∗,

the functions σ1 and σ2 are a lower function and an upper function of problem (3.1)

satisfying A2.2.

P r o o f. By direct calculations we can see that σ1 and σ2 satisfy

lim
t→0+

tnσ′

i(t) = 0, a0σi(1) + a1σ
′

i(1−) = 0, i = 1, 2.

Let r > 0. Then σ1(t) = ν(1 − t2 + 2a1/a0) and

(tnσ′

1(t))
′ + tn

( a

σ2m
1 (t)

− b

σm
1 (t)

− ct2r
)

> tnϕ1(t, ν), t ∈ (0, 1),

where

ϕ1(t, ν) = −2ν(n+ 1) +
a

[ν(1 − t2 + 2a1/a0)]2m
− b

[ν(1 − t2 + 2a1/a0)]m
− c.

Since lim
ν→0+

ϕ1(t, ν) = ∞ uniformly on [0, 1], we can find ν∗ > 0 such that for each

ν ∈ (0, ν∗], the inequality ϕ1(t, ν) > 0 holds for t ∈ [0, 1].

Let r ∈ (−1, 0). Then σ1(t) = νt−r/m(k − t) and

(tnσ′

1(t))
′ + tn

( a

σ2m
1 (t)

− b

σm
1 (t)

− ct2r
)

> tn−r/m−2ψ1(t, ν), t ∈ (0, 1),
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where

ψ1(t, ν) = νℓ(t) + t2r+r/m+2h(t, ν), h(t, ν) =
a

[ν(k − t)]2m
− b

[ν(k − t)]m
− c,

and

(3.6) ℓ(t) = −rk
m

(

n− r

m
− 1

)

−
(

n− r

m

)(

1 − r

m

)

t.

Choose c1 > 0 as in Lemma 3.1 and let ν1 ∈ (0, c1/k]. Then, by (3.3), h(t, ν) > 0 for

ν ∈ (0, ν1], t ∈ [0, 1]. We now denote the unique zero of ℓ(t) by t0 and have ℓ(t) > 0

for t ∈ [0, t0]. Consequently,

ψ1(t, ν) > 0, ν ∈ (0, ν1], t ∈ [0, t0].

Furthermore,

lim
ν→0+

ψ1(t, ν) = ∞

uniformly for t ∈ [t0, 1]. Therefore, we can find ν∗ ∈ (0, ν1] such that for each

ν ∈ (0, ν∗], the inequality ψ1(t, ν) > 0 holds for t ∈ [0, 1].

Let us now consider σ2(t) = β(1 − t2 + 2a1/a0). We have

(tnσ′

2(t))
′ + tn

( a

σ2m
2 (t)

− b

σm
2 (t)

− ct2r
)

6 tnϕ(β), t ∈ (0, 1),

where

ϕ(β) = −2(n+ 1)β + a
(

2β
a1

a0

)−2m

.

Since lim
β→∞

ϕ(β) = −∞, there exists β∗ > ν∗ such that for each β > β∗ we have

ϕ(β) > 0. �

Lemma 3.5. Let A = 0 and a1 = 0. For t ∈ [0, 1] let us define

(3.7) σ1(t) :=

{

ν(1 − t2), r > 0,

νt−r/m(1 − t), r ∈ (−1, 0),
σ2(t) := β(1 − t2)1/2m.

Then there exist constants ν∗, β∗ ∈ (0,∞) such that for each ν ∈ (0, ν∗) and β > β∗,

the functions σ1 and σ2 are a lower function and an upper function of problem (3.1)

satisfying A2.2.

P r o o f. We can easily check that σ1 and σ2 satisfy

lim
t→0+

tnσ′

i(t) = 0, σi(1) = 0, i = 1, 2.
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Let r > 0. Then σ1(t) = ν(1 − t2) and

(tnσ′

1(t))
′ + tn

( a

σ2m
1 (t)

− b

σm
1 (t)

− ct2r
)

> tnϕ(t, ν), t ∈ (0, 1),

where

ϕ(t, ν) = −2ν(n+ 1) +
a

[ν(1 − t2)]2m
− b

[ν(1 − t2)]m
− c.

Since lim
ν→0+

ϕ(t, ν) = ∞ uniformly on [0, 1], we can find ν∗ > 0 such that for each

ν ∈ (0, ν∗], the inequality ϕ(t, ν) > 0 holds for t ∈ [0, 1].

Let r ∈ (−1, 0). Then σ1(t) = νt−r/m(1 − t) and similarly to the proof of

Lemma 3.4 we conclude that for each sufficiently small positive ν the function σ1 is

a lower function of problem (3.1).

Now, consider σ2(t) = β(1 − t2)1/2m. We have

(tnσ′

2(t))
′ + tn

( a

σ2m
2 (t)

− b

σm
2 (t)

− ct2r
)

6 tn(1 − t2)1/2m−2ϕ2(t, β), t ∈ (0, 1),

where

ϕ2(t, β) = −2β

m

(

1 − 1

2m

)

+ aβ−2m(1 − t2)1−1/2m.

Since lim
β→∞

ϕ2(t, β) = −∞ uniformly on [0, 1], we can find a β∗ > ν∗ such that for

each β > β∗, ϕ2(t, β) 6 0 on (0, 1) holds. Therefore, σ2 is an upper function of (3.1)

and A2.2 is satisfied. �

Having derived lower and upper functions of problem (3.1) for all values of its

parameters, we can prove the existence of a positive solution u to this problem and

describe how u′ behaves at the singular points t = 0 and t = 1.

Theorem 3.6. Problem (3.1) has a positive solution u such that

(3.8)































u(0) > 0, u′(0+) = 0, r > −1

2
,

u(0) > 0, u′(0+) =
c

n
, r = −1

2
,

u(0) > 0, u′(0+) = ∞, r < −1

2
,

and

(3.9)











u′(1−) ∈ R, A > 0,

u′(1−) ∈ R, A = 0, a1 > 0,

u′(1−) = −∞, A = 0, a1 = 0.
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P r o o f. Lower and upper functions σ1 and σ2 of problem (3.1) satisfying A2.2

are given according to Lemmas 3.3, 3.4, and 3.5. The function

f(t, x) =
a

x2m
− b

xm
− ct2r

satisfies A1. Consider the function h from A2.3. Then we have

(3.10) 0 6 h(t) 6
a

σ2m
1 (t)

+
b

σm
1 (t)

+ ct2r, t ∈ (0, 1).

Case 1. We assume that A > 0 or A = 0, a1 > 0. We first find c1 by Lemma 3.3,

and then choose ν ∈ (0, ν∗) in (3.5) such that νk 6 c1.

Let r > 0. Then σ1 is positive on [0, 1] and (3.10) implies that h is bounded

on [0, 1] and lim
t→0+

th(t) = 0. Thus, h satisfies condition A2.3 with p = 1 and, by

Theorem 2.2 (i), problem (3.1) has a positive solution u ∈ C1[0, 1] satisfying u′(0) = 0

and (2.2). Since σ1(0) > 0, the inequality u(0) > 0 follows.

Let r ∈ (−1, 0). Then (3.10) yields

(3.11) 0 6 h(t) 6 t2r
( a

[ν(k − 1)]2m
+

b

[ν(k − 1)]m
+ c

)

, t ∈ (0, 1).

Also,

h(t) >
a

σ2m
1 (t)

− b

σm
1 (t)

− ct2r > t2r
( a

c2m
1

− b

cm1
− c

)

> 0, t ∈ (0, 1).

By (3.11) and the last inequality we have

lim sup
t→0+

h(t) = ∞, lim sup
t→1−

h(t) <∞.

Due to (3.11), for p = −2r we can show A2.3, since

lim
t→0+

tph(t) 6
a

[ν(k − 1)]2m
+

b

[ν(k − 1)]m
+ c <∞.

Now we prove (2.3). If A > 0, we use Lemma 3.3 and have σ1(t) = c1t
−r/m,

σ2(t) ≡ c2. Hence,

(tnσ′

1(t))
′ = c1

(

− r

m

)(

n− 1 − r

m

)

tn−2−r/m > 0, (tnσ′

2(t))
′ = 0, t ∈ (0, 1).

For A = 0 and a1 > 0 we use Lemma 3.4 and have σ1(t) = νt−r/m(k − t), σ2(t) =

β(1 − t2 + 2a1/a0). Hence,

(tnσ′

1(t))
′ = νtn−2−r/mℓ(t) > 0, (tnσ′

2(t))
′ = −2β(n+ 1)tn 6 0, t ∈ (0, δ1),
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where ℓ(t) is given by (3.6) and δ1 = t0 is its unique zero. Therefore, condition (2.3)

holds. Consequently, by Theorem 2.3 (ii), problem (3.1) has a positive solution u ∈
C1(0, 1] satisfying (2.2).

It remains to prove (3.8) for r ∈ (−1, 0). Equation (3.1a) and condition (3.1b)

result in

(3.12) tnu′(t) = −
∫ t

0

sn
( a

u2m(s)
− b

um(s)
− cs2r

)

ds, t ∈ (0, 1),

and consequently, since n > 2 and r > −1,

(3.13) lim
t→0+

∫ t

0

sn
( b

um(s)
− a

u2m(s)

)

ds = 0.

Assume u(0) = 0. Since σ1(0) = 0 and lim
t→0+

σ′

1(t) = ∞, inequality (2.2) implies

(3.14) lim
t→0+

u′(t) = ∞.

On the other hand, the assumption u(0) = 0 guarantees the existence of δ > 0 such

that um(t) 6 a/b for t ∈ [0, δ]. Then, by (3.12),

u′(t) =
1

tn

∫ t

0

sn

u2m(s)
(bum(s) − a) ds+

ct2r+1

n+ 2r + 1
6

ct2r+1

n+ 2r + 1
, t ∈ (0, δ).

If r ∈ [− 1
2 , 0), then u′(t) 6 c/n on (0, δ), a contradiction to (3.14). This means that

we have shown

(3.15) r > −1

2
=⇒ u(0) > 0.

For r ∈ [− 1
2 , 0), using (3.12), (3.13), (3.15) and de l’Hospital’s rule we obtain

(3.16) lim
t→0+

u′(t) = lim
t→0+

ct2r+1

n+ 2r + 1
=















0, r ∈
(

−1

2
, 0

)

,

c

n
, r = −1

2
.

Let r ∈ (−1,− 1
2 ). If u(0) = 0, then (3.14) holds. If u(0) > 0, then by (3.12), (3.13),

and de l’Hospital’s rule we deduce as before,

lim
t→0+

u′(t) = lim
t→0+

ct2r+1

n+ 2r + 1
= ∞.

Case 2. Now, we consider the case A = 0, a1 = 0.
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Let r > 0, then by Lemma 3.5,

σ1(t) = ν(1 − t2), σ2(t) = β(1 − t2)1/2m,

where 0 < ν < β with a sufficiently small ν and a sufficiently large β. For t ∈ (0, 1)

we have

0 <
1

(1 − t2)2m

( a

ν2m
− b

νm
− c

)

6 h(t) 6
1

(1 − t2)2m

( a

ν2m
+

b

νm
+ c

)

and consequently,

lim sup
t→0+

h(t) <∞, lim sup
t→1−

h(t) = ∞.

Hence, A2.3 holds. Moreover,

σ1(1) = σ2(1) = 0 = A, (tnσ′

1(t))
′ = −2ν(n+ 1)tn,

and

(tnσ′

2(t))
′ = − β

m
tn(1 − t2)1/2m−2

(

(n+ 1)(1 − t2) + 2t2
(

1 − 1

m

))

.

This means that there exists δ2 ∈ (0, 1) such that (2.4) is valid for K = −2ν(n+ 1).

Therefore, by Theorem 2.3 (i), problem (3.1) has a positive solution u ∈ C1[0, 1)

satisfying u′(0) = 0 and (2.2). Since σ1(0) > 0, we have u(0) > 0.

Let r ∈ (−1, 0). By Lemma 3.5,

σ1(t) = νt−r/m(1 − t), σ2(t) = β(1 − t2)1/2m,

where 0 < ν < β and ν is sufficiently small, while β is sufficiently large. Then for

t ∈ (0, 1)

0 <
t2r

(1 − t)2m

( a

ν2m
− b

νm
− c

)

6 h(t) 6
t2r

(1 − t)2m

( a

ν2m
+

b

νm
+ c

)

.

Consequently,

lim sup
t→0+

h(t) = ∞, lim sup
t→1−

h(t) = ∞.

For p = −2r we obtain lim
t→0+

tph(t) <∞ and hence A2.3 follows. Moreover, we have

(tnσ′

1(t))
′ = νtn−r/m−2

(

− r

m

(

n− r

m
− 1

)

−
(

n− r

m

)(

1 − r

m

)

t
)

, t ∈ (0, 1),

(tnσ′

2(t))
′ = − β

m
tn(1 − t2)1/2m−2

(

(n+ 1)(1 − t2) + 2t2
(

1 − 1

m

))

, t ∈ (0, 1).
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Thus, we can find δ1, δ2 ∈ (0, 1) which are sufficiently small to guarantee

(tnσ′

1(t))
′ > 0, (tnσ′

2(t))
′ 6 0, t ∈ (0, δ1),

(tnσ′

1(t))
′ > K, (tnσ′

2(t))
′ 6 K, t ∈ (1 − δ2, 1),

where K = −ν(n− r/m)(1 − r/m). We can see that (2.3) and (2.4) hold and using

Theorem 2.2 (ii) we deduce that problem (3.1) has a positive solution u ∈ C1(0, 1)

satisfying (2.2). For r ∈ (−1, 0), property (3.8) can be proved in the same way as in

Case 1.

Finally, we show that if A = 0 and a1 = 0, then u′(1−) = −∞. Since u(1) = 0,

there exists ξ ∈ (0, 1) such that um(t) 6 a/2b for t ∈ [ξ, 1]. Moreover, we have

−
∫ t

ξ

ds

u2m(s)
6 −

∫ t

ξ

ds

σ2m
2 (s)

6 − 1

2β2m

∫ t

ξ

ds

1 − s
=

1

2β2m
ln

1 − t

1 − ξ
, t ∈ (ξ, 1).

Therefore, by integrating (3.1a), we obtain

tnu′(t) = ξnu′(ξ) +

∫ t

ξ

sn

u2m(s)
(bum(s) − a) ds+ c

∫ t

ξ

sn+2r ds

6 ξnu′(ξ) +
a

2
ξn

(

−
∫ t

ξ

ds

u2m(s)

)

6 ξnu′(ξ) +
aξn

4β2m
ln

1 − t

1 − ξ
+

c

n+ 2r + 1
, t ∈ (ξ, 1).

Hence, lim
t→1−

tnu′(t) = u′(1−) = −∞. �

From Theorem 3.6 we are now able to derive the following existence result for

problem (1.4).

Theorem 3.7. Problem (1.4) has a positive solution z such that

(3.17)















lim
s→∞

z(s) > 0, lim
s→∞

sγz′(s) = −λ
2

8γ
, γ >

3

2
,

lim
s→∞

z(s) > 0, lim
s→∞

√
s3 z′(s) = −∞, γ <

3

2
,

and

(3.18)











z′(1+) ∈ R, A > 0,

z′(1+) ∈ R, A = 0, b1 > 0,

z′(1+) = ∞, A = 0, b1 = 0.
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P r o o f. Problem (3.1) with n = 3, a = 1
8 , b = µ, c = λ2/2, r = γ − 2 has the

form (1.2). By Lemmas 3.3, 3.4, and 3.5 there exist lower and upper functions σ1

and σ2 of problem (1.2) satisfying A2.2. By Theorem 3.6, there is a positive solution

u of (1.2) satisfying (2.2), (3.8), and (3.9). Let r2 := max{|σ2(t)| : t ∈ [0, 1]} and let
z be defined by

z(s) := z
( 1

t2

)

= u(t), t ∈ (0, 1].

Then 0 < z(s) < r2 for s ∈ [1,∞) and z is a solution of problem (1.4). Furthermore,

we have

−2
√
s3 z′(s) = u′(t).

Let γ > 3
2 . Then, by (3.16),

lim
t→0+

u′(t) = lim
t→0+

λ2

4γ
t2γ−3,

and

lim
s→∞

sγz′(s) = lim
s→∞

sγ−3/2(s3/2z′(s)) = lim
t→0+

t3−2γ
(

−1

2
u′(t)

)

= −λ
2

8γ
.

Consequently, due to (3.8) and (3.9), z satisfies (3.17) and (3.18). �

4. Numerical approach

Here, we first describe how we approximate solutions of two-point boundary value

problems for systems of ordinary differential equations of the form

f(t, u′(t), u(t)) = 0, t ∈ [0, 1],

g(u(0), u(1)) = 0.

We assume that the analytical solution u is appropriately smooth and attempt to

solve this problem numerically using the collocation method implemented in our

Matlab code bvpsuite. It is a new version of the general purpose Matlab code

sbvp, cf. [4], [5], and [18], which has already been successfully applied to a variety of

problems, see for example [9], [10], [11], [19], and [21]. Collocation is a widely used

and well-studied standard solution method for two-point boundary value problems,

see for example [23] and the references therein. It also proved to be robust in the

case of singular boundary value problems.

The code is designed to solve systems of differential equations of arbitrary order.

For simplicity of notation we formulate below a problem whose order varies between
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four and zero, which means that algebraic constraints which do not involve derivatives

are also admitted. Moreover, the problem can be given in a fully implicit form

F (t, u(4)(t), u(3)(t), u′′(t), u′(t), u(t)) = 0, 0 < t 6 1,(4.1a)

b(u(3)(0), u′′(0), u′(0), u(0), u(3)(1), u′′(1), u′(1), u(1)) = 0.(4.1b)

The program can cope with free parameters, λ1, λ2, . . . , λk, which will be computed

along with the numerical approximation for u,

F (t, u(4)(t), u(3)(t), u′′(t), u′(t), u(t), λ1, λ2, . . . , λk) = 0, 0 < t 6 1,(4.2a)

baug(u
(3)(0), u′′(0), u′(0), u(0), u(3)(1), u′′(1), u′(1), u(1)) = 0,(4.2b)

provided that the boundary conditions baug include k additional requirements to be

satisfied by u.

The numerical approximation defined by collocation is computed as follows: On a

mesh

∆ := {τi : i = 0, . . . , N}, 0 = τ0 < τ1 . . . < τN = 1,

we approximate the analytical solution by a collocating function

p(t) := pi(t), t ∈ [τi, τi+1], i = 0, . . . , N − 1,

where we require p ∈ Cq−1[0, 1] in the case that the order of the underlying differen-

tial equation is q. Here pi are polynomials of maximal degree m−1+ q which satisfy

the system (4.1a) at the collocation points

{ti,j = τi + ̺j(τi+1 − τi), i = 0, . . . , N − 1, j = 1, . . . ,m}, 0 < ̺1 < . . . < ̺m < 1,

and the associated boundary conditions (4.1b). For y ∈ R
n, y = (y1, . . . , yn)T , we

have

|y| := max
16k6n

|yk|.

Let y ∈ C[0, 1], y : [0, 1] → R
n. For t ∈ [0, 1],

|y(t)| := max
16k6n

|yk(t)|

and

‖y‖∞ := max
06t61

|y(t)|.

Classical theory, cf. [23], predicts that the convergence order for the global error of

the method is at least O(hm), where h is the maximal stepsize, h := max
i

(τi+1 − τi).
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More precisely, for the global error of p, ‖p − u‖∞ = O(hm) holds uniformly in t.

For certain choices of the collocation points the so-called superconvergence order can

be observed. In the case of Gaussian points this means that the approximation is

exceptionally precise at the meshpoints τi, max
τi∈∆

|p(τi) − u(τi)|∞ = O(h2m).

To make the computations more efficient, an adaptive mesh selection strategy

based on an a posteriori estimate for the global error of the collocation solution may

be utilized. We use a classical error estimate based on mesh halving. In this approach,

we compute the collocation solution p∆(t) on a mesh ∆. Subsequently, we choose a

second mesh ∆2 where in every interval [τi, τi+1] of ∆ we insert two subintervals of

equal length. On this new mesh, we compute the numerical solution based on the

same collocation scheme to obtain the collocating function p∆2
(t). Using these two

quantities, we define

(4.3) E(t) :=
2m

1 − 2m
(p∆2

(t) − p∆(t))

as an error estimate for the approximation p∆(t). Assume that the global error

δ(t) := p∆(t) − u(t) of the collocation solution can be expressed in terms of the

principal error function e(t),

(4.4) δ(t) = e(t)|τi+1 − τi|m +O(|τi+1 − τi|m+1), t ∈ [τi, τi+1],

where e(t) is independent of ∆. Then obviously, the quantity E(t) satisfies E(t) −
δ(t) = O(hm+1) and the error estimate is asymptotically correct. Our mesh adap-

tation is based on the equidistribution of the global error of the numerical solution.

Thus, we define a monitor function Θ(t) := m

√

E(t)/h(t), where h(t) := |τi+1 − τi|
for t ∈ [τi, τi+1]. Now, the mesh selection strategy aims at the equidistribution of

∫ τ̃i+1

τ̃i

Θ(s) ds

on the mesh consisting of the points τ̃i to be determined accordingly, where at the

same time measures are taken to ensure that the variation of the stepsizes is restricted

and tolerance requirements are satisfied with small computational effort. Details of

the mesh selection algorithm and a proof of the fact that our strategy implies that

the global error of the numerical solution is asymptotically equidistributed are given

in [7].

We now discuss the numerical solution of problem (3.1) whose analytical proper-

ties are formulated in Theorem 3.6. For the numerical experiments we specify the

following parameter setting:

n = 3, m = 1, a =
1

8
, b = µ = 0, c =

λ2

2
=

1

2
, λ = 1, r = γ − 2,
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see Theorem 3.6. In order to be able to formulate the first boundary condition

in (3.1b), we introduce a new variable v(t) := t3u′(t) and transform the scalar bound-

ary value problem (3.1) to an associated boundary value problem for the following

system of two implicit differential equations of first order:

v′(t) + t3
( 1

8u2(t)
− µ

u(t)
− λ2

2
t2γ−4

)

= 0,(4.5a)

v(t) − t3u′(t) = 0,(4.5b)

v(0) = 0, a0u(1) +
1

2
a1u

′(1) = A,(4.5c)

with t ∈ [0, 1]. For numerical simulation, problem (4.5) has been rearranged to

v′(t)u2(t) + t3
(1

8
− µu(t) − λ2u2(t)

2
t2γ−4

)

= 0,(4.6a)

v(t) − t3u′(t) = 0,(4.6b)

v(0) = 0, a0u(1) +
1

2
a1v(1) = A.(4.6c)

4.1. Numerical results

In this section we illustrate the theoretical findings of Theorem 3.6 by appropriate

numerical experiments which have been carried out using collocation at 4 Gaussian

collocation points. The numerical solution has been calculated on a fixed equidis-

tant mesh with 1000 points. These rather dense grids were necessary for a good

visualization of approximations when transforming them from the standard interval

[0, 1] back to the infinite interval [1,∞). The error estimate and the residual were

also recorded as indicators for the accuracy of the numerical solution. The error esti-

mate was computed from (4.3) by coupling solutions related to meshes with 1000 and

2000 meshpoints. The residual was obtained by substituting the numerical solution p

into the system of differential equations (4.6a), (4.6b).

First, we set a0 = 1, a1 = 0 and A = 1. According to Theorem 3.6 this means

that u′(1−) ∈ R. The corresponding numerical results for two different values of γ,

both covering the case r > − 1
2 , can be found in Figs. 1 and 2.
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Figure 1. Problem (4.6), γ = 2.5: The numerical approximation for the solution compo-
nent u(t), the error estimate and the residual.
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Figure 2. Problem (4.6), γ = 2: The numerical approximation for the solution compo-
nent u(t), the error estimate and the residual.

In both the figures u(0) > 0 and u′(0+) = 0, as was predicted by Theorem 3.6.

Moreover, both the error estimate and the residual are very small thus indicating

an excellent accuracy of the approximation. In Fig. 3 the results for r = − 1
2 are

depicted. Again, u(0) > 0 is clearly visible. Here we have n = 3, c = 1
2 and

therefore, u′(0+) = c/n ≈ 0.167 which is in a good agreement with Theorem 3.6.
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Figure 3. Problem (4.6), γ = 1.5: The numerical approximation for the solution compo-
nent u(t), the error estimate and the residual.

Finally, Figs. 4 and 5 show the last case r < − 1
2 .
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Figure 4. Problem (4.6), γ = 1.3: The numerical approximation for the solution compo-
nent u(t), the error estimate and the residual.
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Figure 5. Problem (4.6), γ = 1.2: The numerical approximation for the solution compo-
nent u(t), the error estimate and the residual.

For both settings, u(0) > 0 and u′(0+) = ∞.

We now set A = 0 and leave all the other parameters unchanged. According to

Theorem 3.6 this results in u′(1−) = −∞. Figs. 6 to 10 show the corresponding
numerical runs for γ = 2.5, 2, 1.5, 1.3, 1.2, respectively.
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Figure 6. Problem (4.6), A = 0, γ = 2.5: The numerical approximation for the solution
component u(t), the error estimate and the residual.
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Figure 7. Problem (4.6), A = 0, γ = 2: The numerical approximation for the solution
component u(t), the error estimate and the residual.
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Figure 8. Problem (4.6), A = 0, γ = 1.5: The numerical approximation for the solution
component u(t), the error estimate and the residual.

Again, u′(0+) ≈ 0.167.
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Figure 9. Problem (4.6), A = 0, γ = 1.3: The numerical approximation for the solution
component u(t), the error estimate and the residual.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

t

u
(t

)

Solution

0 0.2 0.4 0.6 0.8 1

10
−15

10
−10

10
−5

t

e

Error Estimate

0 0.2 0.4 0.6 0.8 1

10
−10

10
−5

10
0

t

re
s

Residual

Figure 10. Problem (4.6), A = 0, γ = 1.2: The numerical approximation for the solution
component u(t), the error estimate and the residual.

The last setting discussed in Theorem 3.6 is A = 0 and a1 > 0. We use a1 = 2,

all the other parameters remain unchanged, see Figs. 11 to 15 for the numerical

simulations corresponding to the above values of γ.
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Figure 11. Problem (4.6), A = 0, a1 > 0, γ = 2.5: The numerical approximation for the
solution component u(t), the error estimate and the residual.
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Figure 12. Problem (4.6), A = 0, a1 > 0, γ = 2: The numerical approximation for the
solution component u(t), the error estimate and the residual.

0 0.2 0.4 0.6 0.8 1

0.25

0.26

0.27

0.28

0.29

0.3

t

u
(t

)

Solution

0 0.2 0.4 0.6 0.8 1

10
−15

10
−10

10
−5

t

e

Error Estimate

0 0.2 0.4 0.6 0.8 1

10
−10

10
−9

10
−8

10
−7

t

re
s

Residual

Figure 13. Problem (4.6), A = 0, a1 > 0, γ = 1.5: The numerical approximation for the
solution component u(t), the error estimate and the residual.
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Figure 14. Problem (4.6), A = 0, a1 > 0, γ = 1.3: The numerical approximation for the
solution component u(t), the error estimate and the residual.
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Figure 15. Problem (4.6), A = 0, a1 > 0, γ = 1.2: The numerical approximation for the
solution component u(t), the error estimate and the residual.

All numerical results show a good agreement with Theorem 3.6. Both the error es-

timates2 and the residuals show that the solutions accuracy is excellent. To visualize

solutions of problem (1.4) posed on the semi-infinite interval, we have to transform

the numerical solution obtained on [0, 1] back to the original interval [1,∞). To this

end we use

z(s) := z
( 1

t2

)

= u(t), s ∈ [1,∞), t ∈ (0, 1],

to obtain the values for z(s).

We again discuss three different settings, where for all experiments b0 = a0 = 1.

For A = 1 and b1 = 1
2a1 = 0, Fig. 16 shows the numerical solution of (1.4) displayed

on a short and a long interval.

2 4 6 8 10

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

s

z
(s

)

Solution

2 4 6 8 10

0.92

0.94

0.96

0.98

1

s

z
(s

)

Solution

2 4 6 8 10
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

s

z
(s

)

Solution

200 400 600 800 1000

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

s

z
(s

)

Solution

200 400 600 800 1000
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

s

z
(s

)

Solution

200 400 600 800 1000

0.75

0.8

0.85

0.9

0.95

1

s

z
(s

)

Solution

Figure 16. Problem (1.4), A = 1, b1 = 0: Solution z(s) on the interval [1, 10] (above) and
interval [1, 1000] (below) for values of γ = 2.5, γ = 1.5 and γ = 1.3 (from left to
right).

2Often within the level of the machine accuracy of Matlab.
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For a better illustration of the solution behavior for γ = 2.5 displayed on the long

interval in Fig. 16, we depict this solution in Fig. 17 on three further intervals of

smaller length, see also Fig. 1.
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Figure 17. Problem (1.4), A = 1, b1 = 0, γ = 2.5: Solution z(s) on the intervals [1, 20],
[1, 50], and [1, 100] (from left to right).

For γ > 3
2 , z

′(1+) ∈ R holds and we know that the solution of (4.6) is positive

with lim
s→∞

z(s) > 0. Also, for λ = 1, lim
s→∞

sγz′(s) = − 1
8γ

−1. In principle, we should

be able to verify this latter limit using the values of the numerical solution at the

meshpoints approaching zero and the relation

(4.7) sγz′(s) = −v(t)/(2t2γ) =: w(t),

cf. (4.6b). For γ = 1.5 (and γ = 1.6) we have plotted w(t) using its values at the

meshpoints and found out that w(0) − (− 1
8γ

−1) ≈ 10−5.

In Fig. 18 the numerical solution of (1.4) for A = 0 and b1 = 0 is shown.
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Figure 18. Problem (1.4), A = 0, b1 = 0: Solution z(s) on the interval [1, 10] (above) and
interval [1, 1000] (below) for values of γ = 2.5, γ = 1.5 and γ = 1.3 (from left to
right).
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Here, as expected, z′(1+) = ∞ holds for all values of γ. Also, z(s) > 0.

Finally, we consider A = 0 and b1 = 1. The numerical results for this setting and

the above five values of γ are given in Fig. 19. With z′(1+) ∈ R, lim
s→∞

sγz′(s) ≈
− 1

8γ
−1 for γ = 1.5, and lim

s→∞

z(s) > 0 the numerical solution again very well reflects

the properties of the analytical solution.

2 4 6 8 10
0.26

0.28

0.3

0.32

0.34

s

z
(s

)

Solution

2 4 6 8 10

0.25

0.26

0.27

0.28

0.29

0.3

s

z
(s

)

Solution

2 4 6 8 10

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

s

z
(s

)

Solution

200 400 600 800 1000
0.26

0.28

0.3

0.32

0.34

0.36

s

z
(s

)

Solution

200 400 600 800 1000

0.25

0.26

0.27

0.28

0.29

0.3

s

z
(s

)

Solution

200 400 600 800 1000

0.18

0.2

0.22

0.24

0.26

0.28

s

z
(s

)

Solution

Figure 19. Problem (1.4), A = 0, b1 = 1: Solution z(s) on the interval [1, 10] (above) and
interval [1, 1000] (below) for values of γ = 2.5, γ = 1.5 and γ = 1.3 (from left to
right).
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