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On weakly monotonically monolithic spaces

Liang-Xue Peng

Abstract. In this note, we introduce the concept of weakly monotonically mo-
nolithic spaces, and show that every weakly monotonically monolithic space is
a D-space. Thus most known conclusions on D-spaces can be obtained by this
conclusion. As a corollary, we have that if a regular space X is sequential and
has a point-countable wcs∗-network then X is a D-space.

Keywords: D-space, sequential space, wcs
∗-network, weakly monotonically mo-

nolithic space

Classification: Primary 54F99; Secondary 54G99

1. Introduction

The notion of a D-space was first investigated by van Douwen and Pfeffer in [6].
A neighborhood assignment for a space X is a function φ from X to the topology
of the space X such that x ∈ φ(x) for any x ∈ X . A space X is called a D-space if
for any neighborhood assignment φ for X there exists a closed discrete subspace
D of X such that X =

⋃
{φ(d) : d ∈ D} (cf. [6]). By results of [3], we know

that all semi-stratifiable spaces and all metrizable spaces are D-spaces. We also
know that the union of a finite family of metrizable subspaces is a D-space and
every space with a point-countable base is a D-space by results of [1] and [2],
respectively.

In [5], it was proved that Cp(X) is hereditarily a D-space if X is compact.
Some sufficiencies of D-spaces were discussed in [4], [8], [9], [16] and [19]. Let us
recall that a space is called monolithic if nw(A) ≤ max{|A|, ω} for any A ⊂ X .
By results of [5] and [9], we know that many monolithic spaces have D-property.
Thus V.V. Tkachuk introduced the concept of monotonically monolithic spaces
in [19]. It was proved that every monotonically monolithic space is hereditarily
a D-space (cf. [19]). Thus every Lindelöf Σ-space is hereditarily a D-space (cf. [9]
and [19]).

In [4] and [15], it was proved that a space with a point-countable weak base
is a D-space. In [16], Peng proved that a space with a point-countable cs∗-
network is a D-space. In this paper, the idea of [19] and [16] is generalized and
we introduce the concept of weakly monotonically monolithic spaces. It is proved
that every weakly monotonically monolithic space is a D-space. Thus we have
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134 L.-X.Peng

that if a regular space X is sequential and has a point-countable wcs∗-network
then X is a D-space. In fact, most known results on D-spaces can be obtained
by the conclusions of the paper.

All the spaces in this note are at least T1-spaces. Let N be the set of all natural
numbers and ω = N∪{0}. In notation and terminology we will follow [7] and [10].

2. Main results

Definition 1 (cf. [19]). Given a set A in a space X say that a family N of subsets
of X is an external network of A in X if for any x ∈ A and U the neighborhood
of x there exists B ∈ N such that x ∈ B ⊂ U . If A = {x} for some x ∈ X and
N is an external network of A in X , then we say that N is an external network

of x.

Definition 2 (cf. [19]). We say that a space X is monotonically monolithic if for
any A ⊂ X we can assign an external network O(A) to the set A in such a way
that the following conditions are satisfied:

(1) |O(A)| ≤ max{|A|, ω};
(2) if A ⊂ B ⊂ X then O(A) ⊂ O(B);
(3) if α is an ordinal and we have a family {Aβ : β < α} of subsets of X such

that β < β′ < α implies Aβ ⊂ Aβ′ then O(
⋃

β<α Aβ) =
⋃

β<α O(Aβ).

Definition 3. We say that a space X is weakly monotonically monolithic if for
any A ⊂ X we can assign an external network W(A) of A in such a way that the
following conditions are satisfied:

(1) |W(A)| ≤ max{|A|, ω};
(2) if A ⊂ B ⊂ X then W(A) ⊂ W(B);
(3) if α is an ordinal and we have a family {Aβ : β < α} of subsets of X such

that β < β′ < α implies Aβ ⊂ Aβ′ then W(
⋃

β<α Aβ) =
⋃

β<α W(Aβ);

(4) If A ⊂ X is not closed in X then there is some x ∈ A \A such that W(A)
is an external network of x.

Every monotonically monolithic space is a weakly monotonically monolithic
space. We also know that if a monotonically monolithic space X is separable
then X is hereditarily separable and hereditarily Lindelöf.

Example 4. Let X = R, Q = {xn : n ∈ N} be the set of all rational numbers of
the real set R and I = R \ Q.

For each n ∈ N, let B(xn) = {{xn}} be a neighborhood base of the point xn.
For each x ∈ I, let B(x) = {{x} ∪ A : A ⊂ Q and Q \ A is finite } be

a neighborhood base of the point x. We denote the topology of X by T . Thus
(X, T ) is a T1-space and I is a closed discrete subspace of X . So (X, T ) is separable
but it is not Lindelöf. Thus it is not monolithic.

Let y1 ∈ I. For each B ⊂ X , we let W(B) = {{x} : x ∈ B} if B ⊂ I, otherwise
W(B) = {{x} ∪ {y1} : x ∈ B}

⋃
{{x} : x ∈ B}.
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We can see that W witnesses weak monotonic monolithity of X . Thus X is a
weakly monotonically monolithic T1-space but it is not a monotonically monolithic
space.

Let us recall that a family F of subsets of X is a cs∗-network of X , if for any
sequence {xn}n∈N which converges to a point x and for any open set U which
contains x, there is some F ∈ F such that x ∈ F ⊂ U and |{n : xn ∈ F}| = ω
(cf. [13] and [14]). A space is called sequential if for any non-closed subset A of
X , there exists a sequence {xn}n∈N, xn ∈ A for each n ∈ N, such that {xn}n∈N

converges to a point x ∈ A \ A. We also know that every space with a point-
countable weak base is sequential and has a point-countable cs∗-network.

Lemma 5. If X is a sequential space with a point-countable cs∗-network, then

X is a weakly monotonically monolithic space.

Proof: Let F be a point-countable cs∗-network of X . For any A ⊂ X , we let
W(A) = {F : F ∩ A 6= ∅ and F ∈ F}. By the sequential property we see that
W(A) satisfies the conditions which appear in the Definition 3. �

Corollary 6. Let X be a space. If X has a point-countable weak base, then X
is a weakly monotonically monolithic space.

Example 7 ([11, Example 9.3). Let S = { 1

n
: n ∈ N} ∪ {0} and Y = [0, 1] × S.

Let Y ′ = [0, 1] × { 1

n
: n ∈ N} have the usual Euclidean topology as a subspace

of [0, 1] × S. Define a typical neighborhood (t, 0) in Y to be the form {(t, 0)} ∪
(
⋃
{U(t, 1

k
) : k ≥ n}), where U(t, 1

k
) is a neighborhood of (t, 1

k
) in [0, 1]× { 1

k
}.

In [11], it is pointed out that Y is a completely regular separable space but it
is not Lindelöf, and it is also pointed out that Y is a two-to-one quotient image of
the topological sum M of compact metric spaces {[0, 1]×{ 1

n
} : n ∈ N}∪{{t}×S :

t ∈ [0, 1]}.
The space Y has a point-countable weak base (this is pointed out in [12, p. 26]).

So we know that the space Y is not a monotonically monolithic space but Y is a
weakly monotonically monolithic regular space by Corollary 6.

In [12], Lin did not give a proof that the space Y has a point-countable weak
base. To assist the reader, we give a short proof.

Let f : M → Y be the two-to-one quotient map, where M is the topological
sum of compact metric spaces {[0, 1] × { 1

n
} : n ∈ N} ∪ {{t} × S : t ∈ [0, 1]}. For

each y ∈ Y , we let y = (a1, a2). Suppose {yn}n∈N is a sequence of Y such that
{yn}n∈N converges to the point y and we assume that yn 6= y for each n ∈ N.

(1) If a2 6= 0 then there is some m ∈ N such that yn ∈ [0, 1] × {a2} for
each n > m, since Y is determined by the collection {[0, 1] × { 1

n
} : n ∈

N} ∪ {{t} × S : t ∈ [0, 1]}.
(2) If a2 = 0 then there is some m ∈ N such that yn ∈ {a1} × S for each

n > m, since [0, 1] × {0} is a closed discrete subspace of Y and Y is
determined by the collection {[0, 1]×{ 1

n
} : n ∈ N}∪ {{t}×S : t ∈ [0, 1]}.

Thus we have the following conclusion:
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If y ∈ Y then there is some point xy ∈ f−1(y) such that whenever a sequence
{yn}n∈N of Y converges to the point y and yn 6= y for each n ∈ N then there is
a sequence {xn}n∈N of X such that the sequence {xn}n∈N converges to the point
xy and xn ∈ f−1(yn) for each n ∈ N. (This is pointed out in [12, p. 26]).

Let B be a point-countable base of M . For each y ∈ Y , let B′

y = {B : xy ∈ B
and B ∈ B} and let B∗

y = {f(B) : B ∈ B′

y}. We will show that B∗ =
⋃
{B∗

y : y ∈
Y } is a point-countable weak base of Y .

We only need to prove that U is open if for any y ∈ U there is some B∗ ∈ B∗

y

such that y ∈ B∗ ⊂ U .
Suppose U is not open. Then there is a sequence {yn}n∈N such that {yn}n∈N

converges to a point y ∈ U and yn /∈ U for each n ∈ N, since Y is sequential. Thus
there is a sequence {xn}n∈N of M such that xn ∈ f−1(yn) and {xn}n∈N converges
to xy. There is some B∗ ∈ B∗

y such that y ∈ B∗ ⊂ U . We let B∗ = f(B) for some
B ∈ B′

y. Thus xy ∈ B, and hence there is some m ∈ N such that xn ∈ B for each
n > m. So yn = f(xn) ∈ f(B) = B∗ ⊂ U . This contradicts yn /∈ U . Thus B∗ is a
weak base of Y . Since B is point-countable and |f−1(y)| = 2 for each y ∈ Y , we
know that B∗ is point-countable in Y . Thus Y has a point-countable weak base.

A family P of subsets of X is called a wcs∗-network of X if for any sequence
{xn}n∈N which converges to a point x, and any open set U which contains x,
there is some P ∈ P such that P ⊂ U and |{n : xn ∈ P}| = ω (cf. [14]). We know
that every k-network of X is a wcs∗-network of X and if X is regular and P is a
wcs∗-network of X then {P : P ∈ P} is a cs∗-network of X .

Example 8 ([18, Example 78]). Let T be the usual Euclidean topology of R2.
Let S1 = {(x, y) : x, y ∈ R, y > 0}, L = {(x, 0) : x ∈ R} and X = S1 ∪ L. Let
T ∗ = {T |X}∪{{x}∪ (S1∩U) : x ∈ L, x ∈ U and U ∈ T }, where T |X = {U ∩X :
U ∈ T }. The space (X, T ∗) is a non-regular T2-space.

In [12, p. 28], it is pointed out that the space X which appears in Example 8 has
a locally countable k-network but it has no point-countable cs∗-network. Thus it
has a point-countable wcs∗-network but it has no point-countable cs∗-network.

Lemma 9. If a regular space X is sequential and has a point-countable wcs∗-
network, then X is a weakly monotonically monolithic space.

Proof: Let F be a point-countable wcs∗-network of X . For any A ⊂ X , let
W(A) = {F : F ∩ A 6= ∅ and F ∈ F}. We see that W(A) satisfies the conditions
which appear in the Definition 3, since X is regular and sequential. �

Similarly to Definition 2.11 from [19], we have:

Definition 10. Assume that Y is a weakly monotonically monolithic space and
fix an operator W which witnesses that. Let φ be any neighborhood assignment
on X . For every P ⊂ X , we denote P ∗ = {x : x ∈ P and P ⊂ φ(x)}. For any
open set U ⊂ X say that a set A ⊂ X is U -saturated if P ∗ ⊂ φ(A) ∪ U for any
P ∈ W(A), where φ(A) =

⋃
{φ(x) : x ∈ A}. If U = ∅ then U -saturated sets will

be called saturated .
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Lemma 11. Let φ be any neighborhood assignment for X . If X is a weakly

monotonically monolithic space, A ⊂ X is a countable closed discrete subspace

of X and U is any open subset of X , then there is a closed discrete subspace

B ⊂ X \ U ∪ φ(A), such that A ∪ B is U -saturated and |B| ≤ ω.

Proof: X is a weakly monotonically monolithic space. We fix an operator W
which witnesses that. Let F∗

0 = {P ∗ : P ∈ W(A)}. Thus F∗

0 is a countable
family. Enumerate it by prime numbers p. We take the first member F ∗ of F∗

0

such that F ∗ \ U ∪ φ(A) 6= ∅. We choose a point x1 ∈ F ∗ \ U ∪ φ(A). Then
F ⊂ φ(x1). The family W(A ∪ {x1}) is countable. We denote F∗

1 = {F ∗ : F ∈
W(A ∪ {x1}) \W(A)}. We enumerate F∗

1 by the squares p2 of prime numbers.
Suppose we have finished n steps. We have φ(A), U ∪ φ(A ∪ {x1}), . . . , U ∪

φ(A∪{x1, . . . , xn}), and families F∗

i of subsets of X , the family F∗

i is enumerated
by the i-th powers of prime numbers for each 0 ≤ i ≤ n.

If U∪φ(A∪{x1, . . . , xn}) = X , then we stop the induction and let B = {xi : 1 ≤
i ≤ n}. So we assume that U∪φ(A∪{x1, . . . , xn}) 6= X . If

⋃
{
⋃
F∗

i : 0 ≤ i ≤ n} is
contained in U ∪φ(A∪{x1, . . . , xn}) then we choose a point xn+1 ∈ X \U ∪φ(A∪
{x1, . . . , xn}). If

⋃
{
⋃
F∗

i : 0 ≤ i ≤ n}\(U∪φ(A∪{x1, . . . , xn})) 6= ∅ then we take
the first member F ∗ of

⋃
{F∗

i : 0 ≤ i ≤ n} such that F ∗\U∪φ(A∪{x1 , . . . , xn}) 6=
∅ and choose a point xn+1 ∈ F ∗\U∪φ(A∪{x1, . . . , xn}). Thus F ∗ ⊂ F ⊂ φ(xn+1).
We let F∗

n+1 = {F ∗ : F ∈ W(A ∪ {x1, . . . , xn+1}) \ W(A ∪ {x1, . . . , xn})} and
enumerate it by the (n + 1)-st powers of prime numbers.

In this way, we have a set B = {xn : n ∈ N} and B ⊂ X \ U ∪ φ(A). To prove
that B is a closed discrete subspace of X , we only need to prove that B is closed
since xm /∈ φ(xn) whenever m > n.

Suppose B\B 6= ∅. Then there is some x ∈ B\B such that W(B) is an external
network of x. Thus there is some P ∈ W(B) such that x ∈ P ⊂ φ(x) and hence
x ∈ P ∗. Since B =

⋃
{{x1, . . . , xn} : n ∈ N} ⊂

⋃
{A ∪ {x1, . . . , xn} : n ∈ N}, we

see that P ∈ W(
⋃
{A ∪ {x1, . . . , xn} : n ∈ N}). So P ∈ W(A ∪ {x1, . . . , xn}) for

some n ∈ N. Thus P ∗ ∈ F∗

i for some 0 ≤ i ≤ n. So there is some m > n such

that P ∗ ⊂ U ∪ φ(A ∪ {x1, . . . , xm}). Thus x ∈ φ(A ∪ {x1, . . . , xm}). So x /∈ B.
This contradicts the fact x ∈ B. So B is closed and hence it is a closed discrete
subspace of X and B ⊂ X \ U ∪ φ(A), |B| ≤ ω.

For any P ∈ W(A ∪ B), since A ∪ B =
⋃
{A ∪ {x1, . . . , xn} : n ∈ N}, we have

P ∈ W(A ∪ {x1, . . . , xn}) for some n ∈ N. Hence P ∗ ∈ F∗

i for some 0 ≤ i ≤ n.
So P ∗ will be covered by U ∪ φ(A ∪ {x1, . . . , xm}) for some m > n. Thus A ∪ B
is U -saturated. �

Lemma 12. Let φ be any neighborhood assignment for X . If X is a weakly

monotonically monolithic space and A ⊂ X is a closed discrete subspace of X
and U is any open subset of X , then there is a closed discrete subspace D ⊂
X \ U ∪ φ(A), such that A ∪ D is U -saturated and |D| ≤ max{|A|, ω}.

Proof: We will use induction on the cardinal κ = |A|. If |A| ≤ ω, then it is true
by Lemma 11. Now assume that κ is an uncountable cardinal and our theorem is
proved whenever U an open subset of X and A ⊂ X , |A| < κ.
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Take an arbitrary set A ⊂ X such that |A| = κ and let A = {xα : α < κ}.
Let Aα = {xβ : β < α} for each α ∈ [ω, κ) and let U ′ = U ∪ φ(A). Proceeding
inductively assume that ω < α < κ and we have a family {Dβ : ω ≤ β < α} of
closed discrete subspaces of X with the following properties:

(1) Aω ∪ Dω is U ′-saturated;
(2) If ω < β < α then Uβ = U ′ ∪ φ(

⋃
{Dγ : ω ≤ γ < β), Dβ ⊂ X \ Uβ and

|Dβ | ≤ |β|;
(3) If Bβ = Aβ∪(

⋃
{Dγ : ω ≤ γ < β}) then Bβ∪Dβ is Uβ-saturated whenever

ω < β < α;
(4) The set

⋃
{Dγ : ω ≤ γ < β} is a closed discrete subspace of X for each

β ∈ (ω, α).

We first prove that
⋃
{Dβ : ω ≤ β < α} is a closed discrete subspace of X . We

only need to prove that
⋃
{Dβ : β < α} is a closed subspace of X . If α = γ + 1,

then
⋃
{Dβ : ω ≤ β < α} =

⋃
{Dβ : ω ≤ β < γ} ∪ Dγ . The sets Dγ and⋃

{Dβ : ω ≤ β < γ} are closed discrete and hence
⋃
{Dβ : ω ≤ β < α} is closed

discrete. Let α be a limit ordinal. Suppose
⋃
{Dβ : ω ≤ β < α} is not closed

in X . Then there is some x ∈
⋃
{Dβ : ω ≤ β < α} \

⋃
{Dβ : ω ≤ β < α} such

that W(
⋃
{Dβ : ω ≤ β < α}) is an external network of the point x. So there is

some P ∈ W(
⋃
{Dβ : ω ≤ β < α}) such that x ∈ P ⊂ φ(x) and hence x ∈ P ∗.

The set
⋃
{Dβ : ω ≤ β < α} ⊂

⋃
{Aβ ∪ (

⋃
{Dγ : ω ≤ γ ≤ β}) : ω ≤ β < α}, so

P ∈ W(Aβ1
∪ (

⋃
{Dγ : ω ≤ γ ≤ β1})) for some β1 ∈ [ω, α).

The set Aβ1
∪ (

⋃
{Dγ : ω ≤ γ ≤ β1}) is Uβ1

-saturated, so P ∗ ⊂ Uβ1
∪ φ(Dβ1

)
and hence x ∈ U ′ ∪ φ(Aβ1

∪ (
⋃
{Dγ : ω ≤ γ ≤ β1})). We have x ∈ φ(

⋃
{Dγ : ω ≤

γ ≤ β1}), since x ∈
⋃
{Dβ : ω ≤ β < α} \

⋃
{Dβ : ω ≤ β < α} and U ′ ∩ (

⋃
{Dβ :

ω ≤ β < α}) = ∅. Let γx be the smallest ordinal such that x ∈ φ(Drx
). Since

x ∈
⋃
{Dβ : ω ≤ β < α}, we see that γx 6= ω. The set

⋃
{Dγ : ω ≤ γ < γx} is a

closed discrete subspace of X by induction and x /∈ φ(
⋃
{Dγ : ω ≤ γ < γx}). If

Vx = (X \
⋃
{Dγ : ω ≤ γ < γx})∩φ(Dγx

)∩Ox, where x ∈ Ox and |Ox ∩Dγx
| ≤ 1

for an open set Ox, then |Vx ∩ (
⋃
{Dβ : ω ≤ β < α})| ≤ 1. This contradicts

x ∈
⋃
{Dβ : ω ≤ β < α} \

⋃
{Dβ : ω ≤ β < α}. Thus

⋃
{Dβ : ω ≤ β < α} is a

closed discrete subspace of X .
Let Uα = U ′∪φ(Aα∪(

⋃
{Dβ : ω ≤ β < α})), so |Aα∪(

⋃
{Dβ : ω ≤ β < α})| ≤

|α| < κ and Aα ∪ (
⋃
{Dβ : ω ≤ β < α}) ⊂ Uα. Thus by induction, there exists a

closed discrete subspace Dα ⊂ X \Uα such that (Aα∪(
⋃
{Dβ : ω ≤ β < α}))∪Dα

is Uα-saturated.
If D =

⋃
{Dα : ω ≤ α < κ} then D ⊂ X \ U ∪ φ(A) and |D| ≤ κ. In what

follows, we show that D is a closed discrete subspace of X .
For any β ∈ (ω, κ), the set

⋃
{Dα : ω ≤ α < β} is closed and φ(Dβ) ∩ Dγ = ∅

for any γ ∈ (β, κ). Thus to prove that D is a closed discrete subspace of X
we only need to prove that D is closed in X . Suppose D is not closed; then
there is some x ∈ D \ D such that W(D) is an external network of x. Since⋃
{Dγ : ω ≤ γ < β} is closed discrete for each β < κ, we can see that x /∈ φ(D).

There is some P ∈ W(D) such that x ∈ P ⊂ φ(x) and hence x ∈ P ∗. The set
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D ⊂
⋃
{Aα ∪ (

⋃
{Dβ : ω ≤ β ≤ α}) : ω ≤ α < κ}, so there exists some γ < κ

such that P ∈ W(Aγ ∪ (
⋃
{Dβ : ω ≤ β ≤ γ})). Let Uγ = U ′ ∪ φ(Aγ ∪ (

⋃
{Dβ :

ω ≤ β < γ})), we know that Aγ ∪ (
⋃
{Dβ : ω ≤ β < γ})∪Dγ is Uγ-saturated. So

P ∗ ⊂ U ′ ∪ φ(Aγ ∪ (
⋃
{Dβ : ω ≤ β ≤ γ})). Thus x ∈ φ(D). This contradicts the

fact x /∈ φ(D). So D is a closed discrete subspace of X and D ⊂ X \ U ′.
Consider the set A ∪ D =

⋃
{Aα ∪ (

⋃
{Dβ : ω ≤ β ≤ α}) : ω ≤ α < κ}. For

any P ∈ W(A ∪ D), there exists some α < κ such that P ∈ W(Aα ∪ (
⋃
{Dβ :

ω ≤ β ≤ α})). The set Aα ∪ (
⋃
{Dβ : ω ≤ β ≤ α}) is Uα-saturated. Thus

P ∗ ⊂ U ′ ∪ φ(Aα ∪ (
⋃
{Dβ : ω ≤ β ≤ α})) ⊂ U ∪ φ(A ∪ D). Thus A ∪ D is

U -saturated and |D| ≤ max{|A|, ω}. �

Corollary 13. Let X be a space and φ be a neighborhood assignment for X . If

X is a weakly monotonically monolithic space and A is a closed discrete subspace

of X , then there is a closed discrete subspace D ⊂ X \ φ(A) such that A ∪ D is

saturated.

Theorem 14. If X is a weakly monotonically monolithic space, then X is a

D-space.

Proof: Let |X | = κ and X = {xα : α ∈ κ}. Let φ be any neighborhood
assignment for X and D0 = {x0}. Then by Corollary 13 there is a closed discrete
subspace D′

1 ⊂ X \ φ(D0) such that D0 ∪ D′

1 is saturated. Let D1 = D0 ∪ D′

1 if
x1 ∈ φ(D0 ∪ D′

1), otherwise D1 = {x1} ∪ D0 ∪ D′

1.
Let 0 < α < κ and assume we have closed discrete subspaces Dβ and D′

β for
each β < α such that:

(1) D′

0 = ∅;
(2) Dβ1

⊂ Dβ2
if β1 < β2 < β;

(3) xβ ∈ φ(Dβ);
(4)

⋃
{Dγ : γ < β} is closed discrete and D′

β ⊂ X \φ(
⋃
{Dγ : γ < β}) is such

that
⋃
{Dγ : γ < β} ∪ D′

β is saturated;

(5) Dβ =
⋃
{Dγ : γ < β} ∪ D′

β if xβ ∈ φ(
⋃
{Dγ : γ < β} ∪ D′

β), otherwise

Dβ =
⋃
{Dγ : γ < β} ∪ D′

β ∪ {xβ}.

In what follows, we will show that
⋃
{Dβ : β < α} is a closed discrete subspace

of X .
If α = γ + 1 for some γ then

⋃
{Dβ : β < α} =

⋃
{Dβ : β < γ} ∪ Dγ is

a closed discrete subspace of X . If α is a limit ordinal and
⋃
{Dβ : β < α} is

not closed, then there is some x ∈
⋃
{Dβ : β < α} \

⋃
{Dβ : β < α} such that

W(
⋃
{Dβ : β < α}) is an external network of the point x. So there is some

P ∈ W(
⋃
{Dβ : β < α}) such that x ∈ P ⊂ φ(x) and hence x ∈ P ∗. We know

that W(
⋃
{Dβ : β < α}) =

⋃
{W(Dβ) : β < α}. So P ∈ W(Dβ1

) for some
β1 < α. The set Dβ1

∪ D′

β1+1
is saturated. Thus P ∗ ⊂ φ(Dβ1

∪ D′

β1+1
) and

hence x ∈ φ(Dβ1+1). Thus φ(Dβ1+1) ∩ D′

γ = ∅ for any γ ∈ (β1 + 1, κ). The set

Dβ1+1 is a closed discrete subspace of X , so x /∈
⋃
{Dβ : β < α}. This contradicts

x ∈
⋃
{Dβ : β < α}. So

⋃
{Dβ : β < α} is a closed discrete subspace of X .
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Thus there is a closed discrete subspace D′

α ⊂ X \φ(
⋃
{Dβ : β < α}) such that⋃

{Dβ : β < α}∪D′

α is saturated by Corollary 13. Let Dα =
⋃
{Dβ : β < α}∪D′

α

if xα ∈ φ(
⋃
{Dβ : β < α} ∪ D′

α), otherwise Dα =
⋃
{Dβ : β < α} ∪ D′

α ∪ {xα}.
Let D =

⋃
{Dα : α < κ}. We see that X =

⋃
{φ(d) : d ∈ D}. For each x ∈ X ,

let αx = min{α : x ∈ φ(Dα)}. Thus φ(Dαx
) ∩ D′

β = ∅ for each β ∈ (αx, κ). Let

Ox be an open set of x such that |Ox ∩Dαx
| ≤ 1. Thus |(Ox ∩ φ(Dαx

))∩D| ≤ 1.
Thus D is a closed discrete subspace of X . So X is a D-space. �

By Lemma 9 and Theorem 14, we have:

Corollary 15. If a regular space X is sequential and has a point-countable wcs∗-
network, then X is a D-space.

Theorem 16. Let X be a space and F(x) be a countable family of subsets of

X for each x ∈ X . If for any non-closed subset A ⊂ X there exists some point

x ∈ A \A such that for every open neighborhood U of x there exists some y ∈ A
and some F ∈ F(y) such that x ∈ F ⊂ U , then X is a D-space.

Proof: For any A ⊂ X , we let W(A) =
⋃
{F(a) : a ∈ A}. We can see that W

witnesses weak monotonic monolithity of X . Thus X is a weakly monotonically
monolithic space and hence X is a D-space by Theorem 14. �

Recall that a space X satisfies open (G) if each point x ∈ X has a countable
neighborhood base Bx such that whenever x ∈ A and N(x) is a neighborhood
of x, then there is an a ∈ A and B ∈ Ba for which x ∈ B ⊂ N(x).

By Theorem 16, we have:

Corollary 17 (cf. [9]). Any space satisfying open (G) is a D-space.

Corollary 18 (cf. [16]). Let a space X have a point-countable family F of subsets

of X , such that for any non-closed subset A ⊂ X there exists some point x ∈ A\A
such that for every open neighborhood U of x there exists some F ∈ F with

x ∈ F ⊂ U and F ∩ A 6= ∅. Then X is a D-space.

If X is a sequential space and x ∈ W ⊂ X we say that W is a weak-neighborhood

of x if whenever a sequence {xn}n∈N converges to x then {xn}n∈N is eventually
in W . A collection W of subsets of a sequential space X is said to be a W-system
for the topology if whenever x ∈ U ⊂ X , with U open, there exists a subcollection
V ⊂ W such that x ∈

⋂
V ,

⋃
V is a weak-neighborhood of x and

⋃
V ⊂ U (cf. [4]).

Corollary 19 (cf. [4]). A sequential space with a point-countable W-system is a

D-space.

Corollary 20 (cf. [4] and [15]). If X has a point-countable weak base, then X
is a D-space.

By Lemma 5 and Theorem 14, we have:

Corollary 21 (cf. [16]). If X is a sequential space with a point-countable cs∗-
network, then X is a D-space.
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Every k-network of X is a wcs∗-network of X , so by Lemma 9 and Theorem 14,
we have:

Corollary 22 (cf. [17]). If a regular space X is sequential and has a point-

countable k-network, then X is a D-space.

Every monotonically monolithic space is a weakly monotonically monolithic
space and every subspace of monotonically monolithic space is monotonically
monolithic. So we have:

Corollary 23 (cf. [19]). If X is a monotonically monolithic space, then X is

hereditarily a D-space.
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