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Openly factorizable spaces and compact

extensions of topological semigroups

Taras Banakh, Svetlana Dimitrova

Abstract. We prove that the semigroup operation of a topological semigroup S

extends to a continuous semigroup operation on its Stone-Čech compactification
βS provided S is a pseudocompact openly factorizable space, which means that
each map f : S → Y to a second countable space Y can be written as the
composition f = g ◦ p of an open map p : X → Z onto a second countable
space Z and a map g : Z → Y . We present a spectral characterization of openly
factorizable spaces and establish some properties of such spaces.

Keywords: topological semigroup, semigroup compactification, inverse spectrum,
pseudocompact space, openly factorizable space, openly generated space, Eber-
lein compact, Corson compact, Valdivia compact

Classification: 22A15, 54B30, 54C20, 54C08, 54D35

This paper was motivated by the problem of detecting topological semigroups
that embed into compact topological semigroups. One of the ways to attack
this problem is to find conditions on a topological semigroup S guaranteeing
that the semigroup operation of S extends to a continuous semigroup operation
on the Stone-Čech compactification βS of S. A crucial step in this direction
was made by E. Reznichenko [16] who proved that the semigroup operation on
a pseudocompact topological semigroup S extends to a separately continuous
semigroup operation on βS. In this paper we show that the extended operation
on βS is continuous if the space S is separable and openly factorizable, which
means that each continuous map f : S → Y to a second countable space Y can
be written as the composition f = g ◦ p of an open continuous map p : X → Z
onto a second countable space Z and a continuous map g : Z → Y . The class of
openly factorizable spaces turned out to be interesting by its own so we devote
Sections 2–5 to studying such spaces.

We recall that the Stone-Čech compactification of a Tychonov space X is a
compact Hausdorff space βX containing X as a dense subspace so that each con-
tinuous map f : X → Y to a compact Hausdorff space Y extends to a continuous
map f̄ : βX → Y .

Replacing in this definition compact Hausdorff spaces by realcompact spaces we
obtain the definition of the Hewitt realcompactification υX of X . We recall that
a topological space X is realcompact if X is homeomorphic to a closed subspace
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of some power R
κ of the real line. A Hewitt realcompactification of a Tychonov

space X is a realcompact space υX containing X as a dense C-embedded subspace.
A subspace A of a topological space X is C-embedded if each continuous function
f : A → R extends to a continuous function f̄ : X → R. By [7, 3.11.16], the
Hewitt realcompactification υX can be identified with the subspace

{x ∈ βX : G ∩ X 6= ∅ for any Gδ-set G ⊂ βX with x ∈ G}

of the Stone-Čech compactification βX of X . By [7, 3.11.12], every Lindelöf space
X is realcompact and hence X coincides with its Hewitt realcompactification υX .

The Hewitt realcompactification υX of a Tychonov space X coincides with
its Stone-Čech compactification βX if and only if the space X is pseudocompact
in the sense that each continuous real-valued function on X is bounded, see [7,
§3.11].

The problem of extending the group operation from a (para)topological group
G to its Stone-Čech or Hewitt extensions have been considered in [2], [15], [16],
[17]. In this paper we address a similar problem for topological semigroups. All
topological spaces appearing in this paper are Tychonov and all maps are contin-
uous .

1. Semigroup compactifications of topological semigroups

In this section we recall some information on semigroup compactifications of a
given (semi)topological semigroup S.

By a semitopological semigroup we understand a topological space S endowed
with a separately continuous semigroup operation ∗ : S×S → S. If the operation
is jointly continuous, then S is called a topological semigroup.

Let C be a class of compact Hausdorff semitopological semigroups. By a C-
compactification of a semitopological semigroup S we understand a pair (C(S), η)
consisting of a compact semitopological semigroup C(S) ∈ C and a continuous
homomorphism η : S → C(S) (called the canonical homomorphism) such that for
each continuous homomorphism h : S → K to a semitopological semigroup K ∈ C
there is a unique continuous homomorphism h̄ : C(S) → K such that h = h̄ ◦ η.
It follows that any two C-compactifications of S are topologically isomorphic.

We shall be interested in C-compactifications for the following classes of semi-
groups:

• WAP of compact semitopological semigroups;
• AP of compact topological semigroups;
• SAP of compact topological groups.

The corresponding C-compactifications of a semitopological semigroup S will be
denoted by WAP(S), AP(S), and SAP(S). The notation came from the ab-
breviations for weakly almost periodic, almost periodic, and strongly almost pe-
riodic function rings that determine those compactifications, see [18, §III.2] or
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[5, Ch.IV]. By Theorem 3.4 of [5], any semitopological semigroup S has the C-
compactifications WAP(S), AP(S) and SAP(S). Since the closure of a subsemi-
group in a semitopological semigroup is a semigroup, we conclude that the WAP-
and AP-compactifications WAP(S) and AP(S) of S contain the image η(S) as
a dense subsemigroup. On the other hand, the subsemigroup η(S) algebraically
generates a dense subgroup of the compact topological group SAP(S).

The inclusions of the classes SAP ⊂ AP ⊂ WAP induce canonical continuous
homomorphisms

η : S → WAP(S) → AP(S) → SAP(S)

for each semitopological semigroup S. Since the space WAP(S) is compact, the
canonical map η : S → WAP(S) uniquely extends to a continuous map βη : βS →
WAP(S) defined on the Stone-Čech compactification of S. Since η(S) is dense in
WAP(S) and AP(S), the canonical maps βS → WAP(S) → AP(S) are surjective.

It should be mentioned that the canonical homomorphism η : S → WAP(S)
need not be injective. For example, for the group H+[0, 1] of orientation-preserving
homeomorphisms of the interval the WAP-compactification is a singleton, see [14].
However, for pseudocompact semitopological semigroups the situation is more op-
timistic. The following two results are due to E. Reznichenko [16]. They allow us
to identify the WAP-compactification WAP(S) of a (countably compact) pseudo-
compact (semi)topological semigroup S with the Stone-Čech compactification βS
of S. We recall that a topological space X is countably compact if each countable
open cover of X has a finite subcover.

Theorem 1.1 (Reznichenko). For any countably compact semitopological semi-

group S the semigroup operation S × S → S extends to a separately continu-

ous semigroup operation βS × βS → βS, which implies that the canonical map

βη : βS → WAP(S) is a homeomorphism.

The same conclusion holds for pseudocompact topological semigroups.

Theorem 1.2 (Reznichenko). For any pseudocompact topological semigroup S
the semigroup operation S×S → S extends to a separately continuous semigroup

operation βS × βS → βS, which implies that the canonical map βη : βS →
WAP(S) is a homeomorphism.

If a topological semigroup S has pseudocompact square, then its Stone-Čech
compactification βS coincides with its AP-compactification.

Theorem 1.3. For any topological semigroup S with pseudocompact square S×S
the semigroup operation S ×S → S extends to a continuous semigroup operation

βS × βS → βS, which implies that the canonical maps βS → WAP(S) → AP(S)
are homeomorphisms.

Proof: By Theorem 1.2, the semigroup operation µ : S × S → S of S extends
to a separately continuous semigroup operation µ : βS × βS → βS on βS. On
the other hand, the operation µ : S × S → S ⊂ βS extends to a continuous
map βµ : β(S × S) → βS × βS. By the Glicksberg Theorem [7, 3.12.20(c)], the
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pseudocompactness of the square S × S implies that the Stone-Čech extension
βi : β(S × S) → βS × βS of the inclusion map i : S × S → βS × βS is a
homeomorphism. Observe that the functions βµ and µ̄ ◦ βi coincide on the dense
subset S ×S of β(S ×S). It is an easy exercise to check that those maps coincide
everywhere, which implies that the binary operation µ̄ = βµ◦(βi)−1 is continuous.
This means that βS is a compact topological semigroup and hence the canonical
map βη : βS → AP(S) has continuous inverse. �

It should be mentioned that for a pseudocompact topological semigroup S
the canonical map η : S → AP(S) needs not be a topological embedding. The
following counterexample is constructed in [3].

Example 1.4. Under Martin’s Axiom there is a countably compact topologi-

cal semigroup S for which the canonical homomorphism η : S → AP(S) is not

injective.

Example 1.4 shows that one should impose rather strong restrictions on a topo-
logical semigroup S to guarantee that the canonic homomorphism S → AP(S)
(or S → SAP(S)) is an embedding.

Theorem 1.5. If a topological semigroup S contains a dense subgroup and

has pseudocompact square S × S, then the canonical maps βS → WAP(S) →
AP(S) → SAP(S) are homeomorphisms.

Proof: By Theorem 1.3, the canonical maps βS → WAP(S) → AP(S) are
homeomorphisms. Since the compact topological semigroup AP(S) contains a
dense subgroup (that lies in S), we may apply Theorem 1.11 of [6] to conclude that
AP(S) is a group. Being a compact paratopological group, AP(S) is a topological
group according to Theorem 1.13 of [6]. Now the definition of SAP(S) implies
that the canonical map S → AP(S) extends to a unique continuous semigroup
homomorphism SAP(S) → AP(S), which shows that the canonical map AP(S) →
SAP(S) is a homeomorphism. �

We recall that a topological group G is called totally bounded if for every non-
empty open subset U ⊂ G there is a finite subset F ⊂ G such that G = FU = UF .

The following important result can be found in [18, III.3.3].

Theorem 1.6 (Ruppert). For each totally bounded topological group G the

canonical homomorphisms WAP(G) → AP(G) → SAP(G) are homeomorphisms

and the canonical map η : G → SAP(G) is a topological embedding.

The same conclusion holds for Tychonov pseudocompact topological semi-
groups that contain dense totally bounded topological subgroups.

Theorem 1.7. If a pseudocompact topological semigroup S contains a totally

bounded topological group H as a dense subgroup, then the canonical maps

βS → WAP(S) → AP(S) → SAP(S)

are homeomorphisms.
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Proof: The embedding H⊂ S induces a continuous homomorphism h : WAP(H)
→ WAP(S). We claim that this homomorphism is surjective. Indeed, by Theo-
rem 1.6, WAP(H) is a compact topological group, containing H as a dense sub-
group. By Theorem 1.2, the Stone-Čech compactification βS of S can be identi-
fied with the WAP-compactification WAP(S) of S. Then the image h(WAP(H))
contains the dense subset H of βS = WAP(S) and hence coincides with βS
being a compact dense subset of βS. The compact semitopological semigroup
WAP(S), being a continuous homomorphic image of the compact topological
group WAP(H), is a compact topological group. This implies that the canonical
homomorphism WAP(S) → SAP(S) is a topological isomorphism. Consequently,
the maps βS → WAP(S) → AP(S) → SAP(P ) all are homeomorphisms. �

Our final result concerns the AP-compactifications of pseudocompact openly
factorizable topological semigroups. Those are pseudocompact topological semi-
groups whose topological spaces are openly factorizable.

We define a topological space X to be openly factorizable if for each map
f : X → Y to a second countable space Y there are an open map p : X → Z onto
a second countable space Z and a map g : Z → Y such that f = g ◦ p. Openly
factorizable spaces will be studied in detail in the next sections. Now we present
our main extension result for which we need the notion of a weakly Lindelöf space.

We call a topological space X weakly Lindelöf if each open cover U of X
contains a countable subcollection V ⊂ U whose union

⋃
V is dense in X . It is

clear that the class of weakly Lindelöf spaces includes all Lindelöf spaces and all
countably cellular (in particular, all separable) spaces.

Theorem 1.8. For any openly factorizable topological semigroup S having

weakly Lindelöf square S × S, the semigroup operation S × S → S extends to a

continuous semigroup operation υS × υS → υS defined on the Hewitt realcom-

pactification υS of S.

Proof: By Theorem 3.5 below the semigroup operation µ : S × S → S extends
to a continuous map µ̄ : υS × υS → υS thought as a continuous binary oper-
ation on υS. This operation is associative on S and by the continuity remains
associative on υS. �

This theorem implies another one:

Theorem 1.9. For each pseudocompact openly factorizable topological semi-

group S with weakly Lindelöf square, the canonical maps βS → WAP(S) →
AP(S) are homeomorphisms.

Proof: By Theorem 1.8, the semigroup operation µ : S × S → S extends to
a continuous semigroup operation µ̄ : υS × υS → υS turning the Hewitt real-
compactification υS of S into a topological semigroup that contains S as a dense
subsemigroup. Since the space S is pseudocompact, its Hewitt realcompactifica-
tion coincides with its Stone-Čech compactification βS [7, §3.11]. Consequently,
βS is a compact topological semigroup, which implies that the canonical map
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βη : βS → AP(S) has a continuous inverse and consequently, the maps

βS → WAP(S) → AP(S)

are homeomorphisms. �

2. Some elementary properties of openly factorizable spaces

In this section we establish some elementary properties of openly factorizable
spaces. First we prove a helpful lemma.

Lemma 2.1. Let p : X → Z be a map from a Tychonov space to a second

countable space and let υp : υX → υZ = Z be its continuous extension to the

Hewitt realcompactification of X . The map υp is surjective (open) if and only if

so is the map p.

Proof: This lemma will follow as soon as we prove that p(U∩X) = υp(U) for any
open subset U ⊂ υX . Assuming the opposite, find a point y ∈ υp(U) \ p(U ∩X).
Choose any point x0 ∈ U with υp(x0) = y and find a continuous function g :
υX → [0, 1] such that g−1(0) is a neighborhood of x0 and g−1[0, 1) ⊂ U . Fix a
metric d generating the topology of the second countable space Z and consider
the continuous function f : υX → [0,∞) defined by f(x) = g(x) + dist(υp(x), y).
Observe that f(x0) = 0 while f(x) ∈ (0, 1] for all x ∈ X . Indeed, if x ∈ X ∩ U ,
then f(x) ≥ dist(p(x), y) > 0 because y /∈ p(U ∩ X). If x ∈ X \ U , then f(x) ≥
g(x) = 1 > 0. Since υX is a Hewitt realcompactification of X , the function
f |X : X → (0, +∞) admits a unique continuous extension f̄ : υX → (0, +∞).
Since X is dense in υX , we get f = f̄ and thus 0 = f(x0) = f̄(x0) ∈ (0,∞). This
contradiction completes the proof of the equality υp(U) = p(U ∩ X). �

Proposition 2.2. The Hewitt realcompactification υX of a Tychonov space X
is openly factorizable if and only if so is the space X .

Proof: Assume that a Tychonov space X is openly factorizable. To show that
the Hewitt realcompactification υX is openly factorizable, take any map f : υX →
Y to a second countable space Y . Since X is openly factorizable, there are an open
surjective map p : X → Z to a second countable space Z and a map g : Z → Y
such that f |X = g ◦ p. The space Z, being second countable, is realcompact [7,
3.11.12]. Consequently, the map p admits a continuous extension υp : υX → Z.
It follows that f = g ◦ υp. By Lemma 2.1, the map υp is open and surjective,
witnessing that υX is openly factorizable.

Now assume that υX is openly factorizable. To show that X is openly fac-
torizable, take any map f : X → Y to a second countable space Y . Since Y is
realcompact [7, 3.11.12], the map f extends to a map υf : υX → Y . Since υX
is openly factorizable, there are an open surjective map p : υX → Z to a second
countable space Z and a map g : Z → Y such that f = g ◦p. Then f |X = g ◦p|X
and the map p|X : X → Z is open and surjective by Lemma 2.1. �
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Proposition 2.3. The Stone-Čech compactification βX of a Tychonov space X
is openly factorizable if and only if X is pseudocompact and openly factorizable.

Proof: If X is pseudocompact and openly factorizable, then the Hewitt real-
compactification υX is openly factorizable by Proposition 2.2. Since X is pseu-
docompact, its Hewitt realcompactification coincides with the Stone-Čech com-
pactification βX . So, βX is openly factorizable.

Now assume conversely that βX is openly factorizable. We claim that X is
pseudocompact. In the opposite case, we could find a continuous unbounded
function f : X → [0,∞). Let βf : βX → [0,∞] be the Stone-Čech extension
of the map f to the one-point compactification of the half-line [0,∞). Since βX
is openly factorizable, there are an open surjective map p : βX → Z onto a
metrizable compact space Z and a map g : Z → [0,∞] such that f = g ◦ p.

Since the function f is unbounded, we can choose a sequence {xn}n∈ω ⊂
X such that the sequence {f(xn)}n∈ω ⊂ [0,∞) is strictly increasing and un-
bounded. Passing to a subsequence, if necessary, we can assume that the sequence
{p(xn)}n∈ω ⊂ Z converges to some point z∞ ∈ Z. It follows from f = g ◦ p that
g(z∞) = ∞ and the points z∞, p(xn), n ∈ ω, all are distinct. So each point
p(xn) has a neighborhood Un ⊂ Z \ {z∞} such that the family {Un : n ∈ ω}
is disjoint. Moreover, we can assume that the sequence (Un) converges to z∞
in the sense that each neighborhood O(z∞) contains all but finitely many sets
Un. Since the sequence {f(xn)}n∈ω is closed and discrete in [0,∞), to each point
f(xn) we can assign an open neighborhood Vn ⊂ [0,∞) such that the family
{Vn : n ∈ ω} is discrete in [0,∞) (in the sense that each point has a neighborhood
that meets at most one set Vn). Now for every n ∈ ω consider the open neighbor-
hood Wn = f−1(Vn) ∩ p−1(Un) of the point xn in X . Since the family {Vn}n∈ω

is discrete in [0,∞), the family {Wn}n∈ω is discrete in X . Let x∞ ∈ βX be any
accumulation point of the sequence {x2n}n∈ω.

Since the space X is Tychonov and {W2n}n∈ω is discrete, we can construct a
continuous function ϕ : X → [0, 1] such that

{x2n}n∈ω ⊂ ϕ−1(1) ⊂ ϕ−1(0, 1] ⊂
⋃

n∈ω

W2n.

Let βϕ : βX → [0, 1] be the Stone-Čech extension of ϕ. It follows from the
continuity of βϕ that βϕ(x∞) = 1. Then the set W = (βϕ)−1(1

2 , 1] is an open
neighborhood of x∞ in βX with

W ∩ X ⊂ W ∩ X ⊂ ϕ−1[1/2, 1] ⊂
⋃

n∈ω

W2n.

It follows that p(W ∩ X) ⊂ V where V =
⋃

n∈ω V2n and consequently,

p(W ) ⊂ p(W ) = p(W ∩ X) ⊂ p(W ∩ X) ⊂ V .
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Since V ⊂ X \
⋃

n∈ω V2n+1 and V2n+1 → z∞, the set V contains no neighborhood
of the point z∞ = p(x∞). Consequently, the set p(W ) cannot be open. This
contradiction completes the proof of the pseudocompactness of X .

In this case the Stone-Čech compactification βX coincides with the Hewitt
realcompactification υX of X . Applying Proposition 2.2, we conclude that X is
openly factorizable. �

Proposition 2.4. The Aleksandrov compactification αX of a locally compact

space X is openly factorizable if X is openly factorizable and σ-compact.

Proof: Without loss of generality, the space X is not compact. Let f : αX → Y
be any map to a second countable space. Since X is σ-compact and locally
compact, we can find a continuous function ξ : αX → [0, 1] such that ξ−1(0) =
{∞X} where ∞X is the compactifying point of αX = {∞X} ∪ X . Now consider

the map f̃ : X → Y × (0, 1], f̃ : x 7→ (f(x), ξ(x)). Since X is openly factorizable,
there is an open map p : X → Z onto a second countable space Z and a map
g̃ : Z → Y × (0, 1] such that f̃ = g̃ ◦ p.

The space Z is locally compact as the image of a locally compact space under
an open map. So, it is legal to consider its Aleksandrov compactification αZ =
{∞Z} ∪ Z. Extend the map p : X → Z to the map αp : αX → αZ letting
αp|X = p and αp(∞X) = ∞Z . Let us show that the so-extended map αp is
continuous at ∞X . Given an open neighborhood O(∞Z ) ⊂ αZ of ∞Z , consider
the complement K = αZ \ O(∞Z ) and its image g̃(K) ⊂ Y × (0, 1]. Being a
compact subset of Y × (0, 1], the set g̃(K) lies in Y × [a, 1] for some a > 0. Then
O(∞X) = ξ−1([0, a)) is an open neighborhood of ∞X such that αp(O(∞X )) ⊂
O(∞Z ), witnessing that αp is continuous at ∞X . It is equally easy to check that
the map αp : αX → αZ is open.

Denote by prY : Y × (0, 1] → Y the projection and define a map g : αZ → Y
letting g|Z = prY ◦ g̃ and g(∞Z) = f(∞X). It is easy to check that the map g
is continuous and f = g ◦ αp, witnessing the open factorizability of the one-point
compactification αX of X . �

3. Spectral characterization of openly factorizable spaces

In this section we shall present a spectral characterization of openly factorizable
topological spaces. First we remind some information related to inverse spectra,
see [8, §3.1] and [7, §2.5].

A partially ordered set (A,≤) is called

• directed if for every a, b ∈ A there exists c ∈ A with c ≥ a, c ≥ b;
• ω-directed if for any countable subset C ⊂ A has an upper bound in A

(which is a point a ∈ A such that a ≥ c for every c ∈ C);
• ω-complete if A each countable directed subset C ⊂ A has the smallest

upper bound supC in A.

For example, the ordinal ω1 endowed with the natural order is a well-ordered
ω-complete set.
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By a spectrum over a directed set (A,≤) we understand a collection S =
{Xα, πγ

α, A} consisting of Tychonov spaces Xα, α ∈ A, and continuous surjective
maps πγ

α : Xγ → Xα for α ≤ γ from A such that πγ
α = πβ

α ◦ πγ
β for every elements

α ≤ β ≤ γ of A. Let

limS = {(xα)α∈A ∈
∏

α∈A

Xα : ∀α, β ∈ A α ≤ β ⇒ xα = πβ
α(xβ)} ⊂

∏

α∈A

Xα

denote the limit space of the spectrum S.
For a directed subset B of A, let S|B denote the subspectrum S|B =

{Xα, πγ
α, B} of S, consisting of the spaces Xα and the projections πγ

α for which
α, γ ∈ B. Given a collection {fα : X → Xα}α∈A of maps from a space X into the
spaces of the spectrum S such that πγ

α ◦ fγ = fα for every α ≤ γ in A, we denote
by lim fα : X → limS the induced map into the limit space of S.

A spectrum S = {Xα, πγ
α, A} is defined to be

• continuous if for every chain B ⊂ A having supremum β = supB the
map limα∈B πβ

α : Xβ → limS|B is a homeomorphism;
• open if the projections πγ

α : Xγ → Xα are open and surjective for all
α ≤ γ in A;

• ω-directed (resp. ω-complete) provided so is its index set A;
• an ω-spectrum if it is ω-directed and each space Xα, α ∈ A, is second

countable;
• factorizing if every map f : limS → R can be written as f = fα ◦ πα for

some α ∈ A and some map fα : Xα → R.

According to [8, 3.1.5], a continuous ω-complete spectrum S with surjective
bonding maps is factorizing if and only if every bounded map f : limS → R

can be written as f = fα ◦ πα for some α ∈ A and some bounded map fα :
Xα → R. By another result of [8, 3.1.7], a continuous ω-complete open spectrum
S = {Xα, πγ

α, A} is factorizing provided the limit space limS is countably cellular
(i.e., contains no uncountable disjoint family of open sets).

In fact, the proof of Proposition 3.1.7 of [8] can be modified to get the following
more general statement, cf. [4, 3.2].

Proposition 3.1. Suppose S = {Xα, πγ
α, A} is an ω-spectrum and X ⊂ limS is

a weakly Lindelöf subspace of its limit such that the restrictions πα|X : X → Xα,

α ∈ A, of the limit projections are open and surjective. Then every map f : X →
Y to a second countable space Y can be written as f = fα ◦πα|X for some α ∈ A
and some map fα : Xα → Y . In particular, X is C-embedded into limS and

hence limS is a Hewitt realcompactification of X .

Proof: For every α ∈ A, let pα denote the restriction πα|X : X → Xα. A subset
C ⊂ X will be called cylindric if C = p−1

α (Cα) for some α ∈ A and some set
Cα ⊂ Xα. In this case the set C be called α-cylindric. Since the projection
pα : X → Xα is open and surjective, clX(p−1

α (Cα)) = p−1
α (clXα

(Cα)). Since X ⊂
limS, open cylindric subsets form a base of the topology of X . A subset U ⊂ X
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is functionally open if U = f−1(V ) for some continuous function f : X → R and
some open set V ⊂ R.

Claim 3.2. Each functionally open subset of X is cylindric.

Proof: A functionally open set U can be written as the countable union U =⋃
n∈ω Un of open sets such that Un ⊂ clX(Un) ⊂ Un+1 for all n ∈ ω. For every

n ∈ ω consider the family Un of open cylindric subsets of Un. Since X is weakly
Lindelöf, for the open cover Un ∪ {X \ clX(Un−1)} of X there is a countable
subfamily Vn ⊂ Un such that (

⋃
Vn) ∪ (X \ clX(Un−1)) is dense in X and hence

clX(Un−1) ⊂ clX(
⋃

Vn) ⊂ clX(Un) ⊂ U .
For the countable family

⋃
n∈ω Vn of cylindric sets, find an index α ∈ A such

that each set V ∈ V is α-cylindric. For every n ∈ ω consider the closure Fn of the
open set pα(

⋃
Vn) in Xα and observe that

Un−1 ⊂ clX(Un−1) ⊂ clX(
⋃

Vn) = p−1
α (Fn) ⊂ clX(Un) ⊂ U.

Then for the union F =
⋃

n∈ω Fn we get

U =
⋃

n∈ω

Un ⊂
⋃

n∈ω

p−1
α (Fn) = p−1

α (F ) ⊂ U,

which means that the set U = p−1
α (F ) is α-cylindric. �

Now let f : X → Y be any map to a second countable space Y . Fix a countable
base B of the topology of the space Y . Each set U ∈ B is functionally open and
so is its preimage f−1(U) ⊂ X . By Claim 3.2, the set f−1(U) is cylindric.
Since the index set A is ω-directed, there is an index α ∈ A such that each set
f−1(U), U ∈ B, is α-cylindric. Let s : Xα → X be any (possibly discontinuous)
section of the projection pα : Xα → X and let fα = f ◦ s : Xα → Y . For each
U ∈ B the preimage f−1

α (U) = pα(f−1(U)) is open in Xα. Consequently, the map
fα : Xα → Y is continuous. It is clear that f = f ◦ s ◦ pα = fα ◦ pα = fα ◦ πα|X .

In order to show that X is C-embedded in limS, take any continuous function
f : X → R and find an index α ∈ A such that f = fα ◦ πα|X for some continuous
function fα : Xα → R. Then the continuous function f̄ = fα ◦ πα : limS → R is
the required continuous extension of f , witnessing that X is C-embedded in limS.
Since the restriction πα|X : X → Xα of each limit projection πα : limS → Xα,
α ∈ A, is surjective, X meets each open cylindric subset of limS, which means
that X is dense in limS.

The limit space limS is realcompact, being a closed subspace of the Tychonov
product

∏
α∈A Xα of second countable spaces. Since X is C-embedded in limS,

the realcompact space limS is a Hewitt realcompactification of X according to
[7, 3.11.16]. �

The following theorem gives a spectral characterization of openly factorizable
spaces.
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Theorem 3.3. A (weakly Lindelöf ) topological space X is openly factorizable (if
and) only if X is a dense subspace of the limit space limS of an open ω-spectrum

S = {Xα, πγ
α, A} such that for every α ∈ A the restriction πα|X : X → Xα of the

limit projection is open and surjective.

Proof: The “if” part follows immediately from Proposition 3.1. To prove the
“only if” part, assume that a Tychonov space X is openly factorizable. Let A′ be
the set of all open continuous surjective maps α : X → Xα with Xα ⊂ R

ω. The set
A′ is partially preordered by the relation: α ≤ γ if there is a map πγ

α : Xγ → Xα

such that α = πγ
α ◦ γ. This map πγ

α is necessarily open and surjective because the
map α is open and surjective while γ is continuous. Also the map πγ

α is uniquely
determined, which implies that πγ

β ◦πβ
α = πγ

α for any α ≤ β ≤ γ in A′. This means

that the relation ≤ on A′ is transitive. The preorder ≤ induces the equivalence
relation ∼= on A′: α ∼= γ if α ≤ γ and γ ≤ α. Let A be a subset of A′ intersecting
each equivalence class in a single point. Then A becomes a partially ordered set
with respect to the order ≤.

Let us show that the set (A,≤) is ω-directed. Given a countable subset C ⊂ A
consider the diagonal product f = ∆γ∈Cγ : X →

∏
γ∈C Xγ . Taking into account

that
∏

γ∈C Xγ is second countable and X is openly factorizable, find an open
surjective map α : X → Xα onto a second countable space Xα and a map g :
Xα →

∏
γ∈C Xγ such that g ◦α = f . We can assume that Xα ⊂ R

ω and thus α ∈

A′. Moreover, we can replace α by an equivalent map and assume that α ∈ A. Let
us show that α ≥ β for each β ∈ C. Consider the projection prβ :

∏
γ∈C Xγ → Xβ

and observe that the equality g ◦α = f implies (prβ ◦ g) ◦α = prβ ◦ f = β, which
means that α ≥ β.

Now we see that S = {Xα, πγ
α, A} is an open ω-spectrum. Let πα : limS → Xα,

α ∈ A, be the limit projections of this spectrum. The open surjective maps α ∈ A
determine a map

E : X → limS, E : x 7→ (α(x))α∈A

such that πα ◦ E = α for every α ∈ A. The surjectivity of the maps α ∈ A imply
that the map E : X → limS has dense image E(X) ⊂ limS. Let us show that E is
a topological embedding. Given a point x ∈ X and an open neighborhood Ox ⊂ X
of x we should find an open set U ⊂ limS such that E(x) ∈ U ∩ E(X) ⊂ E(Ox).
Since X is Tychonov, there is a map f : X → [0, 1] such that x ∈ f−1(0, 1] ⊂ Ox.
The choice of the set A guarantees that there is a map α : X → Xα in A and a
map g : Xα → [0, 1] such that g ◦ α = f . Then the set V = g−1(0, 1] is open in
Xα and its preimage U = π−1

α (V ) is open in limS. It is easy to check that this
set U has the required property: E(x) ∈ U ∩ E(X) ⊂ E(Ox). �

Theorem 3.3 implies the following spectral characterization of compact openly
factorizable spaces.

Corollary 3.4. A compact Hausdorff space X is openly factorizable if and

only if X is homeomorphic to the limit space limS of an open ω-spectrum

S = {Xα, πγ
α, A}.
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Theorem 3.5. Let X, Y be two openly factorizable spaces. If the product X×Y
is weakly Lindelöf, then

(1) X × Y is openly factorizable;

(2) each map f : X × Y → Z to a Tychonov space Z extends to a map

f̄ : υX × υY → υZ.

Proof: The space X , being an open continuous image of the weakly Lindelöf
space X × Y , is weakly Lindelöf. By Theorem 3.3, X is a dense subspace of the
limit space limSX of an open ω-spectrum SX = {Xα, πγ

α, A} such that the restric-
tions πα|X : X → Xα, α ∈ A, of the limit projections are open and surjective.
By Proposition 3.1, the limit space limSX is a Hewitt realcompactification of X .

By the same reason, the Hewitt realcompactification υY of Y can be identified
with the limit space limSY of an open ω-spectrum SY = {Yα, pγ

α, B} such that
the restrictions pα|Y : Y → Yα, α ∈ B, of the limit projections are open and
surjective.

On the product A × B consider the partial order: (α, β) ≤ (α′, β′) if α ≤ α′

and β ≤ β′. It is easy to see that the partially ordered set A×B is ω-directed. It
follows that X × Y is a dense subspace of the limit space limSX × limSY of the
open ω-spectrum

S = {Xα × Yβ , πγ
α × pδ

β , A × B}

such that for every (α, β) ∈ A × B the restriction πα × pβ : X × Y → Xα × Yβ is
open and surjective. Since the product X × Y is weakly Lindelöf, we may apply
Proposition 3.1 and Theorem 3.3 and conclude that the product X ×Y is openly
factorizable and limSX × limSY = υX × υY is a Hewitt realcompactification of
X × Y .

Now take any map f : X × Y → Z to a second countable space Z. By
Proposition 3.1, there is an index (α, β) ∈ A×B and a map f(α,β) : Xα ×Yβ → Z

such that f = f(α,β) ◦(πα×pβ)|X×Y . Then f̄ = f(α,β) ◦(πα×pβ) is a continuous
extension of the map f onto the product limSX × limSY = υX × υY .

Finally take any map f : X × Y → Z to any Tychonov space Z. Identify the
Hewitt realcompactification υZ of Z with a closed subspace of R

κ for a suitable
cardinal κ. The preceding case ensures that the map f extends to a map f̄ :
υX × υY → R

κ. It follows that

f̄(υX × υY ) = f̄(X × Y ) ⊂ f(X, Y ) ⊂ Z = υZ ⊂ R
κ.

So f̄ is a continuous map into υZ. �

Another operation preserving openly factorizable spaces is the operation of the
topological sum.

Proposition 3.6. The topological sum
⊕

α∈A Xα of non-empty topological

spaces Xα, α ∈ A, is openly factorizable if and only if each space Xα, α ∈ A, is

openly factorizable and the index set A is at most countable.
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Proof: To prove the “only if” part, assume that the topological sum X =⊕
α∈A Xα is openly factorizable. First we show that each space Xα is openly

factorizable. Given any map fα : Xα → Y to a second countable space Y , pick
any point y0 ∈ Y and extend the map fα to a map f : X → Y letting f(x) = y0 for
each x /∈ Xα. Since X is openly factorizable, there are an open map p : X → Z
onto a second countable space Z and a map g : Z → Y such that f = g ◦ p.
Let Zα = p(Xα) ⊂ Z, pα = p|Xα : Xα → Zα and gα = g|Zα. It is clear that
fα = gα ◦ pα. Since Xα is open in X , the restriction pα = p|Xα is an open map
of Xα onto the second countable space Zα. This witnesses that the space Xα is
openly factorizable.

Next, we show that |A| ≤ ℵ0. Assuming the opposite, choose a subset B ⊂ A
of cardinality |B| = ℵ1 and take any function ξ : A → R, which is injective
on the set B. Now define a map f : X → R letting f(x) = ξ(α) for each
α ∈ A and x ∈ Xα. Since X is openly factorizable, there is an open map
p : X → Z onto a second countable space Z and a map g : Z → R such that
f = g ◦ p. For every α ∈ A the image Zα = p(Xα) of the open set Xα ⊂ X
is open in Z. For every α, β ∈ B the spaces Zα and Zβ are disjoint because
g(Zα) = {ξ(α)} 6= {ξ(β)} = g(Zβ). Then the second countable space Z contains
an uncountable disjoint family of open non-empty subspaces Zβ, β ∈ B, which is
a contradiction.

Now we prove the “if part”. Assume that the index set A is at most countable
and each space Xα, α ∈ A, is openly factorizable. Given any map f : X → Y
from the topological sum X =

⊕
α∈A Xα to a second countable space Y , for

every α ∈ A use the open factorizability of the space Xα to find an open map
pα : Xα → Zα onto a second countable space Zα and a map gα : Zα → Y
such that f |Xα = gα ◦ pα. The maps gα, α ∈ A, compose an open map p =⊕

α∈A pα : X → Z of the topological sum X =
⊕

α∈A Xα onto the topological
sum Z =

⊕
α∈A Zα, which is second countable because |A| ≤ ℵ0. On the other

hand, the maps gα compose a continuous map g =
⊕

α∈A gα : Z → Y . Since
f = g ◦ p, we conclude that X is openly factorizable. �

Propositions 2.4 and 3.6 imply:

Corollary 3.7. The Aleksandrov compactification α(
⊕

n∈ω Xn) of the topolog-

ical sum
⊕

n∈ω Xn of compact openly factorizable spaces Xn, n ∈ ω, is openly

factorizable.

4. Gδ-points in openly factorizable spaces

In this section we establish a property of openly factorizable spaces that will
help us to recognize spaces which are not openly factorizable.

A point x of a topological space X is called a Gδ-point if the singleton {x}
is a Gδ-subset of X . A subset A of a topological space X is called sequentially
closed if for each sequence {an}n∈ω ⊂ A that converges in X the limit limn→∞ an

belongs to A.



126 T. Banakh, S. Dimitrova

Theorem 4.1. The set of Gδ-points of an openly factorizable space X is sequen-

tially closed in X .

Proof: Let a point x ∈ X be the limit of a sequence (xn)∞n=1 of Gδ-points of X .
Without loss of generality, the sequence (xn) consists of pairwise distinct points
which are also distinct from x. Consider the compact subset

K = {x} ∪ {xn : n ∈ N}

of X and let ξ : K → [0, 1] be the continuous function defined by ξ(x) = 0 and
ξ(xn) = 2−n for n ∈ N. By the Tietze-Urysohn Theorem and the normality of the
Stone-Čech extension βX , the map ξ : K → [0, 1] admits a continuous extension
ξ̄ : βX → [0, 1]. For every n ∈ N consider the neighborhood

Un = {x ∈ X : |ξ̄(x) − 2−n| < 2−n−2}

of the point xn in X . Using the fact that xn is a Gδ-point of the Tychonov
space X , one can construct a continuous function ηn : X → [0, 2−n] such that
η−1

n (2−n) = {xn} and η−1
n ((0, 2−n]) ⊂ Un. It follows from

∑∞

n=1 ‖ηn‖ < ∞ that
the map η =

∑∞

n=1 ηn : X → [0, 1] is well-defined and continuous. Moreover, since
the sets Un, n ∈ N, are pairwise disjoint, we conclude that η(xn) = ηn(xn) = 2−n

for all n ∈ N.
Now consider the map f : X → [0, 1]2, f : x 7→ (ξ̄(x), η(x)), and observe that

f−1(2−n, 2−n) = {xn} for all n ∈ N. Since the space X is openly factorizable,
there is an open surjective map p : X → Z onto a second-countable space Z and
a map g : Z → [0, 1]2 such that f = g ◦ p. Since the singleton {p(x)} is a Gδ-
subset of Z, the preimage G = p−1(p(x)) is a closed Gδ-subset of X containing
no point xn. We claim that G = {x}. Assuming the converse, choose a point
y ∈ G \ {x} and observe that X \ K is an open neighborhood of y in X . Since
the map p : X → Z is open, the image U = p(X \K) is an open neighborhood of
the point p(y) = p(x). By the continuity of p, the sequence (p(xn))∞n=1 converges
to p(x). Consequently, there is a number n ∈ N with p(xn) ∈ U . Then

(2−n, 2−n) = f(xn) = g ◦ p(xn) ∈ g(U) = g ◦ p(X \ K) = f(X \ K).

Since f−1(2−n, 2−n) = {xn}, we conclude that xn ∈ X \K, which is a contradic-
tion. �

5. Scattered openly factorizable spaces

In this section we detect openly factorizable spaces in the class of scattered
compacta.

A topological space X is called scattered if each subspace of X has an isolated
point. A point x of a topological space X is called a P -point if for any neigh-
borhoods Un ⊂ X , n ∈ ω, of x the intersection

⋂
n∈ω Un is a neighborhood of x

in X .
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Theorem 5.1. A scattered compact Hausdorff space X is openly factorizable if

each point of X is either a Gδ-point or a P -point.

Proof: This theorem will be proved by induction on the scattered height of X ,
defined as follows. For a subset A ⊂ X let A(1) be the set of non-isolated points
of A. Let X(0) = X and for every ordinal α let X(α) =

⋂
β<α(X(β))(1). Since

X is scattered, X(α) = ∅ for some ordinal α. The smallest ordinal α with this
property is called the scattered height of X . The scattered height of the space X
is equal to zero if and only if X is empty.

So, the theorem is true for compact scattered spaces X of scattered height 0.
Assume that for some ordinal α, the theorem is true for scattered compacta of
scattered height < α. Assume that X has scattered height α. This means that
X(α) = ∅ but X(β) 6= ∅ for any ordinal β < α. Since X is compact, α = β + 1 is
a successor ordinal. In this case X(β) is a non-empty finite set. First we consider
the case X(β) = {x} is a singleton.

If x is a Gδ-point, then the compact space X is first countable at x. Since
scattered compacta are zero-dimensional, we can choose a decreasing sequence
(Un)n∈ω of closed-and-open neighborhoods of x in X such that {x} =

⋂
n∈ω Un.

It follows that X is the Aleksandrov compactification of the topological sum⊕
n∈ω Un \Un−1 of the scattered compacta Un \Un−1 with scattered height < α.

By the inductive assumption each space Un \Un−1, n ∈ ω, is openly factorizable.
Then X =

⊕
n∈ω Un \ Un−1 is openly factorizable by Corollary 3.7.

If x is a P -point, then for each continuous function f : X → Y to a second
countable space Y the preimage G = f−1f(x) is a closed neighborhood of x. Since
X is zero-dimensional, we can choose a closed-and-open neighborhood U ⊂ G of
x in the space X and consider the quotient space X/U which is a scattered
compact space of scattered height < α. By the inductive assumption, X/U is
openly factorizable. Consequently, there is an open surjective map p : X/U → Z
onto a second countable space Z and a map g : Z → Y such that f = g◦p◦q where
q : X → X/U is the quotient map. Then the open surjective map p ◦ q : X → Z
and the function g : Z → Y witness the open factorizability of the space X .

Now we consider the general case of finite set X(β). The scattered space X ,
being zero-dimensional, can be written as the disjoint sum X = X1 ∪ · · · ∪ Xn

of open-and-closed sets Xi that meet the finite set X(β) in a unique point. By
the preceding case, each space Xi is openly factorizable and so is their disjoint
union X . �

Theorems 4.1 and 5.1 imply the following characterization of openly factoriz-
able scattered linearly ordered compacta.

Corollary 5.2. A scattered linearly ordered compact space X is openly factor-

izable if and only if each point x ∈ X is either a Gδ-point or a P -point.

This corollary has another:

Corollary 5.3. Any closed segment of ordinals [0, α] endowed with the order

topology is openly factorizable.
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6. Some comments and open problems

In this section we discuss the relation of the class of openly factorizable compact
spaces to other known classes of compact spaces and pose some open problems.
The survey [19] provides the necessary information on various classes of compact
spaces.

We recall that a compact space X is called

• Dugundji compact if for each embedding X → Y to another compact
space Y there is a linear positive norm one operator u : C(X) → C(Y )
extending continuous functions from X to Y ;

• AE(0)-space if each map f : B → X defined on a closed subspace B of a
zero-dimensional compact space A can be extended to a continuous map
f̄ : A → X ;

• openly generated if X is homeomorphic to the limit limS of an open
continuous ω-complete ω-spectrum S = {Xα, pγ

α, A};
• dyadic compact if X is a continuous image of the Cantor cube {0, 1}κ for

some cardinal κ;
• κ-adic if X is a continuous image of some κ-metrizable compact space;
• κ-metrizable if X admits a κ-metric.

We recall that a κ-metric on X is a function assigning to each point x ∈ X and
a regular closed set F ⊂ X a non-negative number ρ(x, F ) so that the following
axioms hold:

(1) ρ(x, F ) = 0 if and only if x ∈ F ;
(2) ρ(x, F ) ≥ ρ(x, F ′) for any regular closed sets F ⊂ F ′ of X ;
(3) for any regular closed set F the function ρ(·, F ) : x 7→ ρ(x, F ) is continu-

ous with respect to the first argument;
(4) for any point x ∈ X and a linearly ordered family F of regular closed

subsets of X , we get ρ(x,
⋃

F) = infF∈F ρ(x, F ).

By the classical result of Haydon [10], the classes of Dugundji and AE(0)-
compacta coincide. By [21], the classes of openly generated and κ-metrizable com-
pacta coincide. It is well-known that each compact topological group is Dugundji
compact. Each Dugundji compact is openly generated and each openly generated
compact space of weight ≤ ℵ1 is Dugundji [21]. Each κ-adic compact space has
countable cellularity [21]. The hyperspace exp({0, 1}ℵ2) is openly generated but
not Dugundji, see [21], [20].

The spectral characterization of openly factorizable spaces from Corollary 3.4
implies that each openly generated compact space is openly factorizable. The
simplest example of an openly factorizable compact space which is not openly
generated is the ordinal space [0, ω1]. It is not openly generated because has
uncountable cellularity. By the same reason, [0, ω1] is not κ-adic.
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Thus we have the following chain of implications:

compact
topological

group
⇒

Dugundji
compact

⇔ AE(0)-compact ⇒

⇑

dyadic ⇒

κ-metrizable ⇔

κ-adic

⇑

openly
generated

⇒
openly

factorizable

Let us observe that the classes of openly generated and openly factorizable
compact spaces are preserved by open normal functors in the sense of Shchepin
[21], see also [22]. This allows us to construct many openly factorizable compacta
failing to be Dugundji compact.

There is another chain of important classes of compact spaces, that is “ortho-
gonal” to the chain of classes considered above.

We recall that a compact space X of weight κ is

(1) Corson compact if X embeds into the Σ-product of lines

Σ = {(xα) ∈ R
κ : |{α ∈ κ : xα 6= 0}| ≤ ℵ0} ⊂ R

κ;

(2) Eberlein compact if X embeds into the subspace

Σ0 = {(xα) ∈ R
κ : ∀ ε > 0 |{α ∈ κ : |xα| < ε}| < ℵ0} ⊂ R

κ;

(3) Valdivia compact if X embeds into R
κ so that X ∩ Σ is dense in X .

Those properties relate as follows:

Eberlein compact ⇒ Corson compact ⇒ Valdivia compact.

Each Eberlein compact with countable cellularity is metrizable [1]. So the
classes of Eberlein compacta and κ-adic compacta intersect by the class of metriz-
able compacta.

Problem 6.1. Is each openly factorizable Eberlein (or Corson) compact space

metrizable?

According to [12] or [13], a scattered linearly ordered compact space X is
Valdivia compact if and only if X has weight ≤ ℵ1, each non-Gδ-point of X is
isolated from one side, and each closed first-countable subset of X is metrizable.
This characterization combined with Corollary 5.2 implies:

Corollary 6.2. If a scattered linearly ordered compactum is Valdivia compact,

then it is openly factorizable.

On the other hand,

• the compactified long line of weight ℵ1 is Valdivia compact but is not
openly factorizable;

• the one-point compactification αℵ1 of a discrete space of cardinality ℵ1

is scattered Eberlein (and thus Valdivia) compact but it is not openly
factorizable (by Theorem 4.1);
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• the space made from [0, ω1]⊕[0, ω] by collating ω1 and ω is neither Valdivia
compact nor openly factorizable;

• the space made from [0, ω1] ⊕ [0, ω1] by collating the points ω1 is openly
factorizable (by Theorem 5.1) but is not Valdivia compact.
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