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Abstract. The Kurzweil integral technique is applied to a class of rate independent
processes with convex energy and discontinuous inputs. We prove existence, uniqueness,
and continuous data dependence of solutions in BV spaces. It is shown that in the context of
elastoplasticity, the Kurzweil solutions coincide with natural limits of viscous regularizations
when the viscosity coefficient tends to zero. The discontinuities produce an additional
positive dissipation term, which is not homogeneous of degree one.
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Introduction

As an extension of [6], we propose here the Kurzweil integral approach to rate

independent processes in a reflexive Banach space X that may formally be described

by the inclusion

(0.1) 0 ∈ ∂ξE(t, ξ(t)) + ∂MK(t)(ξ̇(t)),

where E is an energy functional and MK(t) is a dissipation potential represented

by the Minkowski functional of a moving convex closed set K(t). Recall that the

Minkowski functional MK̃ : X → [0,∞] of a convex closed set K̃ ⊂ X containing 0

is defined as

(0.2) MK̃(x) = inf
{

s > 0:
1

s
x ∈ K̃

}

.

Inclusion (0.1) can be considered as a constitutive law of nonlinear elastoplasticity

with or without hardening/softening. The energetic method for solving such prob-

lems has been developed in [10] under the hypothesis that the dependence t 7→ E(t, ξ)
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for fixed ξ is absolutely continuous and K is fixed. An extension to moving state

dependent sets K has been done in [9] as an energetic reformulation of the quasi-

variational inequality considered in [2]. The results of [6] are stated in terms of the

Young integral in the case that K is independent of t, and E is quadratic in ξ and

regulated (cf. Definition 1.7) in t. Since the Young integral is a special case of the

Kurzweil integral (see [7]) and the Kurzweil calculus is simpler, we decided for the

latter and show that the Kurzweil integral setting (2.8)–(2.10) explained below allows

to remove some restrictions on E and K and solve a more general problem in the

space of left continuous functions of bounded variation. It is true, however, that our

technique does not cover the whole range of problems treated in [10], in particular,

further constraints on the state space or nonstrictly convex energies. Note that for

nonstrictly convex energies, the rate independent evolution problem is generically

ill-posed, see Example 4.3 below.

The solution is constructed first for piecewise constant inputs as a minimization

problem for the conjugate energy functional; the general case then follows from the

convergence properties of the Kurzweil integral. If we reformulate the problem in the

energetic setting of [9], [10], it turns out that the dissipation is no longer homogeneous

of degree one as in the continuous case, but additional dissipation terms related to

the discontinuities occur. For a quadratic energy E, this dissipation is quadratic and

can be obtained as the limit of the viscous dissipation as the viscosity parameter

tends to zero. We propose an example (Example 4.2) showing that this additional

dissipation cannot be neglected.

The following text is divided into four sections. In Section 1, we give a brief

overview of the Kurzweil theory of integration as presented in [13]. The main results

are stated in Section 2. Section 3 is devoted to the proof of existence and uniqueness

in the general case. In Section 4, we prove the viscous approximation result for

quadratic energies.

1. The Kurzweil integral

In this section we recall the definition and some basic properties of the Kurzweil

integral introduced in [8] as a framework for solving ODEs with singular right-hand

sides. We cite most of the results without proof, and an interested reader can find

more information also in [5], [7], [14], [15].

The basic concept in the Kurzweil integration theory is that of a δ-fine partition.

Consider a nondegenerate closed interval [a, b] ⊂ R, and denote by Da,b the set of all

divisions of the form

(1.1) d = {t0, . . . , tm}, a = t0 < t1 < . . . < tm = b.
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With a division d = {t0, . . . , tm} ∈ Da,b we associate partitions D defined as

(1.2) D = {(τj , [tj−1, tj ]) : j = 1, . . . , m}; τj ∈ [tj−1, tj ] ∀ j = 1, . . . , m.

We define the set

(1.3) Γ(a, b) := {δ : [a, b] → R : δ(t) > 0 for every t ∈ [a, b]}.

An element δ ∈ Γ(a, b) is called a gauge. For t ∈ [a, b] and δ ∈ Γ(a, b) we denote

(1.4) Iδ(t) := (t − δ(t), t + δ(t)).

Definition 1.1 ([13]). Let δ ∈ Γ(a, b) be a given gauge. A partition D of the

form (1.2) is said to be δ-fine if for every j = 1, . . . , m we have

τj ∈ [tj−1, tj ] ⊂ Iδ(τj),

and the following implications hold:

τj = tj−1 ⇒ j = 1, τj = tj ⇒ j = m.

The set of all δ-fine partitions is denoted by Fδ(a, b).

It is easy to see that Fδ(a, b) is nonempty for every δ ∈ Γ(a, b); this follows

e.g. from [5, Lemma 1.2].

Consider a reflexive Banach space X endowed with a norm |x| for x ∈ X . The

duality between X and its dual X∗ will be denoted by
〈

·, ·
〉

, and | · |∗ will be the dual

norm in X∗. For given functions f : [a, b] → X∗, g : [a, b] → X and a partition D of

the form (1.2), we define the Kurzweil integral sum KD(f, g) by the formula

(1.5) KD(f, g) =

m
∑

j=1

〈

f(τj), g(tj) − g(tj−1)
〉

.

Definition 1.2. Let f : [a, b] → X∗ and g : [a, b] → X be given. We say that

J ∈ R is the Kurzweil integral over [a, b] of f with respect to g and denote

(1.6) J =

∫ b

a

〈

f(t), dg(t)
〉

,

if for every ε > 0 there exists δ ∈ Γ(a, b) such that for every D ∈ Fδ(a, b) we have

(1.7) |J − KD(f, g)| 6 ε.
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Using the fact that the implication

(1.8) δ 6 min{δ1, δ2} =⇒ Fδ(a, b) ⊂ Fδ1(a, b) ∩ Fδ2(a, b)

holds for every δ, δ1, δ2 ∈ Γ(a, b), we easily check that the value of J in Definition 1.2

is uniquely determined.

We list below in Propositions 1.3, 1.4 some standard properties common to most

integral concepts.

Proposition 1.3. Let f, f1, f2 : [a, b] → X∗, g, g1, g2 : [a, b] → X be any func-

tions. Then the following implications hold.

(i) If
∫ b

a

〈

f1(t), dg(t)
〉

,
∫ b

a

〈

f2(t), dg(t)
〉

exist, then
∫ b

a

〈

f1(t)+f2(t), dg(t)
〉

exists and

(1.9)

∫ b

a

〈

f1(t) + f2(t), dg(t)
〉

=

∫ b

a

〈

f1(t), dg(t)
〉

+

∫ b

a

〈

f2(t), dg(t)
〉

.

(ii) If
∫ b

a

〈

f(t), dg1(t)
〉

,
∫ b

a

〈

f(t), dg2(t)
〉

exist, then
∫ b

a

〈

f(t), d(g1 + g2)(t)
〉

exists and

(1.10)

∫ b

a

〈

f(t), d(g1 + g2)(t)
〉

=

∫ b

a

〈

f(t), dg1(t)
〉

+

∫ b

a

〈

f(t), dg2(t)
〉

.

(iii) If
∫ b

a

〈

f(t), dg(t)
〉

exists, then
∫ b

a

〈

λf(t), dg(t)
〉

,
∫ b

a

〈

f(t), dλg(t)
〉

exist for every

constant λ ∈ R and

(1.11)

∫ b

a

〈

λf(t), dg(t)
〉

=

∫ b

a

〈

f(t), dλg(t)
〉

= λ

∫ b

a

〈

f(t), dg(t)
〉

.

Proposition 1.4. Let f : [a, b] → X∗, g : [a, b] → X be given functions and let

s ∈ (a, b) be given.

(i) Assume that
∫ b

a

〈

f(t), dg(t)
〉

exists. Then
∫ s

a

〈

f(t), dg(t)
〉

,
∫ b

s

〈

f(t), dg(t)
〉

exist.

(ii) Assume that
∫ s

a

〈

f(t), dg(t)
〉

,
∫ b

s

〈

f(t), dg(t)
〉

exist. Then
∫ b

a

〈

f(t), dg(t)
〉

exists

and

(1.12)

∫ b

a

〈

f(t), dg(t)
〉

=

∫ s

a

〈

f(t), dg(t)
〉

+

∫ b

s

〈

f(t), dg(t)
〉

.

In order to preserve the consistency of (1.12) also in the limit cases s = a and

s = b, we set

(1.13)

∫ s

s

〈

f(t), dg(t)
〉

= 0 ∀ s ∈ [a, b], ∀ f : [a, b] → X∗, g : [a, b] → X.
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Let us recall some typical formulas. We denote by χΩ the characteristic function

of a set Ω ⊂ [0, T ].

Proposition 1.5. For every g : [a, b] → X , a 6 r 6 s 6 b and v ∈ X∗ we have

(i)
∫ b

a

〈

v χ{s}(t), dg(t)
〉

=
〈

v, g
〉

(s+) −
〈

v, g
〉

(s−),

(ii)
∫ b

a

〈

v χ(r,s)(t), dg(t)
〉

=
〈

v, g
〉

(s−) −
〈

v, g
〉

(r+)

provided the limits on the right-hand sides exist, with the convention
〈

v, g
〉

(a−) =
〈

v, g(a)
〉

,
〈

v, g
〉

(b+) =
〈

v, g(b)
〉

.

Proposition 1.6. For every f : [a, b] → X∗, a 6 r 6 s 6 b, and v ∈ X we have

(i)
∫ b

a

〈

f(t), d(v χ{s})(t)
〉

=











0 for s ∈ (a, b),

−
〈

f(a), v
〉

for s = a,
〈

f(b), v
〉

for s = b.

(ii)
∫ b

a

〈

f(t), d(v χ(r,s)(t)
〉

=
〈

f(r) − f(s), v
〉

.

We now introduce the concept of regulated functions, which goes back to [1].

Definition 1.7. Let Y be a Banach space with norm |·|Y . We say that a function

f : [a, b] → Y is regulated if for every t ∈ [a, b] there exist both one-sided limits

f(t+), f(t−) ∈ Y , with the convention f(a−) = f(a), f(b+) = f(b).

We denote by G(a, b; Y ) the set of all regulated functions f : [a, b] → Y , and

by GL(a, b; Y ) and GR(a, b; Y ) the space of left continuous and right continuous

regulated functions on [a, b], respectively. The space BV (a, b; Y ) of all functions

of bounded variation with values in Y is included in G(a, b; Y ). As an important

example of regulated functions, let us mention step functions w of the form

(1.14) w(t) :=
m

∑

k=0

ĉk χ{tk}(t) +
m

∑

k=1

ck χ(tk−1,tk)(t), t ∈ [a, b],

where d = {t0, . . . , tm} ∈ Da,b is a given division, and ĉ0, . . . , ĉm, c1, . . . , cm are

given elements from Y . We further set BVL(a, b; Y ) = BV (a, b; Y )∩GL(a, b; Y ) and

BVR(a, b; Y ) = BV (a, b; Y )∩GR(a, b; Y ). On G(a, b; Y ) we introduce a norm ‖·‖[a,b]

by

(1.15) ‖f‖[a,b] := sup{|f(τ)|Y : τ ∈ [a, b]}.

Lemma 1.8.

(i) Every regulated function is bounded.

(ii) The space G(a, b; Y ) is complete and non-separable with respect to the

norm ‖ · ‖[a,b].
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(iii) Given C > 0, the set VC = {g ∈ BV (a, b; Y ) : Var[a,b]g 6 C} is closed in

G(a, b; Y ).

(iv) For every f ∈ G(a, b; Y ) and ε > 0 there exists a step function w of the

form (1.14) such that ‖f − w‖[a,b] 6 ε, w(t) ∈
⋃

τ∈[a,b]

{f(τ)} for every t ∈ [a, b],

and Var[a,b] w 6 Var[a,b] f .

Theorem 1.9. If f ∈ G(a, b; X∗) and g ∈ BV (a, b; X) or f ∈ BV (a, b; X∗) and

g ∈ G(a, b; X), then
∫ b

a

〈

f(t), dg(t)
〉

exists and satisfies the estimate

∣

∣

∣

∣

∫ b

a

〈

f(t), dg(t)
〉

∣

∣

∣

∣

(1.16)

6 min
{

‖f‖[a,b] Var
[a,b]

g,
(

|f(a)|∗ + |f(b)|∗ + Var
[a,b]

f
)

‖g‖[a,b]

}

.

The following identity explains the motivation for a Kurzweil solution to the pro-

cess (0.1) defined in (2.8)–(2.10) below.

Proposition 1.10. If f ∈ G(a, b; X∗) and g ∈ W 1,1(a, b; X), then

∫ b

a

〈

f(t), dg(t)
〉

= (L)

∫ b

a

〈

f(t), ġ(t)
〉

dt,

where (L) denotes the Lebesgue integral.

The next Proposition 1.11 plays a key role in the construction of a solution to (0.1).

Proposition 1.11. Consider f, fn ∈ G(a, b; X∗) and g, gn ∈ BV (a, b; X) for n ∈

N such that

lim
n→∞

‖f − fn‖[a,b] = 0, lim
n→∞

‖g − gn‖[a,b] = 0, sup
n∈N

Var
[a,b]

gn = C < ∞.

Then

(1.17)

∫ b

a

〈

f(t), dg(t)
〉

= lim
n→∞

∫ b

a

〈

fn(t), dgn(t)
〉

.

The integration by parts formula for the Kurzweil integral contains additional

jump terms and reads as follows. The proof is the same as for the Young integral

in [6, Theorem 3.14].
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Proposition 1.12. For every f ∈ G(a, b; X∗) and g ∈ BV (a, b; X) we have

∫ b

a

〈

f(t), dg(t)
〉

+

∫ b

a

〈

g(t), df(t)
〉

=
〈

f(b), g(b)
〉

−
〈

f(a), g(a)
〉

+
∑

t∈[a,b]

(〈

f(t) − f(t−), g(t) − g(t−)
〉

−
〈

f(t+) − f(t), g(t+) − g(t)
〉)

.

Note that only countably many points t enter the sum, which is finite due to the

bounded variation of g.

For a continuously differentiable mapping E0 : X → R, the following integration

formula holds.

Corollary 1.13. For every g ∈ BV (a, b; X) we have

(1.18)

∫ b

a

〈

E′
0(g(t+)), dg(t)

〉

= E0(g(b)) − E0(g(a)) +
∑

t∈[a,b]

∆(g(t+), g(t−)),

where E′
0 is the Fréchet derivative of E0 and

∆(ξ, η) :=
〈

E′
0(ξ), ξ − η

〉

− E0(ξ) + E0(η) for ξ, η ∈ X.

Indeed, this can be checked directly for every step function w of the form (1.14)

using Propositions 1.3–1.6, which yield, after setting c0 = ĉ0, cm+1 = ĉm, that

∫ b

a

〈

E′
0(w(t+)), dw(t)

〉

=
〈

E′
0(cm+1), cm+1

〉

−
〈

E′
0(c1), c0

〉

+

m
∑

k=1

〈

E′
0(ck) − E′

0(ck+1), ck

〉

=

m+1
∑

k=1

〈

E′
0(ck), ck − ck−1

〉

= E0(cm+1) − E0(c0) +

m+1
∑

k=1

∆(ck, ck−1),

which is precisely (1.18). If g is an arbitrary BV -function, then it suffices to use the

approximation and convergence argument of Lemma 1.8 (iv) and Proposition 1.11.
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2. Statement of the problem and main results

In addition to X , X∗, consider further Banach spaces U , V endowed with norms

| · |U , | · |V , respectively, and their closed subsets U0 ⊂ U , V0 ⊂ V playing the role of

parameter sets. By Lin(X → X∗) we denote the space of continuous linear mappings

from X to X∗, endowed with the norm ‖·‖. For γ > 0, we denote by Symγ(X → X∗)

the set of all F ∈ Lin(X → X∗) such that

(2.1)
〈

Fξ, η
〉

=
〈

Fη, ξ
〉

,
〈

Fξ, ξ
〉

> γ |ξ|2 ∀ ξ, η ∈ X.

Indeed, if Symγ(X → X∗) is nonempty, then X can be considered as a Hilbert space

endowed with the scalar product
〈

ξ, η
〉

F
=

〈

Fξ, η
〉

with some fixed F ∈ Symγ(X →

X∗).

We are given a family K(v) ⊂ X of convex closed sets depending on a parameter

v ∈ V0, and assume that 0 ∈ K(v) for all v ∈ V0. The polar set K∗(v) ⊂ X∗ of K(v)

is defined as

(2.2) K∗(v) = {y ∈ X∗ :
〈

y, ξ
〉

6 1 ∀ ξ ∈ K(v)}.

Since K(v) is convex, closed, and contains 0, we have (K∗(v))∗ = K(v). This and

other convex analysis concepts and results used here can be found in [12] and [3,

Chapter 2].

To measure the distance between sets in X∗, we define the Hausdorff distance

dH(A, B) of the sets A, B ⊂ X∗ as

dH(A, B) = max
{

sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)
}

,

where dist(a, B) = inf{|a − b|∗ : b ∈ B} etc. For each v ∈ V0 we define the pro-

jection Qv(x) of an element x ∈ X∗ onto K∗(v) as the set of all z ∈ K∗(v) such

that

(2.3) |x − z|∗ = min{|x − z′|∗ : z′ ∈ K∗(v)}.

For v1, v2 ∈ V0 we obviously have the implication

(2.4) x ∈ K∗(v1), z ∈ Qv2x =⇒ |x − z|∗ 6 dH(K∗(v1), K
∗(v2)).

We will assume in the sequel that there exists a constant CH > 0 such that

(2.5) dH(K∗(v1), K
∗(v2)) 6 CH |v1 − v2|V ∀ v1, v2 ∈ V0.
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Assume that E : U0 × X → R is a functional which with each u ∈ U0 and ξ ∈

X associates the stored energy corresponding to u and ξ. The conjugate energy

functional E∗ : U0 × X∗ → R is defined by the Legendre transform

(2.6) E∗(u, y) = sup
ξ∈X

{
〈

y, ξ
〉

− E(u, ξ)} for (u, y) ∈ U0 × X∗.

We assume the following hypothesis to hold.

Hypothesis 2.1. Let ∂ξE : U0×X → X∗, ∂2
ξ E : U0×X → Lin(X → X∗) denote

the first and the second partial Fréchet derivatives of E with respect to ξ.

(i) There exists a constant L > 0 such that for every u1, u2 ∈ U0 and ξ ∈ X we

have

|∂ξE(u1, ξ) − ∂ξE(u2, ξ)|∗ 6 L |u1 − u2|U .

(ii) There exists a constant γ > 0 such that ∂2
ξ E(u, ξ) ∈ Symγ(X → X∗) for every

(u, ξ) ∈ U0 × X .

(iii) For every R > 0 there exists C(R) > 0 such that for all u1, u2 ∈ U0 and

ξ1, ξ2 ∈ X , |ξi| 6 R for i = 1, 2, we have

‖∂2
ξE(u1, ξ1) − ∂2

ξ E(u2, ξ2)‖ 6 C(R) (|u1 − u2|U + |ξ1 − ξ2|).

As a consequence of Hypothesis 2.1, we see that both E(u, ·) and E∗(u, ·) are

strictly convex and twice continuously differentiable. As a classical property of the

Legendre transform, we have

(2.7) x = ∂ξE(u, ξ) ⇐⇒ ξ = ∂xE∗(u, x).

It is easy to see that the symmetry of ∂2
ξ E in (ii) follows from the continuity prop-

erty (iii). Indeed, for all s, t ∈ (0, 1), u ∈ U0, and ξ, η, θ ∈ X we have the identities

E(u, ξ + sθ + tη) − E(u, ξ + sθ) − E(u, ξ + tη) + E(u, ξ)

=

∫ t

0

∫ s

0

〈

(∂2
ξ E(u, ξ + σθ + τη) − ∂2

ξ E(u, ξ)) θ, η
〉

dσ dτ + st
〈

∂2
ξ E(u, ξ) θ, η

〉

=

∫ s

0

∫ t

0

〈

(∂2
ξ E(u, ξ + σθ + τη) − ∂2

ξ E(u, ξ)) η, θ
〉

dτ dσ + st
〈

∂2
ξ E(u, ξ) η, θ

〉

,

hence, by Hypothesis 2.1 (iii),

∣

∣

〈

∂2
ξ E(u, ξ) η, θ

〉

−
〈

∂2
ξ E(u, ξ) θ, η

〉∣

∣ 6 C (t + s)
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with a constant C depending only on the norms of ξ, η, θ, and it suffices to let t, s

tend to 0.

The Kurzweil integral setting of Problem (0.1) is defined as follows.

Problem 2.2. For given input functions u ∈ BVL(0, T ; U0), v ∈ BVL(0, T ; V0)

and an initial condition x0 ∈ K∗(v(0)), we look for a function ξ ∈ BVL(0, T ; X) such

that

x(t) := ∂ξE(u(t), ξ(t)) ∈ K∗(v(t)) ∀ t ∈ [0, T ],(2.8)

∂ξE(u(0), ξ(0)) = x0,(2.9)
∫ T

0

〈

x(t+) − y(t), dξ(t)
〉

6 0(2.10)

for every y ∈ G(0, T ; X∗) such that y(t) ∈ K∗(v(t+)) for every t ∈ [0, T ].

Note that every solution to Problem 2.2 satisfies

(2.11)

∫ t

s

〈

x(τ+) − y(τ), dξ(τ)
〉

6 0

for every test function y as in Theorem 2.3 and for every 0 6 s < t 6 T . Indeed, it

suffices to set

ỹ(τ) =

{

y(τ) for τ ∈ [s, t),

x(τ+) for τ ∈ [0, s) ∪ [t, T ],

and check, by virtue of Propositions 1.4–1.5 and the left continuity of ξ, that

0 >

∫ T

0

〈

x(τ+) − ỹ(τ), dξ(τ)
〉

=

∫ T

0

〈

χ[s,t)(τ)(x(τ+) − y(τ)), dξ(τ)
〉

=

∫ t

s

〈

x(τ+) − y(τ), dξ(τ)
〉

+

∫ s

0

〈

χ{s}(τ)(x(τ+) − y(τ)), dξ(τ)
〉

−

∫ t

s

〈

χ{t}(τ)(x(τ+) − y(τ)), dξ(τ)
〉

=

∫ t

s

〈

x(τ+) − y(τ), dξ(τ)
〉

.

Proposition 1.10 enables us to understand the relation between (2.8)–(2.10) and

(0.1). In fact, we can formally rewrite (2.8)–(2.10) as

(2.12) ξ̇(t) ∈ ∂I−K∗(v(t))(−∂ξE(u(t), ξ(t))),
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where IK̃ is the indicator function of an arbitrary set K̃, and this is in turn equivalent

to

(2.13) −∂ξE(u(t), ξ(t)) ∈ ∂M−K(v(t))(ξ̇(t)),

which is precisely (0.1) with K(t) replaced by −K(v(t)).

We prove the following existence and uniqueness result.

Theorem 2.3. Let Hypothesis 2.1 and inequality (2.5) hold. Then for every

u ∈ BVL(0, T ; U0), v ∈ BVL(0, T ; V0) and x0 ∈ K∗(v(0)), Problem 2.2 has a unique

solution ξ ∈ BVL(0, T ; X). Moreover, for every D > 0 there exists CD > 0 such that

for all input functions ui, vi, i = 1, 2, such that

‖ui‖[0,T ] + ‖vi‖[0,T ] + Var[0,T ] ui + Var[0,T ] vi 6 D, i = 1, 2,

the solutions ξ1 and ξ2 corresponding to u1, v1 and u2, v2 and to initial conditions x
0
1,

x0
2, respectively, satisfy the inequality

(2.14) ‖ξ1 − ξ2‖
2
[0,T ] 6 CD

(

|x0
1 − x0

2|
2
∗ + ‖u1 − u2‖[0,T ] + ‖v1 − v2‖[0,T ]

)

.

Let now K0 ⊂ X be a fixed convex closed set containing 0. We define the K0-

variation of a function ξ : [0, T ] → X on an interval [s, t] ⊂ [0, T ] by the formula

VarK0

[s,t]

ξ = sup

p
∑

i=1

MK0(ξ(σi) − ξ(σi−1)),

the supremum being taken over all divisions s = σ0 < σ1 < . . . < σp = t. For a left

continuous function ξ, an equivalent definition reads

(2.15) VarK0

[s,t]

ξ = sup

{
∫ t

s

〈

y(τ), dξ(τ)
〉

: y ∈ G(s, t; X∗), y(τ) ∈ K∗
0 ∀ τ ∈ [s, t]

}

.

Assuming still that Hypothesis 2.1 holds, consider now the special case of Prob-

lem 2.2, where E is of the form E(u, ξ) = E0(ξ)−
〈

u, ξ
〉

for u ∈ U := X∗ and ξ ∈ X ,

and K(v) = −K0. According to [10], the energetic solution to (2.13) with an abso-

lutely continuous input u is defined by the stability condition

E(u(t), ξ(t)) 6 E(u(t), η) + MK0(η − ξ(t)) a.e. ∀ η ∈ X,(S)

and by the energy inequality

E(u(t), ξ(t)) − E(u(s), ξ(s)) + VarK0

[s,t]

ξ 6 −(L)

∫ t

s

〈

ξ(τ), u̇(τ)
〉

dτ(E)

∀ 0 6 s < t 6 T,
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where the right-hand side corresponds to the energy supply, VarK0 ξ is the dissi-

pation, and the symbol (L) denotes again the Lebesgue integral. For differentiable

energies, condition (S) is equivalent to the inclusion ∂ξE(u(t), ξ(t)) ∈ −K∗
0 , which

is precisely (2.8).

Let 0 6 s < t 6 T be arbitrarily chosen. For ξ ∈ BVL(0, T ; X) and u ∈

BVL(0, T ; X∗) we have, by Proposition 1.12 and Corollary 1.13, that

(2.16)

∫ t

s

〈

u(τ+), dξ(τ)
〉

+

∫ t

s

〈

ξ(τ), du(τ)
〉

=
〈

u(t), ξ(t)
〉

−
〈

u(s), ξ(s)
〉

and

(2.17)

∫ t

s

〈

∂ξE0(ξ(τ+)), dξ(τ)
〉

= E0(ξ(t)) − E0(ξ(s)) +
∑

τ∈[s,t]

∆(ξ(τ+), ξ(τ)),

where Hypothesis 2.1 (ii) implies the lower bound

∆(ξ, η) =
〈

∂ξE0(ξ), ξ − η
〉

− E0(ξ) + E0(η) >
γ

2
|ξ − η|2 ∀ ξ, η ∈ X.

Using (2.15), we can take the supremum in (2.11) over all regulated functions y with

values in −K∗
0 and obtain

∫ t

s

〈

x(τ+), dξ(τ)
〉

+ VarK0

[s,t]

ξ 6 0.

Since x(τ+) also belongs to −K∗
0 , we have in fact the identity

(2.18)

∫ t

s

〈

x(τ+), dξ(τ)
〉

+ VarK0

[s,t]

ξ = 0.

From identities (2.16)–(2.18) we derive for the process described by (2.8)–(2.10) the

energy balance equation in the form

E(u(t), ξ(t)) − E(u(s), ξ(s)) +
∑

τ∈[s,t]

∆(ξ(τ+), ξ(τ)) + VarK0

[s,t]

ξ(2.19)

= −

∫ t

s

〈

ξ(τ), du(τ)
〉

.

Conversely, the energy inequality

E(u(T ), ξ(T )) − E(u(0), ξ(0)) +
∑

τ∈[0,T ]

∆(ξ(τ+), ξ(τ)) + VarK0

[0,T ]

ξ(2.20)

6 −

∫ T

0

〈

ξ(τ), du(τ)
〉

implies (2.10) by virtue of (2.15)–(2.17).
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If we compare (2.19) or (2.20) with condition (E), we see that in addition to the

homogeneous dissipation VarK0 ξ of degree 1, there is in the discontinuous case a non-

homogeneous jump dissipation
∑

∆(ξ(τ+), ξ(τ)). We show below in Example 4.2

that it cannot be omitted.

As an even more special case, we assume now that X is a Hilbert space with scalar

product
〈

·, ·
〉

and norm |ξ| =
√

〈

ξ, ξ
〉

, U = X , and K0 ⊂ X is a bounded convex

closed set containing 0. Then there exists r > 0 such that

(2.21) Br(0) ⊂ K∗
0 ,

where Br(0) is the ball centered at 0 with radius r.

Let us consider the energy functional

(2.22) E(u, ξ) =
1

2
|ξ|2 −

〈

u, ξ
〉

.

For a given initial condition x0 ∈ −K∗
0 , Problem 2.2 then has the form

x(t) := ξ(t) − u(t) ∈ −K∗
0 ∀ t ∈ [0, T ],(2.23)

ξ(0) = u(0) + x0,(2.24)
∫ T

0

〈

u(t+) − ξ(t+) − y(t), dξ(t)
〉

> 0(2.25)

for every y ∈ G(0, T ; X) such that y(t) ∈ K∗
0 for every t ∈ [0, T ],

which can formally be written similarly to (2.12)–(2.13) as

(2.26) ∂MK0(ξ̇(t)) + ξ(t) ∋ u(t) ⇐⇒ ξ̇(t) ∈ ∂IK∗

0
(u(t) − ξ(t)).

We compare the solution ξ to (2.23)–(2.25) with the solution ξε to the regularized

problem

(2.27) ∂MK0(ξ̇ε(t)) + ε ξ̇ε(t) + ξε(t) ∋ u(t)

with ε > 0 and the same initial condition

(2.28) ξε(0) = u(0) + x0.

In mechanical interpretation, (2.26) is the constitutive relation of a parallel elasto-

plastic model, where u stands for the dimensionless stress, ξ is the strain, K∗
0 is

the admissible plastic stress domain, and its boundary ∂K∗
0 is the yield surface. In-

clusion (2.27) can again be interpreted as a parallel viscoelastoplastic constitutive

relation between the dimensionless stress u and strain ξ, with a viscosity coefficient ε.
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Theorem 2.4. Let u ∈ GL(0, T ; X) and x0 ∈ −K∗
0 be given. Then prob-

lem (2.23)–(2.25) admits a unique solution ξ ∈ BVL(0, T ; X), problem (2.27)–(2.28)

admits a unique solution ξε ∈ W 1,∞(0, T ; X) for every ε > 0, and we have

(2.29) lim
ε→0+

|ξε(t) − ξ(t)| = 0 ∀ t ∈ [0, T ].

Moreover, for every 0 6 s < t 6 T we have

(2.30) lim
ε→0+

(

ε (L)

∫ t

s

|ξ̇ε(τ)|2 dτ + VarK0

[s,t]

ξε

)

=
1

2

∑

τ∈[s,t]

|ξ(τ+) − ξ(τ)|2 + VarK0

[s,t]

ξ.

In Theorem 2.4, we do not have to assume that u has bounded variation. This is

due to the regularizing property of the nonempty interior condition (2.21), see [6]. It

would be interesting to establish a similar result for the general system (2.8)–(2.10).

We focus here on the case that u is allowed to be discontinuous. It cannot be

expected that the convergence ξε → ξ is uniform, since all ξε are continuous while

the discontinuities of u give rise to discontinuities of ξ.

The right-hand side of (2.30) is the rate independent dissipation as in (2.19), while

the left-hand side is the dissipation of the approximating process (2.27). We see that

the second order jump dissipation can be interpreted as the remainder of the viscous

one when the viscosity coefficient ε tends to zero.

Theorem 2.3 will be proved in the next section, the proof of Theorem 2.4 is post-

poned to Section 4.

3. Proof of Theorem 2.3

Consider first step functions u and v of the form

u(t) = u0 χ{0}(t) +

m
∑

k=1

uk χ(tk−1,tk](t),(3.1)

v(t) = v0 χ{0}(t) +

m
∑

k=1

vk χ(tk−1,tk](t),(3.2)

where u0, . . . , um ∈ U0 and v0, . . . , vm ∈ V0 are given, and 0 = t0 < t1 < . . . < tm =

T is a division of the interval [0, T ]. By virtue of Propositions 1.5–1.6, the function

(3.3) ξ(t) = ξ0 χ{0}(t) +
m

∑

k=1

ξk χ(tk−1,tk](t)

130



is a solution to Problem 2.2 if and only if

xk = ∂ξE(uk, ξk) ∈ K∗(vk) for k = 0, 1, . . . , m,(3.4)
〈

xk − y, ξk − ξk−1

〉

6 0 for every y ∈ K∗(vk), k = 1, . . . , m.(3.5)

By (2.7) we have

(3.6) xk = ∂ξE(uk, ξk) ⇐⇒ ξk = ∂xE∗(uk, xk).

For k = 0 this gives the initial value ξ0. For k > 1 we check that xk satisfies (3.4)–

(3.5) if and only if it is the (unique) solution of the minimization problem

(3.7) xk = argmin(x 7→ E∗(uk, x) −
〈

x, ξk−1

〉

+ IK∗(vk)(x)).

Indeed, if (3.7) holds, then xk ∈ K∗(vk), and

(3.8) E∗(uk, xk) −
〈

xk, ξk−1

〉

6 E∗(uk, xk + α(y − xk)) −
〈

xk + α(y − xk), ξk−1

〉

for all y ∈ K∗(vk) and α ∈ (0, 1]. This yields, letting α tend to 0+, that

(3.9)
〈

∂xE∗(uk, xk) − ξk−1, xk − y
〉

6 0,

which is precisely (3.4)–(3.5). The inverse implication (3.4)–(3.5) ⇒ (3.7) follows

from the convexity of E∗(uk, ·). Note that (3.7) can also be equivalently stated as

in [10] in the energetic form

(3.10) ξk = argmin(ξ 7→ E(uk, ξ) + MK(vk)(ξk−1 − ξ)).

We will make repeated use of the following “discrete Gronwall lemma”.

Lemma 3.1. Let gk ∈ X and Fk ∈ Symγ(X → X∗) be given for k ∈ N ∪ {0}.

Let there exist constants B, M > 0 such that

(3.11)

k
∑

j=1

‖Fj − Fj−1‖ 6 B,

k
∑

j=1

〈

Fjgj, gj − gj−1

〉

6 M ∀ k ∈ N.

Then for every n ∈ N we have

|gn|
2 6
eB/γ

γ

(

2M +
〈

F0g0, g0

〉)

.
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P r o o f of Lemma 3.1. For k ∈ N set

(3.12) βk = ‖Fk −Fk−1‖, rk−1 =
1

2

〈

Fk−1 gk−1, gk−1

〉

, mk =
〈

Fk gk, gk − gk−1

〉

.

We have by hypothesis on Fk−1, Fk that

(3.13)
〈

(Fk − Fk−1) gk−1, gk−1

〉

6
βk

γ

〈

Fk−1 gk−1, gk−1

〉

.

It is easy to check the elementary identity

〈

Fk gk, gk − gk−1

〉

−
1

2

〈

Fk gk, gk

〉

+
1

2

〈

Fk−1 gk−1, gk−1

〉

=
1

2

〈

Fk (gk − gk−1), gk − gk−1

〉

+
1

2

〈

(Fk−1 − Fk) gk−1, gk−1

〉

,

which yields

(3.14) rk − rk−1 6 mk +
βk

γ
rk−1 ∀ k ∈ N.

Set

Ak =

k
∏

j=1

(

1 +
βj

γ

)

,

with the convention A0 = 1. Note that Ak > 1 for all k. We divide (3.14) by Ak and

obtain for all k ∈ N the inequality

rk

Ak
−

rk−1

Ak−1
6

mk

Ak
.

Summing up over k = 1, . . . , n, we obtain rn 6 An (M + r0). For every k ∈ N we

have

log Ak =

k
∑

j=1

log
(

1 +
βj

γ

)

6
1

γ

k
∑

j=1

βj 6
B

γ
.

This implies the bound rn 6 eB/γ(M + r0), which completes the proof. �

We now use the above result to prove the following “Gronwall-Kurzweil” lemma.

Lemma 3.2. Let g ∈ BVL(0, T ; X) and F ∈ BVL(0, T ; Symγ(X → X∗)) be given

such that g(0) = 0. Assume that

(3.15)

∫ t

0

〈

F (τ+)g(τ+), dg(τ)
〉

6 0 ∀ t ∈ [0, T ].

Then g(t) = 0 for all t ∈ [0, T ].
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The relation between Lemma 3.2 and the classical Gronwall lemma can be seen

easily if F and g are absolutely continuous. Then we may rewrite (3.15) using

Proposition 1.10 as

1

2

〈

F (t)g(t), g(t)
〉

−
1

2
(L)

∫ t

0

〈

Ḟ (τ)g(τ), g(τ)
〉

dτ = (L)

∫ t

0

〈

F (τ)g(τ), ġ(τ)
〉

dτ 6 0

with Ḟ in L1(0, T ; Lin(X → X∗)).

P r o o f of Lemma 3.2. It suffices to prove that g(T ) = 0. Let ε > 0 be arbitrarily

given. By Lemma 1.8 (iv), we find step functions of the form

g(t) = g0 χ{0}(t) +

m
∑

k=1

gk χ(tk−1,tk](t),(3.16)

F (t) = F0 χ{0}(t) +
m

∑

k=1

Fk χ(tk−1,tk](t),(3.17)

analogous to (3.1)–(3.2) and such that, taking into account Theorem 1.9,

g0 = 0, gm = g(T ),

sup
t∈[0,T ]

|g(t) − g(t)| < ε, sup
t∈[0,T ]

‖F (t) − F (t)‖ < ε,

Var[0,T ] g 6 Var[0,T ] g, Var[0,T ] F =

m
∑

k=1

‖Fk − Fk−1‖ 6 Var[0,T ] F,

∫ t

0

〈

F (τ+)g(τ+), dg(τ)
〉

6 ε ∀t ∈ [0, T ].

For all k = 1, . . . , m we have

∫ tk

0

〈

F (τ+)g(τ+), dg(τ)
〉

=
k

∑

j=1

〈

Fjgj, gj − gj−1

〉

6 ε.

By Lemma 3.1 we have |gm|2 6 Cε with a constant C independent of m. Since ε is

arbitrary, we obtain the assertion. �

As a next step, we compare the solutions ξ
(i)
k of the form (3.3) corresponding

to different input sequences u
(i)
0 , u

(i)
1 , u

(i)
2 , . . . ∈ U0 and v

(i)
0 , v

(i)
1 , v

(i)
2 , . . . ∈ V0, and

different initial conditions x
(i)
0 , i = 1, 2. We do not specify the lengths and consider
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possibly infinite sequences. We will assume that there exist constants CU , CV > 0

such that

(3.18)

∞
∑

k=1

|u
(i)
k − u

(i)
k−1|U 6 CU ,

∞
∑

k=1

|v
(i)
k − v

(i)
k−1|V 6 CV for i = 1, 2.

In the inequalities (3.5) for ξ
(i)
k we choose y ∈ Q

v
(i)
k

(x
(i)
k−1) and obtain, using Hy-

potheses 2.1 (i)–(ii) and (2.4)–(2.5), that

γ |ξ
(i)
k − ξ

(i)
k−1|

2 6
〈

∂ξE(u
(i)
k , ξ

(i)
k ) − ∂ξE(u

(i)
k , ξ

(i)
k−1), ξ

(i)
k − ξ

(i)
k−1

〉

(3.19)

6
〈

x
(i)
k − x

(i)
k−1, ξ

(i)
k − ξ

(i)
k−1

〉

+ L |u
(i)
k − u

(i)
k−1|U |ξ

(i)
k − ξ

(i)
k−1|

6
〈

y − x
(i)
k−1, ξ

(i)
k − ξ

(i)
k−1

〉

+ L |u
(i)
k − u

(i)
k−1|U |ξ

(i)
k − ξ

(i)
k−1|

6
(

L |u
(i)
k − u

(i)
k−1|U + CH |v

(i)
k − v

(i)
k−1|V

)

|ξ
(i)
k − ξ

(i)
k−1|,

hence,

(3.20) |ξ
(i)
k − ξ

(i)
k−1| 6

L

γ
|u

(i)
k − u

(i)
k−1|U +

CH

γ
|v

(i)
k − v

(i)
k−1|V .

In particular,

∞
∑

k=1

|ξ
(i)
k − ξ

(i)
k−1| 6

L

γ
CU +

CH

γ
CV ,(3.21)

sup
k∈N

|ξ
(i)
k | 6 |ξ

(i)
0 | +

L

γ
CU +

CH

γ
CV for i = 1, 2.

We now set

(3.22) R = max{|ξ
(1)
0 |, |ξ

(2)
0 |} +

L

γ
CU +

CH

γ
CV .

In the following estimate we proceed similarly, choosing y ∈ Q
v
(1)
k

(x
(2)
k ) and

y ∈ Q
v
(2)
k

(x
(1)
k ) in inequality (3.5) for ξ

(1)
k , ξ

(2)
k , respectively. Summing up the two

resulting inequalities, we obtain from (2.4)–(2.5) that

〈

x
(1)
k − x

(2)
k , ξ

(1)
k − ξ

(1)
k−1 − ξ

(2)
k + ξ

(2)
k−1

〉

(3.23)

6 CH |v
(1)
k − v

(2)
k |V

(

|ξ
(1)
k − ξ

(1)
k−1| + |ξ

(2)
k − ξ

(2)
k−1|

)

.

Note that the difference x
(1)
k − x

(2)
k can be written as

x
(1)
k − x

(2)
k =

(

∂ξE(u
(1)
k , ξ

(1)
k ) − ∂ξE(u

(1)
k , ξ

(2)
k )

)

+
(

∂ξE(u
(1)
k , ξ

(2)
k ) − ∂ξE(u

(2)
k , ξ

(2)
k )

)

,
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where

∂ξE(u
(1)
k , ξ

(1)
k ) − ∂ξE(u

(1)
k , ξ

(2)
k )

= (L)

∫ 1

0

〈

∂2
ξ E(u

(1)
k , ξ

(2)
k + s(ξ

(1)
k − ξ

(2)
k )), ξ

(1)
k − ξ

(2)
k

〉

ds.

We define the mapping Fk ∈ Lin(X → X∗) by the formula

(3.24) Fk = (L)

∫ 1

0

∂2
ξ E(u

(1)
k , ξ

(2)
k + s(ξ

(1)
k − ξ

(2)
k )) ds.

The above computations and Hypothesis 2.1 (i) yield

〈

Fk (ξ
(1)
k − ξ

(2)
k ), ξ

(1)
k − ξ

(2)
k − ξ

(1)
k−1 + ξ

(2)
k−1

〉

(3.25)

6
(

L |u
(1)
k − u

(2)
k |U + CH |v

(1)
k − v

(2)
k |V

)(

|ξ
(1)
k − ξ

(1)
k−1| + |ξ

(2)
k − ξ

(2)
k−1|

)

.

To simplify the notation, we introduce the sequences

wk = |u
(1)
k − u

(2)
k |U + |v

(1)
k − v

(2)
k |V ,

αk = max
i=1,2

(|u
(i)
k − u

(i)
k−1|U + |v

(i)
k − v

(i)
k−1|V ),

gk = ξ
(1)
k − ξ

(2)
k .

By virtue of (3.20), inequality (3.25) can be written in the form

(3.26)
〈

Fk gk, gk − gk−1

〉

6 C1 αk wk

for every k ∈ N with a constant C1 > 0. Hypothesis 2.1 (ii)–(iii), together with (3.18)

and (3.21), implies that we may use Lemma 3.1 to conclude that there exists a con-

stant C2 > 0 such that |gk|
2 6 C2(

〈

F0g0, g0

〉

+ sup
j∈N

wj). In other words, we have the

inequality

(3.27) sup
k∈N

|ξ
(1)
k − ξ

(2)
k |2 6 C3

(

|x
(1)
0 − x

(2)
0 |2∗ + sup

k∈N

(

|u
(1)
k − u

(2)
k |U + |v

(1)
k − v

(2)
k |V

))

with a suitable constant C3 > 0.

We are now ready to complete the proof of Theorem 2.3. Let u ∈ BVL(0, T ; U0),

v ∈ BVL(0, T ; V0), and x0 ∈ K∗(v(0)) be arbitrarily given. We first prove the

uniqueness. Let ξ1, ξ2 be two solutions with the expected regularity, and set xi(t) =
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∂ξE(u(t), ξi(t)) ∈ K(v(t)) for i = 1, 2 and t ∈ [0, T ]. We may set y(τ) = x1−i(τ+) in

equation (2.11) for ξi on the interval [0, t], and obtain

0 >

∫ t

0

〈

x1(τ+) − x2(τ+), d(ξ1 − ξ2)(τ)
〉

(3.28)

=

∫ t

0

〈

F (τ+) (ξ1(τ+) − ξ2(τ+)), d(ξ1 − ξ2)(τ)
〉

with

F (τ) = (L)

∫ 1

0

∂2
ξ E(u(τ), ξ2(τ) + s(ξ1(τ) − ξ2(τ))) ds,

and it suffices to use Lemma 3.2 and Hypothesis 2.1 (iii) to obtain ξ1 = ξ2.

To prove the existence, we use Lemma 1.8 (iv) to find sequences of step functions

u(n) ∈ BVL(0, T ; U0), v
(n) ∈ BVL(0, T ; V0) such that u(n)(0) = u(0), v(n)(0) = v(0),

Var[0,T ] u
(n) 6 Var[0,T ] u, Var[0,T ] v

(n) 6 Var[0,T ] v, and

lim
n→∞

sup
t∈[0,T ]

|u(n)(t) − u(t)|U = 0, lim
n→∞

sup
t∈[0,T ]

|v(n)(t) − v(t)|V = 0.

We know by (3.20) that the corresponding solutions ξ(n) ∈ BVL(0, T ; X) have uni-

formly bounded variation. Let n, n′ ∈ N be indices chosen arbitrarily. By inserting

additional division points tj , if necessary, we may assume that u(n), v(n), u(n′), v(n′)

are of the form (3.1)–(3.2) with the same division 0 = t0 < t1 < . . . < tm = T . It

follows from (3.27) that

sup
t∈[0,T ]

|ξ(n)(t) − ξ(n′)(t)|2(3.29)

6 C3

(

sup
t∈[0,T ]

(

|u(n)(t) − u(n′)(t)|U + |v(n)(t) − v(n′)(t)|V
)

)

with a constant C3 independent of n. Hence, {ξ(n)} is a Cauchy sequence with

respect to the sup-norm and admits a uniform limit ξ ∈ BVL(0, T ; X). Using the

continuity of ∂ξE and Proposition 1.11, we may pass to the limit as n → ∞ in (2.8)–

(2.10) for ξ(n), and check that ξ is the desired solution. The Hölder property (2.14)

of the solution mapping follows immediately from (3.27).
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4. Proof of Theorem 2.4

In the Hilbert framework, the projection QK∗

0
: X → K∗

0 analogous to (2.3) can

be characterized as

(4.1) z = QK∗

0
(x) ⇐⇒

{

z ∈ K∗
0

〈

x − z, z − z̃
〉

> 0 ∀ z̃ ∈ K∗
0 .

We denote PK∗

0
(x) = x − QK∗

0
(x) and recall that for every x ∈ X and α > 0, the

projection has the property

(4.2) QK∗

0
(αx + (1 − α)QK∗

0
(x)) = QK∗

0
(x),

or equivalently

(4.3) PK∗

0
(QK∗

0
(x) + αPK∗

0
(x)) = αPK∗

0
(x).

Note also the following easy relation between the Minkowski functionalMK0 and the

projection QK∗

0
:

(4.4) ∀x, y ∈ X : x ∈ ∂MK0(y) ⇐⇒ x = QK∗

0
(x + y).

We see in particular that ∂MK0(y) ⊂ K∗
0 for every y ∈ X . Moreover, for every y ∈ X

we have

(4.5) x ∈ ∂MK0(y) =⇒
〈

x, y
〉

= MK0(y) = sup
z∈K∗

0

〈

z, y
〉

.

Since MK0 is 1-homogeneous, we may rewrite (2.27) as

(4.6) u(t) − ξε(t) − ε ξ̇ε(t) ∈ ∂MK0(ε ξ̇ε(t)),

which is, by virtue of (4.4), in turn equivalent to

(4.7) ε ξ̇ε(t) = PK∗

0
(u(t) − ξε(t)).

The existence and uniqueness of a global absolutely continuous solution ξε to (4.7)

follows from the Lipschitz continuity of the mapping PK∗

0
. Furthermore, by (2.21)

and [6, Proposition 2.2 and Theorem 2.4], for every u ∈ GL(0, T ; X) there exists

a unique solution ξ ∈ BVL(0, T ; X) to (2.23)–(2.25). As in the previous section, the

convergence analysis starts with left continuous step functions of the form

(4.8) u(t) = u0 χ{0}(t) +
m

∑

k=1

uk χ(tk−1,tk](t),
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where u0, u1, . . . , um are given elements of X , and 0 = t0 < t1 < . . . < tm = T is

a division of the interval [0, T ]. If u is as in (4.8), then, by [6, Proposition 4.3], the

unique solution ξ of (2.23)–(2.25) has also the form of (4.8), more specifically

(4.9) ξ(t) = ξ0 χ{0}(t) +

m
∑

k=1

ξk χ(tk−1,tk](t),

where

(4.10) ξ0 = u0 + x0, ξk = ξk−1 + PK∗

0
(uk − ξk−1) for k = 1, . . . , m.

This is in fact nothing but the classical Moreau formula (see [11]) for time-discrete

approximations of a sweeping process. Here, however, it provides the exact solution

for piecewise constant inputs.

We first prove the following result.

Lemma 4.1. Let u be as in (4.8), let ξ be given by (4.9), and let ξε ∈

W 1,∞(0, T ; X) be the solution to (2.27)–(2.28) for ε > 0. Then

(4.11) lim
ε→0+

|ξε(t) − ξ(t)| = 0 ∀ t ∈ [0, T ].

P r o o f. Let us denote

(4.12) ξε
k = ξε(tk) for k = 0, 1, . . . , m.

For t ∈ (tk−1, tk], Eq. (4.7) has the form

(4.13) ε ξ̇ε(t) = PK∗

0
(uk − ξε(t)), ξε(tk−1) = ξε

k−1.

We claim that the solution of (4.13) can be represented in closed form as

(4.14) ξε(t) = ξε
k−1 +

(

1 − e−(t−tk−1)/ε
)

PK∗

0
(uk − ξε

k−1) for t ∈ [tk−1, tk].

Indeed, assuming (4.14), we have by (4.3) that

PK∗

0
(uk − ξε(t)) = PK∗

0

(

QK∗

0
(uk − ξε

k−1) + e−(t−tk−1)/εPK∗

0
(uk − ξε

k−1)
)

= e−(t−tk−1)/εPK∗

0
(uk − ξε

k−1),

hence (4.13) holds.
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It suffices to prove the convergence (4.11) only for t = T (the process is causal!).

In other words, we have to check that

(4.15) lim
ε→0+

|ξε
m − ξm| = 0.

To this end, we set for k = 1, . . . , m

(4.16) zk = uk − ξk, zε
k = uk − ξε

k, eε
k = e−(tk−tk−1)/ε, zε

0 = −x0 = u0 − ξ0.

We then have for all k = 1, . . . , m that

zk = QK∗

0
(zk−1 + uk − uk−1),(4.17)

zε
k = QK∗

0
(zε

k−1 + uk − uk−1) + eε
kPK∗

0
(zε

k−1 + uk − uk−1).

This yields in particular that

(4.18) zε
k − zε

k−1 + (1 − eε
k)PK∗

0
(zε

k−1 + uk − uk−1) = uk − uk−1.

On the other hand, from (4.17) and (4.3) it follows that

(4.19) PK∗

0
(zε

k) = eε
kPK∗

0
(zε

k−1 + uk − uk−1),

hence

(4.20) zε
k − zε

k−1 +
1 − eε

k

eε
k

PK∗

0
(zε

k) = uk − uk−1.

We have
〈

PK∗

0
(z), z

〉

> 0 for every z ∈ X . Testing Eq. (4.20) by zε
k, we thus obtain

(4.21) |zε
k| 6 |zε

k−1 + uk − uk−1| 6 |zε
k−1| + |uk − uk−1|

and, in particular,

(4.22) |zε
k| 6 |x0| + Var

[0,T ]
u

for every k = 1, . . . , m. Both QK∗

0
and PK∗

0
are nonexpansive mappings, PK∗

0
(0) = 0.

Using (4.17) and (4.22), we thus have

(4.23) |zε
k − zk| 6 |zε

k−1 − zk−1| + (|x0| + 2 Var
[0,T ]

u) eε
k.

Summing up over k we obtain the final estimate

(4.24) |zε
m − zm| 6 (|x0| + 2 Var

[0,T ]
u)

m
∑

k=1

eε
k,

and (4.15) follows. �
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To prove Theorem 2.4, we fix a sequence {u(n)} of left continuous step functions

of the form (4.8) and such that

(4.25) lim
n→∞

sup
t∈[0,T ]

|u(n)(t) − u(t)| = 0,

and denote by ξ(n), ξ
(n)
ε the respective solutions to (2.23)–(2.25) and (2.27)–(2.28),

with u replaced by u(n). By [6], there exists a constant C > 0 independent of n such

that

(4.26) Var
[0,T ]

ξ(n) 6 C, lim
n→∞

sup
t∈[0,T ]

|ξ(n)(t) − ξ(t)| = 0.

To estimate the total variation of ξ
(n)
ε , we use an argument similar to that in [6]

that goes back to Section 19.2 of the pioneering Krasnosel’skii and Pokrovskii mono-

graph [4]. As mentined on p. 261 of the Russian edition, this part of the book was

written by Alexander Vladimirov.

We fix a division 0 = s0 < s1 < . . . < sl = T such that

(4.27) sj−1 < τ < t 6 sj =⇒ |u(t) − u(τ)| <
r

2
,

where r is as in (2.21). Let now u∗ be an arbitrary left continuous regulated function

such that

(4.28) sup
t∈[0,T ]

|u∗(t) − u(t)| 6
r

6
,

and let ξ∗ε be the solution to (2.27)–(2.28) corresponding to u∗. We have

(4.29)
〈

ξ̇∗ε (t), u∗(t) − ξ∗ε (t) − z
〉

> ε |ξ̇∗ε (t)|2 a.e.

for every z ∈ K∗
0 . In every interval (sj−1, sj ] we may choose in particular

(4.30) z(t) =
r

2
p(t) + u∗(t) − u∗(sj−1+),

where

p(t) :=







ξ̇∗ε (t)

|ξ̇∗ε (t)|
if ξ̇∗ε (t) 6= 0,

0 otherwise.

For all t ∈ (sj−1, sj ] we then have |z(t)| 6 r, hence z(t) ∈ K∗
0 , and from (4.29) we

obtain

(4.31) ε |ξ̇∗ε(t)|2 +
r

2
|ξ̇∗ε (t)| +

1

2

d

dt
|u∗(sj−1+) − ξ∗ε (t)|2 6 0
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a.e. in (sj−1, sj ]. Hence,

(4.32) r Var
[sj−1,sj ]

ξ∗ε + |u∗(sj−1+) − ξ∗ε (sj)|
2 6 |u∗(sj−1+) − ξ∗ε (sj−1)|

2

for all j = 1, . . . , l. Set x∗
j = u∗(sj+) − ξ∗ε (sj). Then (4.28) and (4.32) yield

(4.33) |x∗
j | 6 |u∗(sj−1+) − u∗(sj+)| + |x∗

j−1| 6 |u(sj−1+) − u(sj+)| + |x∗
j−1| +

r

2
,

hence |x∗
j | 6 Cu for all j = 0, 1, . . . , l, where Cu > 0 is a constant depending only

on u and the fixed division s0, s1, . . . , sl. Using (4.32) once more, we obtain

(4.34) r Var
[0,T ]

ξ∗ε 6 l C2
u.

We now choose n0 ∈ N sufficiently large such that (4.28) holds with u∗ = u(n) for all

n > n0. For all such n we have by virtue of (4.34) that

(4.35) Var
[0,T ]

ξ(n)
ε 6 C,

with a constant C > 0 independent of n and ε. Furthermore, the mapping y 7→

∂MK0(y) + εy is monotone, hence the equivalent formulation (2.27) of (4.7) yields

(4.36)
〈

ξ̇(n)
ε (t) − ξ̇ε(t), u

(n)(t) − u(t) − ξ(n)
ε (t) + ξε(t)

〉

> 0 a.e.,

that is,

(4.37)
1

2

d

dt
|ξ(n)

ε (t) − ξε(t)|
2 6 (|ξ̇(n)

ε (t)| + |ξ̇ε(t)|)|u
(n)(t) − u(t)| a.e.

From (4.34) we conclude that

(4.38) sup
t∈[0,T ]

|ξ(n)
ε (t) − ξε(t)|

2 6
4lC2

u

r
sup

t∈[0,T ]

|u(n)(t) − u(t)|.

To obtain the convergence (2.29), we have to check that for every δ > 0 and every

t ∈ [0, T ] there exists ε0 such that for all ε ∈ (0, ε0) we have

(4.39) |ξε(t) − ξ(t)| < δ.

This follows immediately from Lemma 4.1 and from the uniform convergences ξ
(n)
ε →

ξε and ξ(n) → ξ.
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It remains to prove the convergence in (2.30). Following (2.19), we can re-

write (2.25) in energetic form for every 0 6 s < t 6 T as

1

2
|ξ(t)|2 −

〈

u(t), ξ(t)
〉

−
1

2
|ξ(s)|2 +

〈

u(s), ξ(s)
〉

(4.40)

+
1

2

∑

τ∈[s,t]

|ξ(τ+) − ξ(τ)|2 + VarK0

[s,t]

ξ = −

∫ t

s

〈

ξ(τ), du(τ)
〉

.

In the simple case (4.8), the energy balance reads

1

2
|ξk|

2 −
〈

uk, ξk

〉

−
1

2
|ξk−1|

2 +
〈

uk−1, ξk−1

〉

(4.41)

+
1

2
|ξk − ξk−1|

2 + MK0(ξk − ξk−1) = −
〈

ξk−1, uk − uk−1

〉

for every k = 1, . . . , m.

We now derive the energy balance for Eq. (4.7). By definition of PK∗

0
, we have

(4.42)
〈

ξ̇ε(t), u(t) − ξε(t) − ε ξ̇ε(t) − z
〉

> 0 a.e.

for every z ∈ K∗
0 , which in view of (4.5) yields

(4.43)
〈

ξ̇ε(t), u(t) − ξε(t)
〉

= ε |ξ̇ε(t)|
2 + MK0(ξ̇ε(t)) a.e.,

hence for every 0 6 s < t 6 T we have

1

2
|ξε(t)|

2 −
〈

u(t), ξε(t)
〉

−
1

2
|ξε(s)|

2 +
〈

u(s), ξε(s)
〉

(4.44)

+ ε (L)

∫ t

s

|ξ̇ε(τ)|2 dτ + VarK0

[s,t]

ξε = −

∫ t

s

〈

ξε(τ), du(τ)
〉

.

We see that (2.30) follows from (2.29), (4.40), and (4.44), provided we check for every

0 6 s < t 6 T that

(4.45) ∀ δ > 0 ∃ ε0 > 0 ∀ ε < ε0 :

∫ t

s

〈

(ξε(τ) − ξ(τ)), du(τ)
〉

< δ.

By (4.35) and Lemma 1.8 (iii), the functions ξε and ξ, as well as their variations

Var[s,t] ξε and Var[s,t] ξ, are uniformly bounded by a constant C independent of ε.

Using Lemma 1.8 (iv), we find a step function w such that ‖u − w‖[s,t] < δ/(12C).

By Theorem 1.9, we have

∫ t

s

〈

(ξε(τ) − ξ(τ)), d(u − w)(τ)
〉

6 6C ‖u − w‖[s,t] 6
δ

2
.
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Since w is a step function, we may refer to Proposition 1.6 and conclude from the

pointwise convergence ξε(τ) → ξ(τ) that

lim
ε→0+

∫ t

s

〈

(ξε(τ) − ξ(τ)), dw(τ)
〉

= 0,

whence (4.45) follows. Theorem 2.4 is proved. �

The following example shows that uniqueness of the solution ξ is lost if the jump

dissipation term is omitted in (2.20).

E x am p l e 4.2. Consider the simple case X = R, K0 = K∗
0 = [−1, 1], and

u(t) =

{

u0 for t ∈ [0, t0],

0 for t ∈ (t0, T ]

with a given t0 ∈ (0, T ) and u0 > 3. We look for a left continuous solution ξ to the

problem

(4.46)



























u(t) − ξ(t) ∈ K∗
0 ∀ t ∈ [0, T ],

1

2
|ξ(t)|2 −

〈

u(t), ξ(t)
〉

−
1

2
|ξ(s)|2 +

〈

u(s), ξ(s)
〉

+ VarK0

[s,t]

ξ

6 −

∫ t

s

〈

ξ(τ), du(τ)
〉

∀ 0 6 s < t 6 T

with the initial condition ξ(0) = u0. Every solution ξ is necessarily constant in every

interval where u is constant. Indeed, this follows from the inequality

1

2
|ξ(t)|2 −

〈

u, ξ(t)
〉

−
1

2
|ξ(s)|2 +

〈

u, ξ(s)
〉

= −
1

2

〈

ξ(t) − ξ(s), 2u − ξ(t) − ξ(s)
〉

> −MK0(ξ(t) − ξ(s)).

Hence, ξ must have the form

ξ(t) =

{

u0 for t ∈ [0, t0]

ξ1 for t ∈ (t0, T ]

with ξ1 ∈ [−1, 1]. By a counterpart of (4.41) without the quadratic dissipation term,

we see that ξ is a solution of (4.46) if and only if

(4.47)
1

2
ξ2
1 −

1

2
u2

0 + u2
0 + |ξ1 − u0| 6 u2

0.
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This inequality is satisfied for all ξ1 ∈ [−1, 1]. Hence, we have a continuum of distinct

solutions.

The situation is even worse if we replace (4.46) by

(4.48)



























u(t) − ξ(t) ∈ K∗
0 ∀ t ∈ [0, T ],

1

2
|ξ(t)|2 −

〈

u(t), ξ(t)
〉

−
1

2
|ξ(s)|2 +

〈

u(s), ξ(s)
〉

+ VarK0

[s,t]

ξ

6 −

∫ t

s

〈

ξ(τ+), du(τ)
〉

∀ 0 6 s < t 6 T.

Inequality (4.47) is now replaced by

(4.49)
1

2
ξ2
1 −

1

2
u2

0 + u2
0 + |ξ1 − u0| 6 u0 ξ1,

which is never satisfied for ξ1 ∈ [−1, 1]. Hence, there exists no solution to Prob-

lem (4.48) for ξ(0) = u0.

The following easy example shows that well-posedness also fails if the energy is

nonstrictly convex.

E x am p l e 4.3. Consider again X = R, K0 = K∗
0 = [−1, 1], and

E(u, ξ) =
1

2

(

(ξ + 1)−
)2

+
1

2

(

(ξ − 1)+
)2

− uξ,

where (·)+ and (·)− denote the positive and negative parts, respectively. Let u(t) ≡ 1

and ξ(0) = −1. We easily check that every nondecreasing function ξ : [0, T ] → [−1, 1]

is a solution to (2.20).

A more complicated problem arises if E is strictly convex, but Hypothesis 2.1 (ii)

does not hold for any γ > 0, as in the caseE(u, ξ) = E0(ξ)−
〈

u, ξ
〉

with E0(ξ) = 1
4 |ξ|

4.

Following [10, Theorem 6.5], an easy uniqueness proof for continuous solutions to

Problem 2.2 can be given provided the so-called stable set

S(t) = {ξ ∈ X : ∂ξE0(ξ) ∈ u(t) + K(v(t))}

is convex for every t ∈ [0, T ]. This condition, however, is very restrictive.
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