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On commutative loops of order pq with

metacyclic inner mapping group and trivial center

Přemysl Jedlička

Abstract. Using a construction of commutative loops with metacyclic inner map-
ping group and trivial center described by A. Drápal, we enumerate presumably
all such loops of order pq, for p and q primes.

Keywords: commutative loops, construction of loops, matrices over finite fields,
quadratic extensions

Classification: 20N05

Let Q be a set with a binary operation ∗. We denote by La and Ra the
mappings x 7→ ax and x 7→ xa respectively. We say that Q is a quasigroup if
every La as well as every Ra is a bijection. We say that a quasigroup Q is a loop,
if there exists an element, usually denoted by 1, such that L1 = R1 = idQ.

The group generated by all the bijections La and Ra is called the multiplication
group of Q. The subgroup of it that consists of those bijections that fix the
element 1 is called the inner mapping group and is denoted by Inn(Q). The
subset of Q consisting of all the fixed points of Inn(Q) is called the center of Q
and is denoted by Z(Q).

Aleš Drápal has been working on a classification of all loops with metacyclic
inner mapping group and trivial center. Of the six constructions he has found,
exactly one yields commutative loops [1]. This construction was analyzed by
Denis Simon and the author [2], giving a more description in the specific case of
automorphic loops.

Here we continue the study and we focus on generic loops. There are dif-
ferent cases that are tractable under different conditions. Nevertheless, all the
considerations can be applied on Zp, giving us presumably complete enumeration
of commutative loops of order pq with a metacyclic inner mapping group and a
trivial center:

Theorem. Let p 6 q be two primes. The number of centerless loops of order p · q
that arise from Drápal’s construction is, up to isomorphism,

• q − 2 if p = 2;

• (q − p+ 2)/2 if p is an odd divisor of q + 1;
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• (q − p+ 1)/2 if p is an even divisor of q + 1 and p > 2;

• (q − p)/2 if p is an odd divisor of q − 1;

• (q − p− 1)/2 if p is an even divisor of q − 1 and p > 2;

• 0 otherwise.

The article is organized as follows: Section 1 introduces Drápal’s construction
and recalls what we know about it from previous studies. Other sections deal with
specific cases. Section 2 considers the easiest case: case p = 2. For other p’s, there
is a quadratic polynomial constructed; in Section 3 we analyze what happens if
the polynomial has only one root and in Section 4 we study the most complicated
case — two different roots of the polynomial.

1. Drápal’s construction

In this section we introduce the main topic of our paper, the construction of
loops given by Aleš Drápal in [1]. These loops were constructed so that their inner
mapping groups are metacyclic and their centers are trivial. We present here the
definition as well as the most important results of [2] where the construction was
analyzed.

The entire construction is based on a specific mapping, called a 0-bijective
mapping; and in fact it was these mappings that were analyzed in [2] rather than
the loops themselves. It shall be similar in this article.

Definition. Let R be a commutative ring and let f be a partial mapping R → R.
We shall say that f is 0-bijective if

(1) f i(0) is defined for each i ≥ 1;
(2) for each i ≥ 1 there exists a unique y ∈ R such that f i(y) is defined and

equal to 0 — we denote this element f−i(0); and
(3) f(0) ∈ R∗.

We say that a 0-bijective partial mapping f is of 0-order k, if k is the smallest
positive integer such that fk(0) = 0. We say that it is of 0-order ∞ if fk(0) 6= 0
for all k.

Only some 0-bijections are used in the construction: those of the form f(x) =
(sx+ 1)/(tx+ 1), for some elements s and t in R, with s− t invertible. We shall
denote these mappings fs,t. They serve for the following construction:

Theorem 1 (Drápal [1]). Let M be a faithful module over a commutative ring R
and let fs,t : R → R, for some s, t ∈ R with s− t ∈ R∗, be a 0-bijective mapping

of 0-order k. Then we can define a commutative loop Q on the set M × Zk as

follows:

(a, i) · (b, j) =

(

a+ b

1 + tf i
s,t(0)f j

s,t(0)
, i+ j

)

.

The loop is denoted M [s, t]. Its inner mapping group is the semidirect product

tM ⋊G, where G =
〈

1 + tf i
s,t(0)f j

s,t(0)
〉

≤ R∗. The center of the loop is trivial if

and only if t ∈ R∗.
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Example. Let M be a module over a commutative ring R where 2 is invertible.
Let s = 1 and t = −3. Then it is easy to see that f3

1,−3(0) = 0 and hence M [1,−3]
is a loop defined on the set M × Z3.

It is crucial to understand which numbers can be possibly obtained as 0-orders
of fs,t, given a ring R. For a ring Zn, this was nearly solved in [2]:

Proposition 2 (Jedlička, Simon [2]). Let n = pr1

1 · pr2

2 · · · prm

m be the prime fac-

torization of a positive integer and let k > 1 be an integer. Then there exist s
and t ∈ Zn such that fs,t is a 0-bijection from Zn to Zn of 0-order k only if there

exist k1, . . . , km and ε1, . . . , εm satisfying the three conditions:

• εi ∈ {−1, 0, 1}, ki = k′ip
ei , where k′i | (pi + εi) and ei < ri, for all

1 ≤ i ≤ m;

• if εi = 0 and pi > 3, for some i, then ki = pri

i ;

• the least common multiple of k1, . . . , km is k.

The necessity of the conditions follows from the results of [2] too, although it
is not explicitly stated there; the article is focused primarily on the case s = 1.

In this article, we are able to say more about the generic case, i.e. the case
s 6= 1. However, this understanding is not good enough to give a nice explicit
formula (as we had it in the case s = 1 in [2]) but it is sufficient to guess how many
loops are there up to isomorphism. For this we need the following isomorphism
criterion:

Proposition 3 (Drápal [1]). Let R be a commutative ring, let s, t ∈ R∗ be such

that the mapping fs,t is a 0-bijection of a 0-order k. For any s̄, t̄ ∈ R∗, there

exists an isomorphism between R[s, t] and R[s̄, t̄] if there exists 1 ≤ r < k, r ∈ Z
∗

k

such that d = f r
s,t(k), t̄ = td2 and s̄ = 1 + ds− d. This condition is necessary and

sufficient, if (R,+) is a cyclic group.

The natural limitation of the theorem is that it can give us the exact answer
about isomorphism classes only if the base structure is a ring with a cyclic addi-
tion. This is the main reason why we restrain our focus to the loops of order pq.
In some other cases we can obtain a partial result too but usually we have a
one-sided bound only.

2. Case k = 2

We focus first on the easy case when k = 2. This case is specific and has to be
dealt with separately.

Lemma 4. A mapping fs,t is of 0-order 2 if only if s = −1 and t+ 1 ∈ R∗.

Proof: Easily fs,t(0) = 1 and f2
s,t(0) = s+1

t+1 . �

Proposition 5. Let R = Zn, n = pe1

1 · · · peℓ

ℓ . Then there exist
∏

(pi − 2)pei−1

non-isomorphic centerless loops of order 2n given by Theorem 1.
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Proof: We have seen in Lemma 4 that fs,t is of 0-order 2 if and only if s = −1
and t + 1 ∈ R∗. Moreover, the loop so obtained has a trivial center if and only
if t ∈ R∗. We want to measure the size of the set {t ∈ R∗; t+ 1 ∈ R∗}. If n = pe,
for p a prime, then the set consists of all the elements that are congruent neither
to 0 nor to −1 modulo p; there are (p − 2)pe−1 such numbers in Zpe . If n is a
product then we use the Chinese remainder theorem to obtain the formula.

According to Proposition 3, given s and t in R∗, we obtain all isomorphic
loops through d = f r

s,t(0), s̄ = 1 + ds − s and t̄ = td2, where 1 ≤ r < k. Since
here k = 2, the only choice is r = 1 and d = 1. Hence each loop is isomorphic
only to itself. �

3. Case k > 2, discriminant zero

In the following two sections we investigate the generic case, k ≥ 3. These
sections depend heavily on the results of [2]. We studied there the matrix ( s 1

t 1 ).
Its characteristic polynomial is Ps,t = x2 − (s + 1)x+ s − t, with roots λ and µ,
not necessarily distinct. Since s− t is invertible, both roots must be invertible.

We work with the discriminant of the polynomial, which is a technique that
works only if 2 is an invertible element. This is not a major obstacle in our
main goal: studying loops over Zp for p prime. It is easy to see directly that no
non-associative construction can be obtained over Z2.

In this section we focus on the case λ = µ, that means t = −
(

s−1
2

)2
. This case

was, for fields, already well described in [2].

Proposition 6 ([2]). Let K be a field of characteristic p 6= 2. Assume t =

−
(

s−1
2

)2
and s 6= −1. Then fs,t is a 0-bijection if and only if s = 1 or s does not

belong to the prime field. In that case, the 0-order of fs,t is p.

The pair s = 1 and t = 0 gives a group. Hence, if we work in a q-element
field, with q = pn, there are exactly q − p choices of s yielding a non-associative
loop. We would like to know, how many loops are obtained, up to isomorphism.
Here, Proposition 3 can give an upper bound only. But first we need the following
remark:

Lemma 7. Let R be a commutative ring and let s− 1 ∈ R∗. Then the mapping

d 7→ 1 + ds− d is an injective mapping from R to R.

Proof: 1 + ds− d = 1 + d′s− d′ if and only if d(s− 1) = d′(s− 1). �

Corollary 8. Let K be a field, s ∈ K r {0, 1}, t ∈ K∗ such that x 7→ sx+1
tx+1 is

of 0-order k. Then K[s, t] is isomorphic to at least ϕ(k) loops of type K[s̄, t̄], for

some s̄, t̄ ∈ K∗. Moreover, if (K,+) is a cyclic group then K[s, t] is isomorphic

to exactly ϕ(k) such loops.

Proof: The elements dr = f r(0), 1 ≤ r < k, r ∈ Z
∗

k are pairwise different
non-zero elements from K. Hence the elements sr = 1 + drs − dr are pairwise
different, according to Lemma 7, and therefore, according to Proposition 3, R[s, t]
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is isomorphic to at least ϕ(k) loops, namely R[sr, tr], with tr = td2
r . The rest

follows immediately. �

Proposition 9. If K = Fpn , p > 2, then there exist at most pn
−p

p−1 non-associative

loops of order pn+1, obtained via Theorem 1.

Proof: A mapping fs,t can be a 0-bijection of a 0-order p only if t = −
(

s−1
2

)2
: it

was proved in [2] and it will be repeated in the next section. Therefore, according
to Proposition 6, there are pn−p choices of s and t giving raise to a non-associative
loop of order pn+1.

Using Corollary 8, we see that each loop is isomorphic to at least p − 1 loops
(including itself) hence there are at most (pn−p)/(p−1) isomorphism classes. �

In practice, there are fewer isomorphism classes than the bound computed. The
reason for that is that not every automorphism of (K,+) is a field automorphism.

4. Case k > 2, discriminant nonzero

In this section, we investigate the case λ 6= µ, enumerating the loops so ob-
tained. The main result is obtained just for fields Fp, for p a prime because
otherwise the situation is much more complicated. First we recapitulate the re-
sults obtained in [2].

Lemma 10 ([2]). Let s, t be in R such that fs,t is of 0-order k > 2. Denote

ζ = λ/µ. Then the following holds:

(i) ζ is a k-th primitive root of unity;

(ii) the element ζ either belongs to R or it is a norm one element lying in

a quadratic extension of R;

(iii) t = (ζ−s)(ζs−1)
(ζ+1)2 ;

(iv) f i
s,t(0) = λi

−µi

λi(1−µ)−µi(1−λ) .

If R happens to be a finite field Fq then there are two possibilities: either ζ lies
in Fq and this is equivalent to k | (q − 1); or ζ lies in Fq2 and N(ζ) = 1: it is not
difficult to see (and it was better explained in [2]) that this situation is equivalent
to k | (q + 1).

In order to understand the necessary and sufficient conditions for fs,t being a
0-bijection of a 0-order k, we need to rewrite f i

s,t in terms of the element ζ.

Lemma 11. Let s, t, λ, µ and ζ be as in the previous lemma. Then

(i) λ = s+1
ζ+1 · ζ, µ = s+1

ζ+1 ;

(ii) f i
s,t(0) = (ζi

−1)(ζ+1)
ζi(ζ−s)−(1−ζs) .

Proof: (i) Clearly λ + µ = s+ 1 and λµ = ζ(s+1)2

(ζ+1)2 = sζ2+2sζ+s−sζ2+s2ζ+ζ−s
(ζ+1)2 =

s− t.
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(ii) We evaluate

f i
s,t(0) =

λi − µi

λi(1 − µ) − µi(1 − λ)
=

(

s+1
ζ+1

)i

(ζi − 1)
(

s+1
ζ+1

)i (

ζi(1 − s+1
ζ+1 ) − (1 − s+1

ζ+1ζ)
)

=
ζi − 1

(ζ + 1)−1 (ζi(ζ + 1 − s− 1) − (ζ + 1 − ζs− ζ))
=

(ζi − 1)(ζ + 1)

ζi(ζ − s) − (1 − ζs)
.

�

It is clearer now when fs,t is of 0-order k. One of the conditions is that the
numerator of f i

s,t(0) is zero if and only if k divides i. This is clearly equivalent to ζ
being a k-th primitive root of unity. The second condition is that the denominator
is always invertible. This condition is more difficult to describe but if we focus our
attention on fields only, things become clearer since there is just one non-invertible
element.

Corollary 12. Let K be a field of characteristic different from 2. Let s 6= −1,

s − t ∈ K∗ and t 6= −( s+1
2 )2. Let λ and µ be the roots of Ps,t. Then fs,t is of

0-order k if and only if

• ζ = λ/µ is a primitive k-th root of unity and

• 1−ζs
ζ−s

/∈ 〈ζ〉.

Proof: The first condition was already stated in Proposition 10. The second
condition comes from Lemma 11(ii): the denominator must be invertible hence

non-zero in a field. Therefore ζi(ζ − s) 6= (1 − ζs) and 1−ζs
ζ−s

6= ζi for any i ∈ Z.

The necessity and sufficiency of the conditions is then evident. �

Corollary 12 explains why we restrain our focus on fields only. Now, as we have
said above, there are two cases: if the discriminant of Ps,t is a square in K then ζ
lies in K; otherwise ζ lies in a quadratic extension and is of norm 1. Nevertheless,
both cases can be treated simultaneously. We denote by O = {x ∈ K̄; [K(x) :
K] ≤ 2 & N(x) = 1} (in other words, O shall be the set of all possible ζ’s if the
discriminant is not a square, enriched by 1 and −1).

Lemma 13. Let K be a field of characteristic different from 2.

(i) Suppose ζ ∈ K∗. The mapping ψ : s 7→ 1−ζs
ζ−s

is a bijection Kr{ζ, ζ−1,−1} →

K r {0, 1, ζ}.

(ii) Suppose ζ ∈ O. The mapping ψ : s 7→ 1−ζs
ζ−s

is a bijection K r {−1} →

O r {1, ζ}.

Proof: (i) The mapping ψ is clearly invertible with ζ not belonging neither to
the domain of ψ nor to the domain of ψ−1. Hence ψ is a bijection of Kr{ζ}. The
elements −1 and ζ−1 are taken out from the domain on purpose, with ψ(−1) = 1
and ψ(ζ−1) = 0.
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(ii) The mapping ψ is an injective mapping from K to K̄. First we prove that
1−ζs
ζ−s

= ζ · ζ−1
−s

ζ−s
belongs to O: element ζ is of norm one hence ζ and ζ−1 are

conjugated and therefore ζ+ζ−1 ∈ K. Now (ζ−1−s)·(ζ−s) = 1+s2−s(ζ+ζ−1) ∈
K and (ζ−1 − s) + (ζ − s) = (ζ + ζ−1) − 2s ∈ K, proving that ζ − s and ζ−1 − s

are conjugated and, therefore, have the same norm. Hence ζ · ζ−1
−s

ζ−s
is of norm

one and lies in O.
As in (i), ζ is not in the image of ψ since the inverse mapping is ψ−1 : x 7→ 1−ζx

ζ−x
.

At last, we want to prove that the fraction is in K. Indeed,

1 − ζx

ζ − x
=

(1 − ζx)(ζ−1 − x−1)

(ζ − x)(ζ−1 − x−1)
=

(ζ + ζ−1) − (x + x−1)

2 − (ζ−1x+ ζx−1)

which lies in K since (ζ, ζ−1), (x, x−1) and (ζ−1x, ζx−1) are conjugated pairs.
Hence ψ is onto. �

First we want to know, how many choices of the parameters s and t give raise
to a non-associative loop of order k · q, based on a field Fq. We are not interested
in the case t = 0 since the loop so obtained is a group.

Proposition 14. Let K = Fq, with q odd, and let us denote by q̄ either q − 1

or q + 1. Then, for each k ≥ 3 dividing q̄, there exist exactly ϕ(k) · q̄−k
2 choices

of s and t such that t 6= 0 and fs,t is of order k.

Proof: We know that s 6= −1 from Section 2, since then k = 2. We know

that t 6= −
(

s−1
2

)2
from Section 3 since then k divides q and not q̄. Hence the

polynomial Ps,t has two different roots λ and µ.
There exist exactly ϕ(k) choices of ζ, primitive k-th root of unity in K. How-

ever, if we fix s then ζ and ζ−1 give the same value of t, using the formula from
Proposition 10. On the other hand, the values of s and t identify ζ uniquely, up
to the λ↔ µ symmetry. Hence, for each s 6= −1, there is a 2-to-1 correspondence
between the values of ζ and t. And therefore, there are ϕ(k)/2 choices of t such
that the first condition of Corollary 12 is fulfilled (for a more detailed reasoning
see [2]). As a conclusion, there are ϕ(k) · (q − 1)/2 choices of s and t that satisfy
the first condition of Corollary 12.

We fix ζ and we count the following: the inverse image of 〈ζ〉 under the mapping
ψ from Lemma 13 (that ψ that corresponds to our choice of ζ) has size k−2 since
the group generated by ζ has k elements. These values of s that belong to ψ−1(〈ζ〉)
do not satisfy the second condition of Corollary 12. Values s = ζ and s = ζ−1 (in
the case ζ ∈ K) are not taken either since these are those two giving t = 0. But
any other choice, that means any s ∈ Kr{ψ−1(〈ζ〉), ζ, ζ−1 ,−1}, together with the
appropriate t, satisfies the second condition of Corollary 12 and gives a 0-bijection
of 0-order k. If k divides q − 1, the size of this set is q − (k − 2) − 3 = q − k − 1,
if k divides q + 1, the size of the set is q − (k − 2) − 1 = q − k + 1.

Taken together, there are ϕ(k) · (q̄ − k) choices of ζ and s that satisfy both
conditions of Corollary 12 and hence ϕ(k) · (q̄ − k)/2 choices of t and s. �



260 P. Jedlička

Proposition 15. Let K = Fq, with q odd, and let q̄ be either q+ 1 or q− 1. Let

k > 2 be a divisor of q̄. Then there exist at most ⌈(q̄ − k)/2⌉ non-isomorphic

loops of order kq obtained as K[s, t] for some s, t ∈ K∗. The number is attained

if q is a prime.

Proof: We have to split the proof in two parts: s = 1 and s 6= 1. If k is odd then
there exist exactly ϕ(k)/2 choices of t such that the loop K[1, t] is of order kq. All
these loops are isomorphic (see [2]). If k is even then there exists no loop K[1, t]
of an even order (see [2]).

Now, according to Propositions 14 and the first part of the proof, there are

ϕ(k)

2
· (q̄ − k) if k is even,

ϕ(k)

2
· (q̄ − k − 1) if k is odd,

choices of numbers s 6= 1 and t 6= 0, such that Zq[s, t] is of order kq. This number

can be written as ϕ(k) · ⌊ q̄−k
2 ⌋. We also notice that s = 0 leads to 1−ζs

ζ−s
∈ 〈ζ〉 and

hence all the choices satisfy s 6= 0 as well.
Now, according to Corollary 8, the size of each isomorphism class is at most

ϕ(k) (respectively exactly ϕ(k) if q is a prime). Hence there are at most (respec-

tively exactly) ⌊ q̄−k
2 ⌋ isomorphism classes for s 6= 1.

If we add the case s = 1, we obtain the number ⌈ q̄−k
2 ⌉. �

5. Summary

Our goal was to enumerate the number of loops of order pq. Here is the
conclusion.

Theorem 16. Let q be an odd prime and k > 1. The number of centerless loops

based on Zq of order k · q that arise from the construction of Theorem 1 is,

• q − 2 if k = 2;

• (q − k + 2)/2 if k is an odd divisor of q + 1;

• (q − k + 1)/2 if k is an even divisor of q + 1 and k > 2;

• (q − k)/2 if k is an odd divisor of q − 1;

• (q − k − 1)/2 if k is an even divisor of q − 1 and k > 2;

• 0 otherwise.

Proof: The case k = 2 was discussed in Proposition 5. Proposition 9 gave no
non-associative loop based on Zq hence the last possibility is Section 4. According
to Lemma 10, there is either k | q − 1 or k | q + 1. Proposition 15 states that the
number of loops is then ⌈(q̄ − k)/2⌉. �

This proposition slightly differs from the one announced in the introduction.
But it is more general only: the 0-order of a 0-bijection cannot exceed the size
of the ring and hence loops of order pq with p ≤ q must be constructed by a
0-bijection of the 0-order p on a commutative ring of q elements. Hence the
proposition from the introduction is an immediate consequence.
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[3] Nagy G., Vojtěchovský P., LOOPS: Computing with quasigroups and loops, version 2.1.0,

package for GAP, http://www.math.du.edu/loops.

Department of Mathematics, Faculty of Engineering, Czech University of
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