
Applications of Mathematics

Iacopo Borsi; Angiolo Farina; Antonio Fasano; Mario Primicerio
Modelling bioremediation of polluted soils in unsaturated condition and its effect on the
soil hydraulic properties

Applications of Mathematics, Vol. 53 (2008), No. 5, 409–432

Persistent URL: http://dml.cz/dmlcz/140332

Terms of use:
© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/140332
http://dml.cz


53 (2008) APPLICATIONS OF MATHEMATICS No. 5, 409–432

MODELLING BIOREMEDIATION OF POLLUTED SOILS IN

UNSATURATED CONDITION AND ITS EFFECT ON

THE SOIL HYDRAULIC PROPERTIES

Iacopo Borsi, Angiolo Farina, Antonio Fasano,

Mario Primicerio, Firenze

Dedicated to Jürgen Sprekels on the occasion of his 60th birthday

Abstract. We study the unsaturated flow of an incompressible liquid carrying a bacterial
population through a porous medium contaminated with some pollutant. The biomass
grows feeding on the pollutant and affecting at the same time all the physics of the flow.
We formulate a mathematical model in a one-dimensional setting and we prove an existence
theorem for it. The so-called fluid media scaling approach, often used in the literature, is
discussed and its limitations are pointed out on the basis of a specific example.
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1. Introduction

The topic of this paper is the analysis of the flow through porous media contam-

inated by some chemical species in presence of a growing biomass feeding on the

pollutant. In turn, the growing bacterial population affects the hydraulic properties

of the medium.

We refer to a typical column experiment, i.e. a variably saturated sand-filled col-

umn, in presence of a substrate (the pollutant) and inoculated with a well-known

bacterium. The biomass may distribute in water as suspension (free biomass) or

attached to the soil grains (attached biomass).

The literature devoted to the experimental study of biomass transport in order

to evaluate the biodegradation process of the soils or aquifers is very numerous. In
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particular, the general topic of bioremediation has been deeply investigated in search

of a good mathematical model (see [1] and [6], for instance).

The biomass affects the hydraulic properties of the medium in several ways.

• The free biomass has an influence on the viscosity, density and surface tension

of the liquid-cell system.

• The attached biomass reduces the volume available for the flow and the contact

angle, thus influencing also capillarity.

• The permeability and the relative saturation of the medium are modified too

by the presence of the biomass.

Such effects are well known and extensively described by many authors (see [5],

[8], [9] and the reference therein).

Various modelling techniques have been developed to take into account such com-

plex phenomena, for instance the so-called fluid media scaling (see [7]). We shall

return to this point later on.

In [2] we defined a model for a macroscopic description of the problem and ac-

counting for

• Variably saturated flow in the medium (Richard’s equation), with:

– Porosity depending on the volume fraction occupied by attached biomass.

– Variable saturated permeability (since it depends on porosity).

– Moisture content description based on mixture theory (i.e. considering mo-

bile water and water stored into the attached biomass).

• Advection, diffusion and reaction equations for pollutant and biomass in water.

• Reaction equations for attached biomass and pollutant adsorbed on soil.

Numerical simulations have shown the qualitative consistency of the model.

In this paper we introduce a slightly different version (see Section 2) with more

attention to the modification of the porosity accompanying the evolution of the

biomass, with the aim of showing an existence theorem for the related mathematical

problem (Section 3). We will confine to the case of unsaturated flows (saturated flows

have been studied more extensively, see e.g. [6]). Finally, in Section 4 we discuss the

consistency of the so-called fluid media scaling approach. The latter procedure is

very convenient from the computational point of view (and it was used also in [2]),

but there are caveats concerning its adoption, which will be pointed out by means

of an explicit example.
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2. The model

2.1. Physical assumptions and basic definitions

In this section we specify the physical assumptions on which our model is based.

1. The soil is a homogeneous, rigid porous medium.

2. The pollutant is adsorbed onto the soil grains. We neglect possible desorption.

3. The biomass is distributed in water as suspension (free biomass) or attached to

the soil grains (attached biomass). In particular we neglect clusters formation

in free biomass.

4. We neglect the bulk variation of density due to the free biomass (the density of

bacteria is very close to the density of the water).

5. We consider the attachment of floating bacteria to the soil grains, but we neglect

the inverse process.

6. The attached biomass forms another porous medium, supposed saturated at all

times. The biofilm porosity is a known constant denoted by εb. Therefore,

the attached biomass phase is considered as an incompressible mixture of solid

biomass and immobile water having prescribed volume fractions. In the sequel

we shall refer to the attached biomass also as biomass gel.

7. We focus on anaerobic processes only, i.e. we do not take into account consump-

tion and diffusion of O2 or other substances, considering the pollutant as the

only nutrient.

We introduce the x coordinate for the 1-D spatial layer, x ∈ [0, l], where x = l rep-

resents the column top and x = 0 is the lower boundary. Moreover we specify the

following notation:

• θtot, total moisture content: θtot = θ + θb, where θ is the mobile-water content

and θb is the water content in the biomass gel.

• ε0, porosity of the biomass free medium.

• φs, solid matrix volume fraction: φs = 1 − ε0; φa, air volume fraction.

• φb, biomass gel volume fraction; ε = ε0 − φb is the residual porosity.

We thus have

1 = φs + ε0 = φs + φa + θ + φb,

so that the saturation condition is φa = 0, namely

θ = ε = ε0 − φb.

• pw, water pressure; pa, air pressure (we set pa = 0).

• Capillary pressure: pc = pa − pw = −pw.

• Pressure head (an admissible quantity since we are assuming no density varia-

tion): ψ = −pw/̺g = pc/̺g, [ψ] = [L], where ̺ is the density of the liquid and
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the free biomass. The model allows for ψ = ψ(θ, φb), the dependence on φb be-

ing caused by the corresponding porosity reduction. The function ψ = ψ(θ, φb)

will be chosen later.

• Saturated permeability: ksat, [ksat] = [L2]; relative permeability: krel =

krel(θ, φb), [krel] = [−].

• Hydraulic conductivity: K = ̺g(ksatkrel)/µ, [K] = [LT−1], where µ is the

viscosity of the suspension, while ksat and krel will be defined later.

• c, mass of adsorbed pollutant per unit mass of solid [c] = [−].

• b, concentration of biomass in water [b] = [ML−3].

Using this notation the well-known Richards’ equation describing the mass balance

in the water flow trough the soil is

∂

∂t
(θ + φb) +

∂

∂x
q(x, t) = 0,

where q is the specific discharge given by Darcy’s law,

q = −K(θ, b, φb)
( ∂

∂x
ψ(θ, φb) + 1

)

,

whith a variable hydraulic conductivity function (see [8], for instance)

(2.1) K(θ, b, φb) = ̺g
ksat(φb)

µ(b)
krel(θ, φb),

where for the viscosity µ we take a linear approximation

(2.2) µ = µ(b) = µ0 + h1b,

with h1 > 0 constant and where µ0 = µ(0) is the viscosity in the case of no biomass.

We take a linear form also for ksat:

(2.3) ksat(φb) = k
(0)
sat

(

1 − s0
φb

ε0

)

,

where 0 < s0 < 1 is a constant and k
(0)
sat is the saturation permeability value in the

absence of biomass.

Concerning the selection of ψ = ψ(θ, φb) and krel = krel(θ, φb), we refer to Sec-

tion 3.2.

In order to describe transport and evolution of the free biomass, we write down

the usual advection/diffusion equation (see e.g. [9], [2]) completed by a growth and
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an attachment term, namely

∂

∂t
[θb] = −

∂

∂x
[q(x, t)b] +

∂

∂x

[

Dbθ
∂b

∂x

]

︸ ︷︷ ︸

advection/diffusion

(2.4)

+ h2[Bmaxf(c) − b]θb
︸ ︷︷ ︸

free biomass growth

− λθb
︸︷︷︸

attachment

,

where:

• For the sake of simplicity, we assume that the diffusion coefficient Db is con-

stant (while, in general, it should be specified as the sum of dispersion and

molecular diffusion coefficients, which in turn depend on velocity and bacteria

concentration, respectively). This corresponds to considering sufficiently slow

flows.

• The biomass growth is modeled by a logistic-type dynamics, where the carry-

ing capacity Bmax is modulated by a function f(c) ranging in (0, 1), to take

into account also additional effects, like e.g. toxicity of the pollutant at high

concentrations.

• λ is the attachment coefficient.

A similar argument is used to describe the growth of the attached biomass, that is,

(2.5)
∂φb

∂t
= h2[ε0f(c) − φb]φb

︸ ︷︷ ︸

biomass growth

+ λθb
︸︷︷︸

attachment

.

Finally, the evolution of the pollutant is driven by the bio-reduction process, i.e.

(2.6)
∂c

∂t
= −hBDφbc,

hBD being the bioreduction specific rate.

2.2. The complete system of equations

The problem to be studied is the following system of PDEs (2.7)–(2.9) endowed

with initial and boundary conditions (2.11)–(2.18)

∂θ

∂t
=

∂

∂x

[

K(θ, b, φb)
( ∂

∂x
ψ(θ, φb) + 1

)]

−
∂φb

∂t
,(2.7)

∂

∂t
(θb) = −

∂

∂x
(qb) +Db

∂

∂x

(

θ
∂b

∂x

)

+ h2[Bmaxf(c) − b]θb− λθb,(2.8)

∂φb

∂t
= h2[ε0f(c) − φb]φb + λθb,(2.9)
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∂c

∂t
= −hBDφbc,(2.10)

θ(x, 0) = Θ0(x),(2.11)

b(x, 0) = b0,(2.12)

c(x, 0) = c0,(2.13)

φb(x, 0) = 0,(2.14)

θ(l, t) = Θl(t),(2.15)

b(l, t) = b0,(2.16)

θ(0, t) = ε(t),(2.17)

∂b

∂x
(0, t) = 0.(2.18)

For simplicity of exposition we take b0 and c0 constant (and positive), but this

assumption can be somewhat relaxed. The Dirichlet data (2.15), (2.16) could be

replaced by conditions of different type.

3. Existence for the complete system, locally in time

In this section we shall prove the existence of a set (θ, c, b, φb) solving the system

of PDEs in a sufficiently small time interval.

3.1. Notation

Here we list the symbols denoting spaces and norms used in the paper.

Considering Ω ⊂ R, T > 0 and ΩT = Ω× (0, T ), as usual we denote by Cm,n(ΩT )

the set of all continuous functions whose m space derivatives in x and n time deriva-

tives in t are continuous in ΩT . When m = 0 = n we denote by C(ΩT ) the set of

continuous functions in ΩT , whose norm is

‖u‖0 = sup
(x,t)∈ΩT

|u(x, t)|.

When a function u ∈ C(ΩT ) is Hölder continuous of order ν ∈ (0, 1), we denote the

Hölder constant as

〈u〉ν = sup
{ |u(x, t) − u(ξ, τ)|

(|t− τ | + |x− ξ|2)ν/2
, ∀ (x, t), (ξ, τ) ∈ ΩT

}

and the Hölder norm of u is

‖u‖ν = ‖u‖0 + 〈u〉ν .
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The set of Hölder continuous functions in ΩT with finite Hölder norm is denoted

by Cν(ΩT ). Similarly, the sets of functions in Cν(ΩT ) with finite norms

‖u‖1+ν = ‖u‖0 + 〈ux〉ν + 〈ut〉ν ,

‖u‖2+ν = ‖u‖0 + 〈ux〉ν + 〈uxx〉ν + 〈ut〉ν ,

are denoted by C1+ν and C2+ν , respectively.

3.2. Assumptions

We stipulate the following assumptions.

(H.1) The function ψ(θ, φb) is defined for instance in the following way: for any

φb ∈ R,

(3.1) ψ(θ, φb) =







ψr

(

1 −
θ

ε0 − φb

)

, for θ < ε0 − φb,

∈ [0,+∞), for θ = ε0 − φb,

where ψr < 0 is a constant (once more, linearity is assumed for simplicity).

For θ < ε0 − φb we can have any smooth function such that both ∂ψ/∂θ

and ∂ψ/∂φb are positive.

(H.2) For any φb ∈ R, krel(θ, φb) is a smooth increasing and non-negative function

w.r.t. θ for θ ∈ [0, ε0 − φb], while krel(θ, φ) ≡ 1 for θ ∈ [ε0 − φb,+∞). For

instance (see also [5]),

(3.2) krel(θ, φb) =
( θ

ε(φb)

)3

=
( θ

ε0 − φb

)3

.

Moreover, for a given constant δ ∈ (0, ε0) we define

(3.3) G(δ) = sup
φb∈(0,ε0−δ)
θ∈(0,ε0−φb)

∣
∣
∣
∂krel

∂θ
(θ, φb)

∣
∣
∣.

(H.3) Concerning the function f = f(c), let m and m1 be two constants, 0 <

m < 1, m1 > 1, and assume that

• f : [0,+∞) → [0, 1], f(z) ∈ C∞;

• proliferation range1: ∀ z ∈ [0,mc0], 0 6 f(z) 6 1, and f is monotone

increasing with f ′(mc0) = 0;

1 For simplicity we set here the optimal proliferation threshold (mc0) and the toxicity
threshold (m1c0) in dependence on the initial value c0. A more general definiton of these
parameters can be given, see [2] and the references therein.
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• “optimal” proliferation range; ∀ z ∈ (mc0,m1c0], f(z) ≡ 1;

• toxicity range: ∀ z > m1c0, 0 6 f(z) 6 1, and f is monotone decreasing.

In particular, we define

Γ1 = max
z∈R

f ′(z),(3.4)

Γ2 = max
z∈R

|f ′′(z)|.(3.5)

(H.4) The given initial condition Θ0(x) satisfies Θ0(x) ∈ C2+α([0, l]) for a given

α ∈ (0, 1) and 0 < Θmin 6 Θ0(x) 6 ε0 − δ, for all x ∈ [0, l] and some

δ ∈ (0, ε0).

Moreover, in (2.12), (2.13) and (2.16) we assume

0 < b0 6 Bmaxf(c0) and c0 > 0.

Concerning Θl(t) we require Θl ∈ C1+α([0, T ]) and 0 < Γ3 6 Θl(t) 6

ε0 − φb(l, t) − δ, for all t ∈ [0, T ].

Finally, we assume the compatibility condition:

Θ0(l) = Θl(0).

Moreover, for each time T > 0 we define φmax = φmax(T ) as

(3.6) φmax(T ) =
λBmax

h2
exp(h2T ),

which satisfies φmax(T ) < (ε0 − δ) for T such that

(3.7) T < Tmax =
1

h2(ε0 − δ)
log

(h2(ε0 − δ)

λBmax

)

.

Finally, for T ∈ [0, (ε0 − δ − Γ3)/Φ], Φ = ε0(h2φmax + λBmax) and α ∈ (0, 1), we

introduce the following function spaces

V1(R1) =
{

φb ∈ C2+α(DT ) : 0 6 φb(x, t) 6 φmax, 0 6
∂φb

∂t
(x, t) 6 Φ,(3.8)

‖φb‖2+α 6 R1

}

,

V2(R2, R2) = {b ∈ C2+α(DT ) : 0 6 b(x, t) 6 Bmax, ‖b‖1+α 6 R2,(3.9)

‖b‖2+α 6 R2},

V3(R3, R3) = {θ ∈ C2+α(DT ) : 0 < Γ3 6 θ(x, t) 6 ε0 − δ − Φt,(3.10)

θ(x, 0) = Θ0(x), ‖θ‖1+α 6 R3, ‖θ‖2+α 6 R3},
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where Γ3 < Θmin and R1, R2, R2, R3 and R3 are constants to be specified later on.

Note that the definition of V3 is consistent with the non-saturation assumption.

The selection of the norms in the sets V1, V2, V3 is such that all the uniform

estimates that will be derived in the next section refer to the stronger norm C2+α,

fixed by the data, while a weaker norm C2+ν , 0 < ν < α, will be used to show

the continuity of the various mappings that will be introduced. In this way we plan

to use Schauder’s fixed point theorem in the topology C2+ν , with the higher norm

C2+α providing compactness.

3.3. Existence of a mapping from V1 × V2 into itself

We proceed in several steps.

Proposition 3.1. If assumptions (H.1)–(H.4) are fulfilled, then for any triple

(φb, b, θ) ∈ V1 × V2 × V3, there exists a unique function c ∈ C2+α(DT ) solving the

Cauchy problem (2.10), (2.13), i.e.

∂c

∂t
= −hBDφbc,

c(x, 0) = c0.

Further, once c(x, t) is determined, there exists a unique function ϕ ∈ C2+α(DT )

solving the following Cauchy problem

(3.11)







∂ϕ

∂t
= h2[ε0f(c) − φb]ϕ+ λθb,

ϕ(x, 0) = 0.

Moreover, for T satisying (3.7) we have

0 6 c(x, t) 6 c0,(3.12)

0 6 ϕ(x, t) 6 φmax < ε0,(3.13)

0 6
∂ϕ

∂t
6 Φ,(3.14)

and the following estimates hold true

‖c− c0‖2+α 6 p1T ‖φb‖2+α,(3.15)

‖ϕ‖2+α 6 p2T (‖φb‖2+α + ‖b‖2+α + ‖θ‖2+α),(3.16)

where p1 and p2 are positive constants such that

p1 = p1(c0, hBD, ε0, h2, λ),

p2 = p2(c0, hBD, ̺b, ε0, h2, λ,Γ1,Γ2,Γ3).
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P r o o f. Once (φb, b, θ) ∈ V1 × V2 × V3 are given, in a straightforward way we

are able to write down the explicit solution to the problem (2.10), (2.13), namely

(3.17) c(x, t) = c0 exp

[

−hBD

∫ t

0

φb(x, τ) dτ

]

,

from which ∂c/∂x and ∂2c/∂x2 can be calculated explicitly in order to obtain the esti-

mate (3.15). Also the property (3.12) is obtained directly from the expression (3.17).

On the other hand, once c(x, t) is obtained, we can write also the explicit solution

to the problem (3.11), i.e.

(3.18) ϕ(x, t) = λ

∫ t

0

θ(x, τ)b(x, τ) exp

[

h2

∫ t

τ

(ε0f(c(x, η)) − φb(x, η)) dη

]

dτ.

From (3.18) we can get the expressions for ∂ϕ/∂x and ∂2ϕ/∂x2, eventually deriving

the estimate (3.16).

Moreover, recalling that φb ∈ V1 and the assumption (H.3), we have

ε0f(c) − φb 6 ε0 − φb 6 ε0,

so that, because of (b, θ) ∈ V2 × V3 and (3.6), from (3.18) we get

0 6 ϕ(x, t) 6 λε0Bmax

∫ t

0

exp[h2(t− τ)] dτ =
λBmax

h2
[exp(h2ε0t) − 1]

6
λBmax

h2
exp(h2ε0Tmax) = φmax < ε0,

so that the property (3.13) is satisfied.

Finally, let us prove (3.14). The upper bound Φ is easily found directly from the

expression (3.11). Concerning the lower bound, we know that ϕ(t = 0) = 0 and

∂ϕ/∂t(t = 0) = λθ(t = 0)b0 > 0. Let t∗ > 0 be the first time in (0, T ] such that

∂ϕ/∂t(t = t∗) = 0. It follows that for t ∈ (0, t∗], ϕ > 0 and, from (3.11),

[ε0f(c) − φb]ϕ(t = t∗) + λθb = 0 ⇒ [ε0f(c) − φb] 6 0.

Denoting c∗ = c(t = t∗), we then have

f(c∗) 6
φb

ε0
6
φmax

ε0
,

so that, exploiting the expression (3.17),

c∗ > c0 exp[−hBDε0t
∗],
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we get

−hBDε0t
∗ 6 log

[

f−1
(φmax

ε0

)]

,

namely,

(3.19) t∗ > − log
[

f−1
(φmax

ε0

)] 1

hBDε0
.

The estimate (3.19) is a lower bound for the time at which ϕt changes its sign. It

means that if the time scale we are considering, T < Tmax, is less than or equal to

the right-hand side of (3.19), we have

∂ϕ

∂t
> 0 in [0, T ].

�

Corollary 3.1 (Continuous dependence for ϕ). In the framework of Proposi-

tion 3.1, if we consider two triples (φb,1, b1, θ1), (φb,2, b2, θ2) ∈ V1 × V2 × V3 and the

corresponding ϕ1, ϕ2, then we have

(3.20) ‖ϕ1 − ϕ2‖2+ν 6 r1T (‖φb,1 − φb,2‖2+ν + ‖b1 − b2‖2+ν + ‖θ1 − θ2‖2+ν)

where r1 is a positive constant such that

r1 = p3(c0, hBD, ε0, h2, λ,Γ1,Γ2,Γ3, δ).

To get the desired estimate it is sufficient to write the explict expression for (ϕ1 −

ϕ2) and its derivatives, starting from (3.18). �

Proposition 3.2. If the assumptions (H.1)–(H.4) are fulfilled and T is sufficiently

small (see (3.7) and (3.29)), then for any triple (φb, b, θ) ∈ V1 × V2 × V3 there exists

a unique function β ∈ C2+α(DT ) solving the following problem

θ
∂β

∂t
= Db

∂

∂x

(

θ
∂β

∂x

)

−
∂

∂x
(qβ) +

{

h2[Bmaxf(c) − β]θ − λθ −
∂θ

∂t

}

β,(3.21)

β(x, 0) = b0,(3.22)

β(l, t) = b0,(3.23)

∂β

∂x
(0, t) = 0,(3.24)

where

q = q(x, t) = −K(θ, b, φb)
( ∂

∂x
ψ(θ, φb) + 1

)

.
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Moreover, we have

(3.25) 0 6 β(x, t) 6 Bmax,

and

(3.26) ‖β‖2+α 6 p4(‖φb‖2+α + ‖θ‖2+α + ‖b‖1+α),

where p4 is a positive constant such that

p4 = p4

(
̺, g, k

(0)
sat, µ0, µ1, ψr, G1(φmax), φmax, ε0, δ, α, λ, h2, Bmax,Γ3, Db, Tmax

)
.

P r o o f. Let us examine the coefficients in the equation (3.21), which we rewrite

in the following way

(3.27)
∂β

∂t
= Db

∂2β

∂x2
+

1

θ

(

Db
∂θ

∂x
−q

)∂β

∂x
+

{

h2[Bmaxf(c)−β]−λ−
1

θ

(∂θ

∂t
+
∂q

∂x

)}

β.

Since θ ∈ V3, we have to check only the boundness of q and its first spatial derivative.

More precisely, we have

|q| 6 |K(θ, b, φb)|
(∣
∣
∣
∂ψ

∂θ

∣
∣
∣

∣
∣
∣
∂θ

∂x

∣
∣
∣ +

∣
∣
∣
∂ψ

∂φ

∣
∣
∣

∣
∣
∣
∂φ

∂x

∣
∣
∣ + 1

)

.

Moreover, by the assumtpions (H.1)–(H.2), we get

|ψr|

ε0
6
∂ψ

∂θ
6

|ψr|

ε0 − φmax
and

|ψr|Γ3

ε20
6

∂ψ

∂φb
6

|ψr|ε0
(ε0 − φmax)2

,

so that

|q| 6 ̺g
k

(0)
sat

µ0

{∣
∣
∣
∂θ

∂x

∣
∣
∣

∣
∣
∣

ψr

ε0 − φmax

∣
∣
∣ +

∣
∣
∣
∂φb

∂x

∣
∣
∣

|ψr|ε0
(ε0 − φmax)2

+ 1
}

.

Further, we exploit again the assumptions (H.1)–(H.2) to get the following estimates

∣
∣
∣
∂K

∂θ

∣
∣
∣ 6 ̺g

k
(0)
sat

µ0
G1(φmax),

∣
∣
∣
∂K

∂b

∣
∣
∣ 6 µ1̺g

k
(0)
sat

µ2
0

,

∣
∣
∣
∂K

∂φb

∣
∣
∣ 6

3ε30
(ε0 − φmax)2

,

∣
∣
∣
∂2

∂x2
ψ(θ, φb)

∣
∣
∣ 6 |ψr|

{ 1

(ε0 − φmax)2

[

2
∣
∣
∣
∂φb

∂x

∣
∣
∣

∣
∣
∣
∂θ

∂x

∣
∣
∣ +

∣
∣
∣
∂2φb

∂x2

∣
∣
∣|θ|

]

+
1

ε0 − φb

∣
∣
∣
∂2θ

∂x2

∣
∣
∣ +

2|θ|

|(ε0 − φb)3|

∣
∣
∣
∂φb

∂x

∣
∣
∣

}

.
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Therefore, we get
∣
∣
∣
∂q

∂x
(x, t)

∣
∣
∣ 6 C

where C is a constant depending on ψr, ε0, δ, α, φmax, ̺, g, k
(0)
sat , µ0, µ1, G1(φmax)

and R1, R2 and R3.

Now, we are in position to apply Theorem 5.2, Ch. VI, p. 564 and Remark 5.1 of [4],

so that the existence of a unique solution β ∈ C2+α(DT ) is obtained. Moreover, the

same reference gives the desired estimate (3.26).

As to (3.25), we note that ū ≡ 0 is a lower solution for the problem for β, so that

β(x, t) > 0, ∀ (x, t) ∈ DT .

On the other hand, once the existence of a solution is proved, one can reformulate

the problem for (3.27) as a linear problem and rewrite it in a compact form, i.e.

(3.28)







vt − L(v) = −h2β
2(x, t) + F (x, t)v,

v(x, 0) = b0,

v(l, t) = b0,

vx(0, t) = 0,

where L denotes the elliptic operator in (3.27) and

F (x, t) =
{

h2Bmaxf(c) −Db
∂q

∂x
− λ−

1

θ

∂θ

∂t

}

.

We have

F (x, t) 6 h2Bmax +DbC +
1

Γ3
‖θ‖2+α =: γ1 > 0.

As usual, we take some γ > 0 such that γ > γ1 and define

u(x, t) = e−γtv(x, t).

It is easily seen from (3.28) that u satisfies







ut − L(u) + (γ − F (x, t))u = −h2β
2e−γt 6 0,

u(x, 0) = b0,

u(l, t) = e−γtb0,

∂u

∂x
(0, t) = 0,

with (γ − F (x, t)) > 0. Thus, the maximum principle for parabolic operators entails

u(x, t) 6 b0,
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namely,

v(x, t) 6 eγtb0.

Therefore, if

(3.29) T 6
1

γ
log

(Bmax

b0

)

,

we have the desired upper bound in (3.25). �

In the following proposition we introduce an additional estimate for ‖β‖1+α which

will be used to prove Theorem 3.1 below.

Proposition 3.3. The function β ∈ C2+α(DT ) found in Proposition 3.2 satisfies

the following estimate

(3.30) ‖β − b0‖1+α 6 T γ{p′5 ‖b‖1+α + p5(‖φb‖2+α + ‖θ‖2+α)},

with some constants p5 and p
′

5 depending on the same quantities as p4, where the

exponent γ depends in particular on α.

P r o o f. From the estimate (3.23), p. 200 of [3], immediately applicable to β−b0,

it follows that the norm ‖β − b0‖1+α is dominated by the sup-norm of the free term

in (3.21) multiplied by a factor tending to zero as T → 0 like some power T γ . �

Proposition 3.4 (Continuous dependence for β). In the framework of Proposi-

tion (3.2), if we consider two triples (φb,1, b1, θ1), (φb,2, b2, θ2) ∈ V1 ×V2 ×V3 and the

corresponding β1, β2, then we have

(3.31) ‖β1 − β2‖2+ν 6 r4(‖φb,1 − φb,2‖2+ν + ‖b1 − b2‖2+ν + ‖θ1 − θ2‖2+ν)

where r4 is a positive constant such that

r4 = r4
(
Db, h2, Bmax, φmax, c0, ε0, λ, ̺, g, k

(0)
sat , µ0, ψr, δ

)
.

P r o o f. Let us define w(x, t) = (β1(x, t) − β2(x, t)). Then w satisfies the

following problem

∂w

∂t
= Db

∂2w

∂x2
+A(x, t)

∂w

∂x
+B(x, t)w + C(x, t),(3.32)

w(x, 0) = 0,(3.33)

w(l, t) = 0,(3.34)

∂w

∂x
(0, t) = 0,(3.35)
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where

A(x, t) =
1

θ1

[

Db
∂θ1
∂x

− q1

]

,

B(x, t) = h2[Bmaxf(c1) − β1] − λ−
1

θ1

(∂θ1
∂t

+
∂q1
∂x

)

− h2β2,

C(x, t) =
{ 1

θ1

(

Db
∂θ1
∂x

− q1

)

−
1

θ2

(

Db
∂θ2
∂x

− q2

)}∂β2

∂x

+ β2

{

h2Bmax(f(c1) − f(c2)) −
1

θ1

(∂θ1
∂t

+
∂q1
∂x

)

+
1

θ2

(∂θ2
∂t

+
∂q2
∂x

)}

.

In particular, recalling (3.26), we can easily obtain the following estimate for the free

term C(x, t),

(3.36) ‖C‖ν 6 r2(‖b1 − b2‖2+ν + ‖θ1 − θ2‖2+ν + ‖φb,1 − φb,2‖2+ν),

where

r2 = r2
(
Db, h2, Bmax, φmax, c0, ε0, δ, α, λ, ̺, g, k

(0)
sat, µ0.µ1, ψr, G1(φmax)

)
.

Therefore, to the linear problem (3.32)–(3.35) we apply Theorem 5.2, p. 320 of [4],

stating the existence of a unique solution w ∈ C2+ν(DT ) for which the following

estimate holds true

(3.37) ‖w‖2+ν 6 r3‖C‖ν ,

where r3 is a constant not depending on C(x, t). Thus, (3.36) and (3.37) entail

‖β1 − β2‖2+ν 6 r4(‖b1 − b2‖2+ν + ‖θ1 − θ2‖2+ν + ‖φb,1 − φb,2‖2+ν),

and the proof is complete. �

Theorem 3.1. Let us consider θ ∈ V3. If the assumptions (H.1)–(H.4) are

fulfilled, then for a sufficiently small T , there is a solution (φb, b, c) ∈ [C2+α(DT )]3

to the following system

∂

∂t
(θb) = −

∂

∂x
(qb) +Db

∂

∂x

(

θ
∂b

∂x

)

+ h2[Bmaxf(c) − b]θb− λθb,(3.38)

∂φb

∂t
= h2[ε0f(c) − φb]φb + λθb,(3.39)

∂c

∂t
= −hBDφbc,(3.40)
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b(x, 0) = b0,(3.41)

c(x, 0) = c0,(3.42)

b(l, t) = b0,(3.43)

∂b

∂x
(0, t) = 0.(3.44)

P r o o f. For any θ ∈ V3, we define on the space V1 × V2 the mapping Λθ by

Λθ(φb, b) = (ϕ, β),

where (ϕ, β) are the functions given by Propositions 3.2 and 3.4. If we prove that

1. Λθ is continuous in the topology C
2+ν ,

2. Λθ(V1 × V2) ⊂ V1 × V2,

then, since V1×V2 is compact,
2 it follows that Λθ is a completely continuous mapping.

Therefore, Schauder’s theorem can be applied to show the existence of a fixed point.

The latter is a solution (φb, b) to the problem (3.38)–(3.44).

The assertion 1 is a straightforward consequence of Corollary 3.1 and Proposi-

tion 3.4.

To prove the assertion 2, we have to choose a suitable T and impose some constraint

on the constants R1, R2, R2 and R3 introduced in (3.8)–(3.10). From (3.30) we see

that our first requirement is

R2 > T γ{p′5R2 + p5(R1 +R2)},

which for T suitably small allows to choose

(3.45) R2 =
T γp5

1 − p′5 T
γ
(R1 +R3).

Next, using (3.16) and (3.26) we impose

‖φ‖2+α 6 p2T (R1 +R2 +R3),

‖β‖2+α 6 p4(R2 +R1 +R3),

leading to the conditions

R1 > p2T (R1 +R2 +R3),

R2 > p′4(R1 +R2),

2 Indeed, the topology of the spaces Vi to be used to test the continuity of the mapping
is the one induced by ‖ · ‖2+ν . However, the sets Vi are uniformly bounded in C

2+α,
α > ν, so that they are compact sets in C

2+ν .
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with p′4 = p4[1 + T γp5/(1 − p′5 T
γ)], which we rewrite in the form

R1 >
p2T

1 − p2T
(R2 +R3),(3.46)

R1 6
R2

p′4
−R3.(3.47)

For all R3 > 0 and all compatible T (i.e. T less than some T ∗ depending on p2,

p4, p5, p
′

5) the above inequalities define an admissible region R in the quarter plane

R1 > 0, R2 > 0.

Therefore, for a given R3, taking (R1, R2) ∈ R we have

Λθ(V1 × V2) ⊂ V1 × V2,

and the proof is complete. �

3.4. Existence of a mapping from V3 into itself

Throughout this section we denote by pi, i = 6, 7, . . ., constants depending on the

same parameters as p4.

The next step is to consider Richards’ equation (2.7) which we rewrite in the

following way,

∂θ

∂t
=

[

K(θ, b, φb)
∂ψ

∂θ

]∂2θ

∂x2
+

[(∂K

∂θ

∂θ

∂x
+
∂K

∂φb

∂φb

∂x
+
∂K

∂b

∂b

∂x

)∂ψ

∂θ

+
(∂K

∂θ

∂ψ

∂φb

∂φb

∂x

)

+K(θ, b, φb)
∂

∂x

(∂ψ

∂θ

)

+
∂K

∂θ
+K(θ, b, φb)

∂2ψ

∂φb∂θ

∂φb

∂x

]∂θ

∂x

+
[

K(θ, b, φb)
(∂2ψ

∂φ2
b

(∂φb

∂x

)2

+
∂ψ

∂φb

∂2φb

∂x2

)

+
(∂K

∂b

∂b

∂x
+
∂K

∂φb

∂φb

∂x

)(

1 +
∂ψ

∂φb

∂φb

∂x

)

−
∂φb

∂t

]

.

Now we take some θ ∈ V3 and the pair (φb, b) as the corresponding fixed point

(φb, b) = Λθ(φb, b) and we write the linear system

∂z

∂t
= A(x, t)

∂2z

∂x2
+ B(x, t)

∂z

∂x
− (λb)z + C(x, t),(3.48)

z(x, 0) = Θ0(x),(3.49)

z(0, t) = ε(0, t) = ε0 − φb(0, t),(3.50)

z(l, t) = Θl(t),(3.51)
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where

A(x, t) =
[

K(θ, b, φb)
∂ψ

∂θ

]

,

B(x, t) =
[(∂K

∂θ

∂θ

∂x
+
∂K

∂φb

∂φb

∂x
+
∂K

∂b

∂b

∂x

)∂ψ

∂θ
+

(∂K

∂θ

∂ψ

∂φb

∂φb

∂x

)

+K(θ, b, φb)
∂

∂x

(∂ψ

∂θ

)

+
∂K

∂θ
+K(θ, b, φb)

∂2ψ

∂φb∂θ

∂φb

∂x

]

,

C(x, t) =
[

K(θ, b, φb)
(∂2ψ

∂φ2
b

(∂φb

∂x

)2

+
∂ψ

∂φb

∂2φb

∂x2

)

+
(∂K

∂b

∂b

∂x
+
∂K

∂φb

∂φb

∂x

)(

1 +
∂ψ

∂φb

∂φb

∂x

)

− h2(εf(c) − φb)φb

]

.

The following result concerns the solvability of the linear problem (3.48)–(3.51).

Proposition 3.5. Consider θ ∈ V3 and (φb, b) ∈ V1 × V2. If the assump-

tions (H.1)–(H.4) are fulfilled then there exists T ∗ > 0 and a unique function

z ∈ C2+α(DT∗) solving the problem (3.48)–(3.51).

Moreover,

(3.52) 0 < Γ3 6 z(x, t) 6 ε0 − δ − Φt, ∀ (x, t) ∈ DT∗ ,

and

(3.53) ‖z‖2+α 6 p7(R1 +R2 +R3).

P r o o f. We note that, because of θ ∈ V3, we have

0 < Γ3 6 θ 6 ε0 − δ − Φt,

so that the coefficients of the equation (3.48) are smooth and bounded. More-

over, A(x, t) is bounded and bounded away from zero, i.e. the equation is uniformly

parabolic. Therefore, to the problem (3.48)–(3.51) we can apply Theorem 5.2, p. 320

of [4] giving the existence of a unique solution z ∈ C2+α(DT ). The already quoted

result of [4] gives us also the estimate

‖z‖2+α 6 p6(‖φb‖2+α + ‖b‖1+α + ‖θ‖1+α),

and so

(3.54) ‖z‖2+α 6 p7(R1 +R2 +R3).
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In particular, the estimate (3.54) entails

|zt(x, t)| 6 p7(R1 +R2 +R3),

or

Θmin − (R1 +R2 +R3)t 6 z(x, t) 6 (R1 +R2 +R3)t+ Θmax,

with Θmin = min
x∈(0,l)

Θ0(x) and Θmax = max
x∈(0,l)

Θ0(x). Thus, defining t1 as the first

time in (0, T ] such that

(3.55) Θmin − (R1 +R2 +R3)t1 = Γ3 ⇔ t1 =
Θmin − Γ3

(R1 +R2 +R3)
,

and t2 as the first time in (0, T ] such that

(3.56) Θmax + (R1 +R2 +R3)t2 = ε0 − δ − Φt2 ⇔ t2 =
ε0 − δ − Θmax

(R1 +R2 +R3) + Φ
,

we have that

∀ (x, t) ∈ (0, l) × (0, T ∗), 0 < Γ3 < z(x, t) < ε0 − δ − Φt,

with T ∗ = min(t1, t2), which is the estimate (3.52). �

The following proposition concerns an additional estimate for z.

Proposition 3.6. The function z ∈ C2+α(DT ) found in Proposition 3.5 satisfies

the following estimate

(3.57) ‖z‖1+α 6 p10‖Θ0‖C2+α([0,l]) + p11T
γ(R1 + ‖Θl‖C1+α([0,T ])).

P r o o f. Let us consider the function

ω(x, t) = Θ0(x) +

∫ t

0

[∂ε

∂t
(x, τ)

(

1 −
x

l

)

+ x
∂Θl

∂t
(τ)

]

dτ.

We have ω ∈ C2+α(DT ) and, thanks to the compatibility conditions on Θ0 and Θl

(see the assumption (H.4)),

ω(x, 0) = Θ0(x), ω(0, t) = ε(0, t), ω(l, t) = Θl(t).

Moreover, we have

(3.58) ‖ω‖1+α 6 ‖Θ0‖C2+α([0,l]) + p8T
γ(‖φb‖2+α + ‖Θl‖C1+α([0,T ])).
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Let us consider z̃(x, t) = z(x, t) − ω(x, t), which solves the problem

(Pz̃)







∂z̃

∂t
= A(x, t)

∂2z̃

∂x2
+ B(x, t)

∂z̃

∂x
+ D(x, t),

z̃(x, 0) = 0,

z̃(0, t) = 0 = z̃(l, t),

where

D(x, t) = A(x, t)
∂2ω

∂x2
+ B(x, t)

∂ω

∂x
−
∂ω

∂t
+ C(x, t) − λbz.

To the problem (Pz̃) we apply the estimate (3.23) p. 200 of [3] giving

(3.59) ‖z̃‖1+α 6 p9T
γ(‖φb‖2+α + ‖Θ0‖C2+α([0,l]) + ‖Θl‖C1+α([0,T ])).

Thus, exploiting (3.58) and (3.59), we have

‖z‖1+α 6 ‖z̃‖1+α + ‖ω‖1+α 6 p10‖Θ0‖C2+α([0,l]) + p11T
γ(R1 + ‖Θl‖C1+α([0,T ])),

namely the desired estimate (3.57). �

Proposition 3.7 (Continuous dependence for θ). In the framework of Proposi-

tion 3.5, if we consider (θ1, θ2) ∈ V1 and the corresponding z1, z2, then we have

(3.60) ‖z1 − z2‖2+ν 6 r5(‖φb,1 − φb,2‖2+ν + ‖b1 − b2‖2+ν + ‖θ1 − θ2‖2+ν)

where r5 is a positive constant depending on (Db, h2, Bmax, φmax, c0, ε0, λ, ̺, g, k
(0)
sat,

µ0 · ψr, δ, α).

P r o o f. To prove (3.60) we add and subtract the appropriate terms in (3.48)

and proceed as in the proof of Proposition 3.4. We omit the details. �

As a consequence of Propositions 3.5–3.7 we have the following theorem.

Theorem 3.2. For a suitable choice of (R1, R2, R3) ∈ R
3 and T̂ > 0, there exists

a solution (φb, b, θ, c) ∈ [C2+α(DT̂ )]4 to the system (2.7)–(2.18), with (φb, b, θ) ∈

V1 × V2 × V3.

P r o o f. Let us consider a T̂ > 0 such that in DT̂ all the constraints given in

Propositions 3.1–3.7 are satisfied. Then, consider (φb, b, θ) ∈ V1 × V2 × V3 and the

corresponding z ∈ C2+α(DT̂ ) given by Proposition 3.5. From the estimate (3.57) it

is possible to choose T and R3 such that

‖z‖1+α 6 R3.
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Once R3 is fixed, we consider the estimate (3.53) and look for R3 such that

(3.61) R3 > p7(R2 +R3) + p7R1,

where R2 is given by (3.45). Finally, we have to check the possibility to choose a

set (R1, R2, R3) such that (3.61) is satisfied along with the constraint (R1, R2) ∈ R,

where R is the region defined by (3.46), (3.47).

It is elementary to show that (3.61) can always be made compatible with (3.46),

(3.47) by reducing T if necessary (note that we can increase R3, keeping the product

TR3 fixed).

Therefore, defining the mapping Λ on V3(R3, R3) such that Λ(θ) = z and consid-

ering (φb, b) = Λθ(φb, b) the solution given by Theorem 3.1, we have

Λ(θ) ∈ V3(R3, R3).

Moreover, Proposition 3.7 ensures the continuity of the mapping. On the other hand,

we can exploit the same argument as in Theorem 3.1 to state the compactness of

the space V3. Therefore, the collection of these results implies that Λ is a completely

continuous mapping and Schauder’s theorem applies. This guarantees the existence

of a fixed point θ ∈ V3(R3, R3) and the proof is complete. �

R em a r k 3.1. The existence result can be continued up to the possible occurrence

of saturation somewhere in the domain. The mixed regime (saturated-unsaturated)

would require different techniques and it is beyond the scope of this paper. On the

contrary, the case of saturated flow is much simpler.

4. Considerations on the fluid media scaling

As stated in Section 1, the fluid media scaling is a technique to take into account

the biomass effects on surface tension, contact angle and viscosity (see [7]). At the

pore scale on the gas/liquid interface the capillary pressure pc = pair − pwater is

defined as

With no biomass With biomass

pc =
2γ0 cosα0

R0
pc,bio =

2γbio cos(αbio)

Rbio

where R0, Rbio are the pore radii, γ0, γbio are the surface tensions and α0, αbio are

the contact angles, respectively. Making the fundamental assumption that the above

relationship holds true also upon averaging the quantities on a R.E.V., i.e.

〈pc,bio〉

〈pc,0〉
=
γbio

γ0

cos(αbio)

cosα0

〈R0〉

〈Rbio〉
,
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we arrive at
pc,bio

pc
=: Π

where the quantity Π is a scaling factor for the capillary pressure, depending on the

biomass concentration.

In the literature two methods are applied for exploiting the fluid media scaling

approximation, namely:

(A) The simpler one consists in the following steps:

1. Solve the equation for the flow in case of no biomass and use the solu-

tion (i.e. the capillary pressure) in the differential system governing the

pollutant and biomass evolution.

2. Finally, re-compute the capillary pressure as

pc,bio = Πpc.

(B) An alternative method consists in the following procedure:

1. Rescaling first the capillary pressure pc,bio = Πpc,0.

2. Using this rescaled pressure to solve the differential system for pollutant

and biomass.

Using either method the numerical problem is strongly simplified. However, in

any case there is an analytical drawback, since in general the re-scaled pc,bio will

not satisfy the equation for the flow (Richards’ equation). We show this fact by the

following counterexample.

4.1. A counterexample: steady saturated flow

Throughout this section we consider the very simple case of a steady saturated

flow with a constant flux Q prescribed at the top surface. Moreover, for the sake of

simplicity, we assume that the biomass affects only the liquid viscosity, namely we

neglect the porosity variation. In this simplified framework, the scaling factor Π can

be expressed as3

(4.1) Π(b) = 1 − a1b+ a2b
2,

where a1 and a2 are given constants.

Under the assumed conditions, Richards’ equation reduces to

∂

∂x
q(x) = 0.

3Here we use an approximation of the experimental law found in the literature (see [8],
for instance), taking its expansion up to the second order.
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In the case of no biomass, using the boundary conditions we get q(x) ≡ Q so that

(4.2) ψ(0)(x) =
(

Q
µ0

̺gksat
− 1

)

x.

When the viscosity dependens on the biomass, we have

ψ(x) =
Q

̺gKsat

∫ x

0

µ(b(ξ)) dξ − x.

On the other hand, using the expression (2.2) we get

(4.3) ψ(x) =
( Qµ0

̺gKsat
− 1

)

x+
Qµ0

̺gKsat
h1

∫ x

0

b(ξ) dξ.

Now, the application of the fluid media scaling approach, type (A), consists in the

following steps:

• Use θ = θ(ψ(0)(x)) and q(x) = Q to obtain a triple (c, b, φb).

• Re-scale the pressure head as ψbio(x) = Π(b(x))ψ(0)(x).

Recalling (4.2) and the expression (4.1) for Π(b), we have

(4.4) ψbio(x) = [1 − a1b(x) + a2b
2(x)]

( Qµ0

̺gKsat
− 1

)

x,

so that, comparing (4.3) and (4.4) we easily see that the definition of ψbio(x) matches

the exact solution ψ(x) only for specific choices of the constants.

In particular, we can prove this fact considering the approximation

b(x) ∼ c1 + c2x
2 + c3x

3 + . . .

where c1 = b(0).

After putting this expansion into (4.3) and (4.4), we equal the resulting expressions

and get the following relationship,

Ah1

[

c1x+ c2
x2

2
+ c3

x3

3
+ . . .

]

= (A− 1)x[(a1c1 + a1c2x+ a1c3x
3 + . . .)

+ a2(c
2
1 + c22x

2 + 2c1c2x+ 2c1c3x
2 + . . .)2]

+ o(x3).

Now, matching the same powers of x we obtain the following linear system







( A

A− 1

)

h1 = a1 + (a2c1),

( A

A− 1

)h1

2
= a1 + 2(a2c1),
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from which, substituting the expression of A, we get a condition to be satisfied by a2,

i.e.

(4.5) a2 = −
( Qµ0

Qµ0 − ̺gKsat

) h1

2b(0)
.

Therefore, the identity ψ(x) = ψbio(x) holds true if and only if the constant a2

chosen in the definition of the scaling factor Π = Π(b) satisfies the constraint (4.5).

This fact emphasises a weak point of the fluid media scaling procedure. As a

matter of fact, (4.5) makes a physical constant, a2, dependent on b(0), thus on the

data.

For the type (B) procedure a similar contradiction can be found.
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