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APPROXIMATION AND NUMERICAL REALIZATION OF

3D CONTACT PROBLEMS WITH GIVEN FRICTION AND

A COEFFICIENT OF FRICTION DEPENDING ON THE SOLUTION*

Jaroslav Haslinger, Tomáš Ligurský, Praha
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Abstract. The paper presents the analysis, approximation and numerical realization of
3D contact problems for an elastic body unilaterally supported by a rigid half space taking
into account friction on the common surface. Friction obeys the simplest Tresca model
(a slip bound is given a priori) but with a coefficient of friction F which depends on a
solution. It is shown that a solution exists for a large class of F and is unique provided
that F is Lipschitz continuous with a sufficiently small modulus of the Lipschitz continu-
ity. The problem is discretized by finite elements, and convergence of discrete solutions
is established. Finally, methods for numerical realization are described and several model
examples illustrate the efficiency of the proposed approach.
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1. Introduction

The aim of this paper is to analyze, discretize and solve a mathematical model

describing 3D contact problems for an elastic body unilaterally supported by a rigid

foundation taking into account the influence of friction on the contacting parts. We

shall consider the simplest model of friction, the so-called Tresca model in which

the threshold slip is a priori given (see [3]). Although this model of friction is in a

certain manner unphysical (unilateral and friction conditions are uncoupled), it plays

an important role in the numerical realization of the more realistic Coulomb law of

friction ([8], [9]). In the classical Tresca model the threshold slip is expressed as

*This research was supported under the grant No. 201/07/0294 of the Grant Agency of
the Czech Republic and MSM 0021620839.
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the product Fg, where g is a non-negative function and F is a coefficient of friction

which does not depend on the solution. In some problems, however, F can be of

the form F := F(‖ut‖), i.e., the coefficient of friction depends on the magnitude

of the tangential contact displacement. The paper deals just with this case. The

same 2D problem has been already studied in [6]. Its extension to the 3D-case,

however, is not straightforward, in particular as far as the numerical treatment is

concerned. Indeed, the Lagrange multipliers regularizing the frictional term are now

subject to quadratic constraints so that the resulting minimization problem involves

quadratic constraints, as well. The theoretical analysis of discrete contact problems

with Coulomb friction and a coefficient depending on the solution which is based on

a penalization and regularization approach is also presented in [7].

The paper is organized as follows: Section 2 presents the classical and weak for-

mulation of our problem. The existence result which is based on a fixed-point re-

formulation of the problem is established in Section 3. It is shown that there exists

at least one solution for any continuous and bounded coefficient of friction F . In

addition, the solution is unique provided that F is Lipschitz continuous with a suffi-

ciently small modulus of the Lipschitz continuity. A finite element approximation is

studied in Section 4 together with the convergence of discrete solutions. The method

of successive approximations serves as a main tool for numerical realization of this

problem. In Section 5 we describe an efficient way of solving one iterative step which

is represented by a contact problem with the Tresca model of friction with a coef-

ficient of friction which does not depend on the solution. Finally, results of several

model examples are shown in Section 6.

Throughout the paper we use the following notation: ‖x‖ and x⊤y stand for the

Euclidean norm of a vector x ∈ R3and the scalar product of x,y ∈ R3, respectively.

By Hk(Ω), Hk(Γ), k a non-negative integer, Γ ⊆ ∂Ω we denote the classical Sobolev

spaces of functions defined in Ω, Γ with the norms ‖ · ‖k,Ω, ‖ · ‖k,Γ, respectively.

Further, | · |k,Ω, | · |k,Γ are the corresponding seminorms. If X is a Banach space then

the Cartesian product (X)3 and its elements will be denoted by bold letters. Norms

and seminorms in X are defined in a standard way.

2. Setting of the problem

Let us consider an elastic body occupying a bounded domain Ω ⊂ R3 with

Lipschitz boundary ∂Ω which is split into three relatively open, non-empty, non-

overlapping parts Γu, Γp, and Γc such that ∂Ω = Γu∪Γp∪Γc. The zero displacements

are prescribed on Γu while surface tractions of density p = (p1, p2, p3)
⊤ ∈ L2(Γp)

act on Γp. The body is unilaterally supported by a rigid foundation S along Γc. For

the sake of simplicity of our presentation we shall suppose that S is the half-space
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R2 × R1
− and there is no gap between S and Ω for the undeformed configuration.

Besides unilateral constraints imposed on the deformation of Ω on Γc, we shall take

into account the effects of friction represented by the model with given friction in

which a given slip bound g is multiplied by a coefficient of friction F which depends

on the norm of the tangential component of the displacement vector on Γc. Finally,

the body is subject to volume forces of density f = (f1, f2, f3)
⊤ ∈ L2(Ω). Our aim

is to find an equilibrium state of Ω.

p

f

Ω

Γ

Γc

Γ
S

p

u

Figure 1. Geometry of the model.

The classical formulation of the above problem consists in finding a displacement

vector u = (u1, u2, u3)
⊤ which satisfies the equilibrium equations and the boundary

conditions (2.1)–(2.5)1:

(equilibrium equations)

(2.1)
∂τij
∂xj

(u) + fi = 0 in Ω, i = 1, 2, 3;

(kinematical boundary conditions)

(2.2) ui = 0 on Γu, i = 1, 2, 3;

(static boundary conditions)

(2.3) Ti(u) = pi on Γp, i = 1, 2, 3;

1Here and in what follows the Einstein summation convention will be adopted.

393



(unilateral conditions)

(2.4) un 6 0, Tn(u) 6 0, unTn(u) = 0 on Γc;

(friction conditions)

(2.5)







ut = 0 =⇒ ‖Tt(u)‖ 6 F(0)g on Γc;

ut 6= 0 =⇒ Tt(u) = −F(‖ut‖)g
ut

‖ut‖
on Γc.

The symbol τ (u) = (τij(u))3i,j=1 stands for the symmetric stress tensor which is

related to the linearized strain tensor ε(u) = (εij(u))3i,j=1 by means of linear Hooke’s

law:

τij(u) = cijklεkl(u), i, j = 1, 2, 3,

where

εij(u) =
1

2

( ∂ui
∂xj

+
∂uj
∂xi

)

, i, j = 1, 2, 3,

and cijkl ∈ L∞(Ω), i, j, k, l = 1, 2, 3, are linear elasticity coefficients. They satisfy

the following symmetry and ellipticity conditions:

cijkl(x) = cjikl(x) = cklij(x) for a.a. x ∈ Ω;(2.6)

∃ cell > 0: cijkl(x)ξijξkl > cellξijξij for a.a. x ∈ Ω and all ξij = ξji ∈ R
1.(2.7)

Further, n is the unit outward normal to Ω on ∂Ω, un = u⊤n, ut = u − unn

stand for the normal and tangential components of a displacement vector u on Γc,

respectively, and T (u) = (T1(u), T2(u), T3(u))⊤ is a stress vector whose components

are Ti(u) = τij(u)nj , i = 1, 2, 3. The symbols Tn(u) = (T (u))⊤n, Tt(u) = T (u) −

Tn(u)n denote the normal, tangential component of a stress vector T (u) on Γc,

respectively. Finally, F is a continuous, positive, bounded function in R1
+ which

defines the coefficient of friction depending on the magnitude ‖ut‖ on Γc, and g ∈

L2(Γc), g > 0, is a given slip bound.

Let us notice that due to the special geometry of Ω and S we have vn = −v3 and

vt = (v1, v2, 0)⊤ on Γc.

Let

V = {v ∈ H1(Ω): v = 0 on Γu},

V = (V )3,

and let K be a closed convex set of kinematically admissible displacements:

K = {v ∈ V : vn 6 0 a.e. on Γc}.
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Definition 2.1. By a weak solution to a contact problem with given friction and

a solution-dependent coefficient of friction F we mean any displacement vector u

satisfying the following implicit variational inequality of elliptic type:

(P)

{

Find u ∈K such that

a(u,v − u) +

∫

Γc

F(‖ut‖)g(‖vt‖ − ‖ut‖) dS > F (v − u) ∀v ∈K,

where

a(u,v) :=

∫

Ω

τij(u)εij(v) dx, u,v ∈ V ,

F (v) :=

∫

Ω

fivi dx+

∫

Γp

pivi dS, v = (v1, v2, v3)
⊤ ∈ V .

3. Existence result

In this section we derive an equivalent fixed-point formulation of our problem.

With its aid we prove the existence of at least one solution and give conditions

guaranteeing its uniqueness.

First, we introduce some notation. Let γ be the trace operator on Γc:

γv = v|Γc
, v ∈ V,

and let γ, γn and γt be defined by

γv = (γv1, γv2, γv3)
⊤, γnv = (γv)n, γtv = (γv)t, v = (v1, v2, v3)

⊤ ∈ V .

By H1/2(Γc) we denote the space of traces on Γc of all functions from V , by

H
1/2
+ (Γc) its subset of all non-negative elements:

H1/2(Γc) = γV,

H
1/2
+ (Γc) = {ψ ∈ H1/2(Γc) : ψ > 0 a.e. on Γc}.

The trace space H1/2(Γc) is a Banach space equipped with the norm

(3.1) ‖ψ‖1/2,Γc
= inf

v∈V
γv=ψ

|v|1,Ω, ψ ∈ H1/2(Γc).

According to our notation, H1/2(Γc) is the trace space on Γc of functions from V

with the norm

(3.2) ‖ψ‖1/2,Γc
= inf

v∈V
γv=ψ

|v|1,Ω, ψ ∈H1/2(Γc).
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From the definition of the norms it immediately follows that

(3.3) ‖‖ψ‖‖1/2,Γc
6 ‖ψ‖1/2,Γc

∀ψ ∈H1/2(Γc).

In the sequel we shall need the following auxiliary results.

Lemma 3.1.

(i) If v ∈H1(D) then ‖v‖ ∈ H1(D) and

‖‖v‖‖1,D 6 ‖v‖1,D, D = Ω,Γc;

(ii) if v ∈ V then γnv ∈ H1/2(Γc), γtv ∈H1/2(Γc), and ‖γtv‖ ∈ H1/2(Γc);

(iii) if vk ⇀ v in H1(Ω), vk,v ∈ V , k → ∞, then

γtv
k ⇀ γtv in H1/2(Γc), k → ∞,

‖γtv
k‖⇀ ‖γtv‖ in H1/2(Γc), k → ∞.

For the proofs we refer to [11].

With any ϕ ∈ H
1/2
+ (Γc) we associate the following auxiliary problem:

(P(ϕ))







Find u := u(ϕ) ∈K such that

a(u,v − u) +

∫

Γc

F(ϕ)g(‖vt‖ − ‖ut‖) dS > F (v − u) ∀v ∈K.

It is known (see [4]) that (P(ϕ)) has a unique solution for every ϕ ∈ H
1/2
+ (Γc).

Thus one can define a mapping Ψ: H
1/2
+ (Γc) → H

1/2
+ (Γc) by

(3.4) Ψ: ϕ 7→ ‖γt(u(ϕ))‖, ϕ ∈ H
1/2
+ (Γc),

where u(ϕ) ∈K solves (P(ϕ)).

Comparing (P) and (3.4), we arrive at the following alternative (and equivalent)

definition.

Definition 3.2. By a weak solution to a contact problem with given friction and

the solution-dependent coefficient of friction F we mean any function u ∈K solving

(P(‖γtu‖)), i.e. ‖γtu‖ is a fixed point of Ψ in H
1/2
+ (Γc):

Ψ(‖γtu‖) = ‖γtu‖ on Γc.

To prove the existence of at least one fixed point we examine the basic properties

of Ψ. Denote

BR = {ψ ∈ H
1/2
+ (Γc) : ‖ψ‖1/2,Γc

6 R}

for every R > 0.
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Lemma 3.3. The mapping Ψ maps BR into itself with

R :=
‖F ‖(H1(Ω))′

cellcK
,

where cell > 0 is the constant in (2.7) and cK > 0 is the constant from Korn’s

inequality:

cK‖v‖2
1,Ω 6

∫

Ω

εij(v)εij(v) dx ∀v ∈ V .

P r o o f. Let ϕ ∈ H
1/2
+ (Γc) be arbitrary but fixed and denote by u := u(ϕ) the

solution to (P(ϕ)). Inserting v := 0 ∈K into (P(ϕ)), we obtain

−a(u,u)−

∫

Γc

F(ϕ)g‖ut‖ dS > −F (u).

Therefore,

cellcK‖u‖2
1,Ω 6

∫

Ω

cijklεkl(u)εij(u) dx+

∫

Γc

F(ϕ)g‖ut‖ dS(3.5)

6 F (u) 6 ‖F ‖(H1(Ω))′‖u‖1,Ω

in virtue of (2.7) and Korn’s inequality. From (3.2) and (3.3) one has

(3.6) u ∈ V =⇒ ‖‖γtu‖‖1/2,Γc
6 ‖γtu‖1/2,Γc

6 ‖γu‖1/2,Γc
6 ‖u‖1,Ω.

From this and (3.5) we obtain the assertion of the lemma. �

Next we show that the mapping Ψ is weakly continuous in H
1/2
+ (Γc).

Lemma 3.4. Let ϕ ∈ H
1/2
+ (Γc), {ϕk} ⊂ H

1/2
+ (Γc) be such that

ϕk ⇀ ϕ in H1/2(Γc), k → ∞.

Then

Ψ(ϕk) ⇀ Ψ(ϕ) in H1/2(Γc), k → ∞.

P r o o f. Let uk := u(ϕk) ∈K be a solution to (P(ϕk)), k ∈ N:

a(uk,v − uk) +

∫

Γc

F(ϕk)g(‖vt‖ − ‖ukt ‖) dS > F (v − uk) ∀v ∈K.
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From (3.5) we see that {uk} is bounded in H1(Ω). Thus there exist a subsequence

{ul} ⊆ {uk} and a function u ∈ V such that

ul ⇀ u in H1(Ω), l → ∞.

We prove that u solves (P(ϕ)). First, u ∈K and

lim sup
l→∞

a(ul,v − ul) 6 a(u,v − u) ∀v ∈K,

lim
l→∞

F (v − ul) = F (v − u) ∀v ∈K.

Since F is continuous and H1/2(Γc) is compactly embedded into L
2(Γc), one can pass

to a subsequence of {ϕl} (denoted by the same symbol) such that

(3.7) F(ϕl) → F(ϕ) a.e. on Γc, l → ∞.

From (iii) of Lemma 3.1 we know that

‖γtu
l‖⇀ ‖γtu‖ in H1/2(Γc), l → ∞,

which yields

‖γtu
l‖ → ‖γtu‖ in L2(Γc), l → ∞.

This, the Lebesgue dominated convergence theorem, and (3.7) imply

lim
l→∞

∫

Γc

F(ϕl)g(‖vt‖ − ‖ult‖) dS =

∫

Γc

F(ϕ)g(‖vt‖ − ‖ut‖) dS.

Letting l → ∞ in (P(ϕl)) and using the previous results, we see that

a(u,v − u) +

∫

Γc

F(ϕ)g(‖vt‖ − ‖ut‖) dS > F (v − u) ∀v ∈K,

i.e. u solves (P(ϕ)). Since (P(ϕ)) has a unique solution, the original sequence {uk}

tends weakly to u in H1(Ω) and

‖γtu
k‖⇀ ‖γtu‖ in H1/2(Γc), k → ∞.

�

On the basis of Lemmas 3.3 and 3.4 we obtain the following existence result.
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Theorem 3.5. There exists a weak solution to a contact problem with given

friction and a solution-dependent coefficient of friction.

P r o o f. It follows from the weak version of the Schauder fixed-point theorem

(see [8]). �

Next we show that Ψ is Lipschitz continuous in the L2(Γc)-norm provided that

F is Lipschitz continuous in R1
+ and g ∈ L∞(Γc).

Theorem 3.6. Let g ∈ L∞(Γc), g > 0 a.e. on Γc, and cL > 0 be such that

|F(x1) −F(x1)| 6 cL|x1 − x1| ∀x1, x1 ∈ R
1
+.

Then

‖Ψ(ϕ) − Ψ(ϕ)‖0,Γc
6 cL

c2T ‖g‖∞,Γc

cellcK
‖ϕ− ϕ‖0,Γc

∀ϕ,ϕ ∈ H
1/2
+ (Γc),

where cT is the norm of the trace mapping γt : V → L2(Γc) and cell, cK are the

constants from (2.7) and Korn’s inequality, respectively.

P r o o f. Let ϕ,ϕ ∈ H
1/2
+ (Γc) be given and let u, u be the respective solutions

of (P(ϕ)), (P(ϕ)):

a(u,v − u) +

∫

Γc

F(ϕ)g(‖vt‖ − ‖ut‖) dS > F (v − u) ∀v ∈K,

a(u,v − u) +

∫

Γc

F(ϕ)g(‖vt‖ − ‖ut‖) dS > F (v − u) ∀v ∈K.

Inserting v := u into the first and v := u into the second inequality and summing

them, we obtain

(3.8) a(u− u,u− u) +

∫

Γc

(F(ϕ) −F(ϕ))g(‖ut‖ − ‖ut‖) dS > 0.

It is readily seen that

(3.9)
∥

∥‖γtu‖ − ‖γtu‖
∥

∥

0,Γc
6 ‖γtu− γtu‖0,Γc

6 cT ‖u− u‖1,Ω.

From (2.7), Korn’s inequality, (3.8), and (3.9) we obtain

cellcK‖u− u‖2
1,Ω(3.10)

6 a(u− u,u− u)

6 ‖g‖∞,Γc
‖F(ϕ) −F(ϕ)‖0,Γc

∥

∥‖γtu‖ − ‖γtu‖
∥

∥

0,Γc

6 cLcT ‖g‖∞,Γc
‖ϕ− ϕ‖0,Γc

‖u− u‖1,Ω.

399



Finally, (3.9) and (3.10) yield

∥

∥‖γtu‖ − ‖γtu‖
∥

∥

0,Γc
6 cT ‖u− u‖1,Ω 6 cL

c2T ‖g‖∞,Γc

cellcK
‖ϕ− ϕ‖0,Γc

.

�

Corollary 3.7. If cL · c2T ‖g‖∞,Γc
/cellcK < 1 then the mapping Ψ: H

1/2
+ (Γc) →

H
1/2
+ (Γc) is contractive in the L

2(Γc)-norm. Consequently, Ψ has a unique fixed point

and the method of successive approximations

(3.11)

{

ϕ0 ∈ H
1/2
+ (Γc) given;

for k = 1, 2, . . . set ϕk := Ψ(ϕk−1)

is convergent in the L2(Γc)-norm for any choice of ϕ
0.

4. Finite element approximation

This section deals with a discretization of problem (P) by a finite element method.

We establish the existence as well as the uniqueness of discrete solutions in a way

similar to the continuous case. Then we shall study convergence of discrete solutions

and as a by-product we obtain an alternative proof of the existence of a solution

to (P).

To avoid the use of curved elements we shall suppose that Ω is a polyhedron. Let

{Th}, h→ 0+, be a regular system of partitions of Ω into tetrahedra such that every

partition Th is compatible with the decomposition of ∂Ω into Γu, Γp, and Γc and such

that {Th|
Γc

}, h → 0+, is a strongly regular system of triangulations of Γc (see [1]).

With any Th the following sets will be associated:

Vh = {vh ∈ C(Ω): vh|T ∈ P1(T ) ∀T ∈ Th, vh = 0 on Γu},

Vh = (Vh)
3,

Kh = {vh ∈ Vh : vhn(ai) 6 0 ∀ai ∈ Nh},

Vh = Vh|Γc
,

V+
h = {ϕh ∈ Vh : ϕh(ai) > 0 ∀ai ∈ Nh},

whereNh is the set of all contact nodes, i.e. the nodes of Th lying on Γc\Γu. Obviously,

Kh ⊂K and V+
h ⊂ H

1/2
+ (Γc) for all h > 0.
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For every ϕh ∈ V+
h we shall consider the following discrete problem:

(P(ϕh) h)















Find uh := uh(ϕh) ∈Kh such that

a(uh,vh − uh) +

∫

Γc

F(ϕh)g(‖vht‖ − ‖uht‖) dS > F (vh − uh)

∀vh ∈Kh.

Again (P(ϕh))h has a unique solution for any ϕh ∈ V+
h and one can define a map-

ping Ψh by

Ψh(ϕh) = rh‖γt(uh(ϕh))‖, ϕh ∈ V+
h ,

where uh(ϕh) ∈ Kh is the solution to (P(ϕh))h and rh : H1/2(Γc) → Vh is a linear

interpolation operator with the following approximation property: there exists a

constant cr > 0 independent of hΓc
:= max

F∈Th|
Γc

diam(F ) such that

(4.1) ‖ψ − rhψ‖µ,Γc
6 crh

1−µ
Γc

‖ψ‖1,Γc
∀ψ ∈ H1(Γc)

for µ = 0 and 1/2 which preserves monotonicity, i.e.

(4.2) ψ > 0 on Γc, ψ ∈ H1/2(Γc) =⇒ rhψ ∈ V+
h .

For an example of rh satisfying (4.1) and (4.2) we refer to [2]. The mapping Ψh :

V+
h → V+

h can be viewed as a discretization of Ψ defined by (3.4).

Definition 4.1. By a discrete solution to (P) we mean any function uh ∈ Kh

solving (P(rh‖γtuh‖))h, i.e. rh‖uht‖ := rh‖γtuh‖ is a fixed point of Ψh in V+
h .

Lemma 4.2. The mapping Ψh is continuous and maps V
+
h ∩BR̃ into V

+
h ∩ BR̃

for some R̃ > 0 which does not depend on h.

P r o o f. Let ϕh ∈ V+
h be arbitrary but fixed and let uh := uh(ϕh) be a solution

of (P(ϕh))h. The approximation property (4.1), (i) of Lemma 3.1, (3.3), and the

inverse inequality between H1(Γc) and H
1/2(Γc) give

∥

∥rh‖γtuh‖
∥

∥

1/2,Γc
6

∥

∥rh‖γtuh‖ − ‖γtuh‖
∥

∥

1/2,Γc
+ ‖‖γtuh‖‖1/2,Γc

(4.3)

6 crh
1/2
Γc

‖‖γtuh‖‖1,Γc
+ ‖‖γtuh‖‖1/2,Γc

6 crh
1/2
Γc

‖γtuh‖1,Γc
+ ‖γtuh‖1/2,Γc

6 crcinv‖γtuh‖1/2,Γc
+ ‖γtuh‖1/2,Γc

,
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where the constants cr and cinv do not depend on h. Arguing exactly as in Lemma 3.3

(see (3.5) and (3.6)), one can show that

‖γtuh‖1/2,Γc
6 ‖uh‖1,Ω 6

‖F ‖(H1(Ω))′

cellcK
,

where cell, cK are the same as in Lemma 3.3 and independent of h. From this and

(4.3) we see that Ψh maps V
+
h ∩BR̃ into V

+
h ∩BR̃ with

R̃ := (1 + crcinv)
‖F ‖(H1(Ω))′

cellcK
.

Next we show that Ψh is continuous in V+
h . Let

ϕkh → ϕh in H1/2(Γc), ϕ
k
h, ϕh ∈ V+

h , k → ∞,

and denote by ukh := uh(ϕ
k
h) ∈Kh solutions to (P(ϕkh))h. Arguing as in Lemma 3.4,

we have

(4.4) γtu
k
h → γtuh in L2(Γc), k → ∞,

where uh := uh(ϕh) solves (P(ϕh))h. We already know that {rh‖γtukh‖} is bounded

in the H1/2(Γc)-norm. Thus there exist a subsequence {rh‖γtu
l
h‖} ⊆ {rh‖γtu

k
h‖}

and a function ϕ ∈ H1/2(Γc) such that

rh‖γtu
l
h‖⇀ ϕ in H1/2(Γc), l → ∞.

Since rh preserves monotonicity (see (4.2)), it is readily seen that

∥

∥rh(‖γtu
l
h‖ − ‖γtuh‖)

∥

∥

0,Γc
‖ 6

∥

∥rh‖γtu
l
h − γtuh‖

∥

∥

0,Γc
∀ l.

Hence,

∥

∥rh‖γtu
l
h‖ − rh‖γtuh‖

∥

∥

0,Γc
6

∥

∥rh‖γtu
l
h − γtuh‖

∥

∥

0,Γc
(4.5)

6
∥

∥rh‖γtu
l
h − γtuh‖ − ‖γtu

l
h − γtuh‖

∥

∥

0,Γc
+

∥

∥‖γtu
l
h − γtuh‖

∥

∥

0,Γc

6 crhΓc

∥

∥‖γtu
l
h − γtuh‖

∥

∥

1,Γc
+

∥

∥‖γtu
l
h − γtuh‖

∥

∥

0,Γc

6 crhΓc
‖γtu

l
h − γtuh‖1,Γc

+ ‖γtu
l
h − γtuh‖0,Γc

6 crcinv‖γtu
l
h − γtuh‖0,Γc

+ ‖γtu
l
h − γtuh‖0,Γc

l→∞
−→ 0

in virtue of (4.1), (i) of Lemma 3.1, the inverse inequality between H1(Γc) and L
2(Γc)

and (4.4). Thus ϕ = rh‖γtuh‖ on Γc and

rh‖γtu
k
h‖ → rh‖γtuh‖ in H1/2(Γc), k → ∞,

since Vh is finite-dimensional for every h > 0 fixed. �
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From Lemma 4.2 and the Brouwer fixed-point theorem we arrive at the following

result.

Theorem 4.3. There exists a discrete solution to (P).

Under additional assumptions on F and g one obtains the following uniqueness

result.

Theorem 4.4. Let g ∈ L∞(Γc), g > 0 a.e. on Γc, and let cL > 0 be such that

|F(x1) −F(x1)| 6 cL|x1 − x1| ∀x1, x1 ∈ R
1
+.

Then there exists a positive constant c which does not depend on h and such that

‖Ψh(ϕh) − Ψh(ϕh)‖0,Γc
6 ccL‖ϕh − ϕh‖0,Γc

∀ϕh, ϕh ∈ V+
h .

P r o o f. In the same way as in Theorem 3.6 it can be shown (see (3.10)) that

(4.6) ‖uh − uh‖1,Ω 6 cL
cT ‖g‖∞,Γc

cellcK
‖ϕh − ϕh‖0,Γc

,

where uh, uh are the solutions to (P(ϕh))h, (P(ϕh))h, respectively, for ϕh, ϕh ∈ V+
h

given. Moreover, we know (cf. (4.5) and (3.9)) that

∥

∥rh‖γtuh‖ − rh‖γtuh‖
∥

∥

0,Γc
6 (1 + crcinv)‖γtuh − γtuh‖0,Γc

6 cT (1 + crcinv)‖uh − uh‖1,Ω,

where cT , cr, cinv are independent of h. From this and (4.6) we see that the assertion

of the theorem holds with

c :=
c2T (1 + crcinv)‖g‖∞,Γc

cellcK
.

�

403



Corollary 4.5. Let h > 0 be fixed. If ccL < 1 then the mapping Ψh : V+
h →

V+
h is contractive. Consequently, Ψh has a unique fixed point and the method of

successive approximations

(4.7)

{

ϕ0
h ∈ V+

h given;

for k = 1, 2, . . . set ϕkh := Ψh(ϕ
k−1
h )

is convergent for any choice of ϕ0
h.

Let us suppose that K ∩ C∞(Ω) is dense in K in the H1(Ω)-norm (some cases

when this assumption is satisfied are studied in [8]). Let {uh}, h → 0+, be a

sequence of discrete solutions to (P) and let v ∈ K be arbitrary but fixed. Our

density assumption ensures the existence of a sequence {vh}, vh ∈Kh, such that

(4.8) vh → v in H1(Ω), h→ 0+.

Since {uh} is bounded in H1(Ω) and uh ∈ Kh ⊂ K ∀h > 0, one can pass to a

subsequence {uh′} ⊆ {uh} and find a function u ∈K such that

uh′ ⇀ u in H1(Ω), h′ → 0+.

This together with (4.8) yields

lim sup
h′→0+

a(uh′ ,vh′ − uh′) 6 a(u,v − u),

lim
h′→0+

F (vh′ − uh′) = F (v − u),

‖γtuh′‖ → ‖γtu‖ in L2(Γc), h
′ → 0+.

Using the last relation, (4.1), (i) of Lemma 3.1, the inverse inequality between H1(Γc)

and H1/2(Γc) and the boundedness of {γtuh′} in the H1/2(Γc)-norm, we obtain

∥

∥rh′‖uh′t‖ − ‖γtu‖
∥

∥

0,Γc
(4.9)

6
∥

∥rh′‖uh′t‖ − ‖γtuh′‖
∥

∥

0,Γc
+

∥

∥‖γtuh′‖ − ‖γtu‖
∥

∥

0,Γc

6 crh
′
Γc
‖‖γtuh′‖‖1,Γc

+
∥

∥‖γtuh′‖ − ‖γtu‖
∥

∥

0,Γc

6 crh
′
Γc
‖γtuh′‖1,Γc

+
∥

∥‖γtuh′‖ − ‖γtu‖
∥

∥

0,Γc

6 crcinv(h
′
Γc

)1/2‖γtuh′‖1/2,Γc
+

∥

∥‖γtuh′‖ − ‖γtu‖
∥

∥

0,Γc

h′→0+
−→ 0.

Hence, for an appropriate subsequence of {uh′} denoted by the same symbol we have

rh′‖uh′t‖ → ‖γtu‖ a.e. on Γc, h
′ → 0 + .
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The above results imply

lim
h′→0+

∫

Γc

F(rh′‖uh′t‖)g(‖vh′t‖ − ‖uh′t‖) dS =

∫

Γc

F(‖ut‖)g(‖vt‖ − ‖ut‖) dS.

Consequently, u ∈K satisfies

a(u,v − u) +

∫

Γc

F(‖ut‖)g(‖vt‖ − ‖ut‖) dS > F (v − u).

Since v ∈ K was arbitrary, the function u solves (P) and ‖γtu‖ is a fixed point

of Ψ. Finally, from the boundedness of {rh′‖uh′t‖} in the H1/2(Γc)-norm and (4.9)

it follows that {rh′‖uh′t‖} tends weakly to ‖γtu‖ in the H1/2(Γc)-norm.

The result is summarized in the following theorem.

Theorem 4.6. LetK∩C∞(Ω) be dense inK in theH1(Ω)-norm, let {uh}, h→

0+, be a sequence of discrete solutions to (P). Then for any sequence {rh‖γtuh‖},

h → 0+, of fixed points of Ψh there exists a subsequence of {uh} (denoted by the

same symbol) such that

(4.10)

{

uh ⇀ u in H1(Ω), h→ 0+,

rh‖γtuh‖⇀ ‖γtu‖ in H1/2(Γc), h→ 0+,

where u solves (P) and ‖γtu‖ is the respective fixed point of Ψ. In addition, if

(P) has a unique solution, (4.10) holds for the whole sequences.

5. Mixed variational formulation

A natural way how to find a fixed point of the mapping Ψ is to use the method of

successive approximations (3.11). Since the main step in this method is a contact

problem with given friction and a coefficient which does not depend on a solution,

we focus on it now.

It is known (see [4]) that the solution u of (P(ϕ)), ϕ ∈ H
1/2
+ (Γc), can be equiva-

lently characterized as a solution of the following minimization problem:

{

Find u := u(ϕ) ∈K such that

Jϕ(u) 6 Jϕ(v) ∀v ∈K,

where

Jϕ(v) =
1

2
a(v,v) − F (v) + jϕ(v), v ∈ V ,
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with

jϕ(v) =

∫

Γc

F(ϕ)g‖vt‖ dS, v ∈ V .

This is a constrained minimization problem for the non-differentiable total potential

energy functional Jϕ. To release the unilateral constraint un 6 0 on Γc and to

regularize the non-differentiable term jϕ we shall use a mixed variational formulation.

Let t1 and t2 be two unit orthogonal vectors in the tangential plane to Γc. Then

the triplet {n, t1, t2} forms an orthonormal basis in R3 and any vector function

v : Γc → R3 can be represented in the coordinate system {n, t1, t2} as

v(x) = (vn(x),vt(x))⊤ ∈ R× R
2, x ∈ Γc,

where vn(x) = (v(x))⊤n, vt(x) = (vt1(x), vt2 (x))⊤, vtj (x) = (v(x))⊤tj , j = 1, 2.

This representation will be used for the traces of displacement vectors on Γc. In

accordance with the previous notation, the symbol ‖vt‖ stands for the Euclidean

norm of vt:

‖vt‖ = ((vt1 )
2 + (vt2)

2)1/2 on Γc.

Next, let ϕ ∈ H
1/2
+ (Γc) be given and let us set

Λn = {µ ∈ (H1/2(Γc))
′ : 〈µ, ψ〉1/2,Γc

> 0 ∀ψ ∈ H
1/2
+ (Γc)},

Λt(ϕ) = {µt ∈ (L2(Γc))
2 : ‖µt‖ 6 F(ϕ)g a.e. on Γc},

where (H1/2(Γc))
′ stands for the topological dual space ofH1/2(Γc), 〈·, ·〉1/2,Γc

denotes

the respective duality pairing and g ∈ L2(Γc), g > 0 a.e. on Γc, is a given slip bound.

It is easy to see that

min
v∈K

Jϕ(v) = min
v∈V

sup
µn∈Λn

µt∈Λt(ϕ)

L(v, µn,µt),

where L : V × Λn × Λt(ϕ) → R1 is the Lagrangian defined by

L(v, µn,µt) =
1

2
a(v,v) − F (v) + 〈µn, vn〉1/2,Γc

+

∫

Γc

µ⊤
t vt dS,

(v, µn,µt)
⊤ ∈ V × Λn × Λt(ϕ).

By a mixed variational formulation of (P(ϕ)) we mean a problem of finding a

saddle-point of L on V × Λn × Λt(ϕ):

{

Find (w, λn,λt)
⊤ ∈ V × Λn × Λt(ϕ) such that

L(w, µn,µt) 6 L(w, λn,λt) 6 L(v, λn,λt) ∀ (v, µn,µt)
⊤ ∈ V × Λn × Λt(ϕ),
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or equivalently:

(M(ϕ))



































Find (w, λn,λt)
⊤ ∈ V × Λn × Λt(ϕ) such that

a(w,v) = F (v) − 〈λn, vn〉1/2,Γc
−

∫

Γc

λ⊤
t vt dS ∀v ∈ V ,

〈µn − λn, wn〉1/2,Γc
+

∫

Γc

(µt − λt)
⊤wt dS 6 0

∀ (µn,µt)
⊤ ∈ Λn × Λt(ϕ).

The following result is a standard one.

Theorem 5.1. There exists a unique solution (w, λn,λt)
⊤ of (M(ϕ)). In addi-

tion,

w = u, λn = −Tn(u), λt = −Tt(u),

where u ∈K solves (P(ϕ)).

Next, we describe an approximation of (M(ϕ)). Recall that the sets Vh and V+
h

have been already defined in Section 4. Further, let {TH}, H → 0+, be a family of

regular partitions of Γc into rectangles R whose diameters do not exceed H . With

any TH we associate the space of piecewise-constant functions

LH = {µH ∈ L2(Γc) : µH |R ∈ P0(R) ∀R ∈ TH}.

Let ϕh ∈ V+
h be fixed. The sets

ΛnH = {µnH ∈ LH : µnH > 0 a.e. on Γc},

ΛtH(ϕh) =

{

µtH ∈ (LH)2 : ‖µtH |R‖ 6

∫

R
F(ϕh)g dS

meas2(R)
∀R ∈ TH

}

,

wheremeas2(R) is the area of R, will be used as the discretizations of Λn and Λt(ϕh),

respectively.

The discretization of the mixed formulation (M(ϕh)) reads as follows:

(M(ϕh) hH)



































Find (wh, λnH ,λtH)⊤ ∈ Vh × ΛnH × ΛtH(ϕh) such that

a(wh,vh) = F (vh) −

∫

Γc

λnHvhn dS −

∫

Γc

λ⊤
tHvht dS ∀vh ∈ Vh,

∫

Γc

(µnH − λnH)whn dS +

∫

Γc

(µtH − λtH)⊤wht dS 6 0

∀ (µnH ,µtH)⊤ ∈ ΛnH × ΛtH(ϕh).
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It is known (see [8], [9]) that (M(ϕh))hH has a unique solution provided that the

following stability condition is satisfied:

(5.1)















If (µnH ,µtH)⊤ ∈ ΛnH × ΛtH(ϕh) is such that
∫

Γc

µnHvhn dS +

∫

Γc

µ⊤
tHvht dS = 0 ∀vh ∈ Vh

then (µnH ,µtH)⊤ = (0,0)⊤.

Denote by

KhH =

{

vh ∈ Vh :

∫

R

vhn dS 6 0 ∀R ∈ TH

}

,

jϕhH(vh) = sup
µtH∈ΛtH(ϕh)

∫

Γc

µ⊤
tHvht dS, vh ∈ Vh,

the approximations of K and jϕh
, respectively. It is easy to show that the first

component wh of the solution to (M(ϕh))hH solves the variational inequality of the

second kind:

wh ∈KhH : a(wh,vh −wh) + jϕhH(vh) − jϕhH(wh) > F (vh −wh) ∀vh ∈KhH .

It is worth noticing that KhH is an external approximation of K, since the non-

penetration condition whn 6 0 on Γc is satisfied in a weak (integral) sense only.

Next we present the algebraic form of (M(ϕh))hH . Let h,H > 0 be fixed and

suppose that the stability condition (5.1) is satisfied. By ~v ∈ Rp, p = dimVh, we

denote the coordinates of vh with respect to a chosen basis in Vh. Analogously, ~µn,

~µt1 , ~µt2 ∈ Rr, r = dimLH , are the coordinates of µnH , µt1H , µt2H , respectively,

with respect to the basis of LH consisting of the characteristic functions of intRi,

Ri ∈ TH , i = 1, . . . , r. Let

Λn = R
r
+,(5.2)

Λt(ϕh) =

{

(~µt1 , ~µt2)
⊤ = (µt11, . . . , µt1r, µt21, . . . , µt2r)

⊤ ∈ R
2r :(5.3)

‖(µt1i, µt2i)‖ 6

∫

Ri
F(ϕh)g dS

meas2(Ri)
∀ i = 1, . . . , r

}

be the algebraic representatives of ΛnH , ΛtH(ϕh), respectively. Further, let K be the

stiffness matrix, ~f the load vector, M the kinematic transformation matrix linking

the primal and the dual variables and B1,B2,B3 the matrices representing the linear

mappings vh 7→ vhn, vh 7→ vht1 , vh 7→ vht2 , vh ∈ Vh, respectively.
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The algebraic form of (M(ϕh))hH reads as follows:

(5.4)











Find (~w, ~λ)⊤ ∈ Rp × Λ(ϕh) such that

K~w = ~f − B⊤~λ,

(~µ− ~λ)⊤B~w 6 0 ∀ ~µ ∈ Λ(ϕh),

where ~µ := (~µn, ~µt1 , ~µt2)
⊤, ~λ := (~λn, ~λt1 ,

~λt2)
⊤, Λ(ϕh) := Λn × Λt(ϕh) and

B :=





MB1

MB2

MB3



 ,

for short.

For numerical realization of (5.4) we shall use the dual approach. From (5.4)2 one

can express ~w:

~w = K
−1(~f − B

⊤~λ).

Inserting ~w into (5.4)3, we obtain a new problem in terms of the Lagrange multipliers

which is equivalent to the following quadratic programming problem:

(5.5)

{

Find ~λ ∈ Λ(ϕh) such that

S(~λ) 6 S(~µ) ∀ ~µ ∈ Λ(ϕh),

where

S(~µ) = 1
2
~µ⊤

Q~µ− ~h⊤~µ, ~µ ∈ Λ(ϕh),

with

(5.6) Q := BK
−1

B
⊤, ~h := BK

−1~f .

Let us point out that Λn is defined by the simple (box) constraints (5.2) while

Λt(ϕh) is determined by the quadratic constraints (5.3). Since the quadratic con-

straints are separated, one can use an algorithm that combines the conjugate gradi-

ent method with the gradient projections for solving (5.5). For detailed theoretical

analysis of this approach we refer to [10].

The iterative process (4.7) based on the dual formulation (5.5) reads as

(5.7)











































Let ϕ0
h ∈ V+

h be given;

for ϕk−1
h ∈ V+

h , k = 1, 2, . . . known, solve:

~λ = arg min{S(~µ) : ~µ ∈ Λ(ϕk−1
h )};

set ~w = K−1(~f − B⊤~λ);

ϕkh = rh‖γtwh‖;

repeat until stopping criterion.

Here wh denotes the element of Vh whose nodal values are given by ~w.
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6. Model examples

We now present numerical results of several model examples. A deformable body Ω

will be represented by the brick (0, 3) × (0, 1) × (0, 1) (in m) which is fixed along

Γu = {0} × (0, 1) × (0, 1) and supported by the rigid foundation S = R2 × R1
−, i.e.

Γc = (0, 3)× (0, 1)×{0}. The rest of the boundary ∂Ω represents Γp, where the body

is subject to surface tractions of density p = (p1, p2, p3)
⊤ (see Fig. 2):

p1 = p1
x, p2 = 0, p3 = p1

z on Γ1
p = {x = (x1, x2, x3)

⊤ ∈ Γp : x1 = 3},

p1 = 0, p2 = 0, p3 = p2
z on Γ2

p = {x = (x1, x2, x3)
⊤ ∈ Γp : x3 = 1},

p = 0 on Γp \ (Γ1
p ∪ Γ2

p),

where p1
x = 1.e7 [Pa], p1

z = 2.e7 [Pa] and p2
z = −3.e7 [Pa]. The volume forces will be

neglected, i.e. f = 0 in Ω.

x1

x3

x2

S

p

p

Γu Ω

Γc

Γ2

Γ1
p

p

Figure 2. Geometry.

The brick is made of an elastic, isotropic, and homogeneous material characterized

by Poisson’s ratio σ = 0.277 and Young’s modulus E = 21.19e10 [Pa] (steel). The

coefficient of friction F is defined by

(6.1) F(t) =























0.3 if t 6 10−5;

0.3 −
0.1 param

2
(t− 10−5) if t ∈

(

10−5, 10−5 +
2

param

)

;

0.2 if t > 10−5 +
2

param
.

Three different values of param were considered, namely param = 2.e4, 6.e4, and

3.e5 (see Fig. 3). The slip bound was chosen to be g = 2.e7 [Pa].

To construct partitions Th we cut Ω into 3n × n × n small cubes for n = 4, 6,

8, 10, 12, 14 and 16. Next, each cube is divided into five tetrahedra as shown in
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0 1 2

x 10
−4

0.15

0.2

0.25

0.3

t

F (t)

 

 

param = 2.e4
param = 6.e4
param = 3.e5

Figure 3. Coefficients of friction.

Fig. 4. Having Th at our disposal, we construct the partition TH of Γc as shown in

Fig. 5: the partition Th|
Γc

and its nodes are depicted by the fine lines and the black

dots, respectively, while the partition TH is “the chessboard” on Γc whose elements

are constructed by piecing together eight triangles of Th|
Γc

which share a common

contact node. One can easily verify the satisfaction of the stability condition (5.1)

for such partitions.

0

0.5

1

1.5

2

2.5

3

0

0.5

1

0

0.2

0.4

0.6

0.8

1

x1

x3

x2

Figure 4. Partition Th of Ω.

x1

x2

Figure 5. Partition TH of Γc.

The initial approximation of ‖wt‖ for the method of successive approximations

was chosen to be ϕ0
h = 0 on Γc. The stopping criterion of the outer (fixed-point) loop

is

err(k) :=
‖ ~ϕk − ~ϕk−1‖

‖ ~ϕk‖
6 10−4,

where ~ϕk is the vector whose components are the values of ϕkh at the contact nodes

and ‖·‖ stands for the Euclidean norm. The minimization problem (5.5) was realized
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by the algorithm described in [10] with a minor modification—the proportioning and

the expansion steps are performed simultaneously. The stopping criterion of this

inner loop is

‖g̃(~λ)‖ 6 10−6‖~h‖,

where g̃(~λ) is the so-called projected gradient of S at ~λ, ‖ · ‖ is the Euclidean norm

and ~h is defined in (5.6).

Tab. 1 presents results for different values of n and for the coefficient of friction F

defined by (6.1) with param = 6.e4, while Tab. 2 compares the results for different

coefficients F on the finest mesh (n = 16). Here np, nd stand for the total number

of the primal and dual variables, respectively, and ‘it’ is the number of the fixed-

point iterations. Further, nmult is the total number of the multiplications by K−1,

which is the most expensive part of the algorithm (in fact, we do not compute

the matrix K−1, but we first perform the Cholesky factorization and then use the

backward-substitution instead). The total computational time is given in seconds

and w+
hn is the positive part of whn:

w+
hn = max{0, whn} on Γc.

Hence, the last two columns of the tables can be viewed as a measure of violation of

the non-penetration condition. The convergence history of the method of successive

approximations for the finest mesh (i.e. the dependence of err on the number of

iterations) is depicted in Fig. 6.

n np nd it nmult time ‖w+
hn‖0,Γc

‖w+
hn‖∞,Γc

4 900 36 6 2383 13 7.0e−6 1.6e−5
6 2646 81 6 2063 60 1.6e−6 4.6e−6
8 5832 144 6 3381 341 1.4e−6 7.4e−6
10 10890 225 6 3622 1006 1.5e−6 4.0e−6
12 18252 324 6 3985 2565 8.4e−7 2.7e−6
14 28350 441 7 3962 5221 7.7e−7 4.5e−6
16 41616 576 6 4432 11033 8.2e−7 2.2e−6

Table 1. Different meshes.

param it nmult time ‖w+
hn‖0,Γc

‖w+
hn‖∞,Γc

2.e4 6 3870 9705 8.4e−7 2.3e−6
6.e4 6 4432 11033 8.2e−7 2.2e−6
3.e5 7 4604 11490 8.0e−7 2.2e−6

Table 2. Different coefficients F .

The next figures illustrate the behaviour of wh|Γc
and of the Lagrange multipli-

ers λnH , λtH for n = 16 and F defined by (6.1) with param = 6.e4. The deformed
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Figure 6. Convergence history.

body is shown in Fig. 7 (the deformation is 500× enlarged). The graphs of −whn
and λnH on Γc are depicted in Figs. 8 a) and 8 b), respectively. Similar graphs but
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Figure 7. Deformed body.
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for ‖wht‖ and ‖λtH‖ on Γc are shown in Figs. 9 a) and 9 b), respectively. Finally,

Fig. 10 illustrates the distribution of the coefficient F along Γc and Fig. 11 explains

in more detail the behaviour of λtH . The radius of each circle whose centre is in

the centre of gravity of R ∈ TH is equal to
∫

R
F(‖wht‖)g dS/meas2(R) whereas the

segment emanating from its centre represents the vector λtH in R.
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7. Conclusions

Theoretical analysis, approximation and numerical realization of 3D contact prob-

lems with given friction and a coefficient of friction depending on the solution were

presented. The mathematical analysis, as well as numerical realization are based on

a fixed-point formulation of this problem. We proved the existence of at least one

fixed point provided that the coefficient of friction is represented by a continuous,

positive and bounded function. Conditions guaranteeing the uniqueness of the fixed

point were given. Further, the convergence of the discretized problems was estab-

lished. The method of successive approximations was proposed as a tool for finding

the fixed points. Numerical realization uses the dual formulation of each iterative

step. This formulation after a discretization leads to a quadratic programming prob-

lem for the Lagrange multipliers on Γc subject to simple and separable quadratic

constraints.

Several numerical experiments were done. No preconditioning was used in our com-

putations. However, the values of nmult indicate that the matrix Q in the quadratic

programming problem (5.5) is relatively well-conditioned. Moreover, only a small

number of the fixed-point iterations practically independent of both the mesh size

and the modulus of the Lipschitz continuity of F is needed to get a solution with

a given accuracy. Thus, the cost of solving depends only on the cost of the indi-

vidual iterative step represented by a contact problem with given friction in which

the coefficient of friction does not depend on the solution. Therefore, the method of

successive approximations (5.7) combined with the dual formulation of each iterative

step turned out to be an efficient method for solving such problems.
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