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KYBERNETIKA — VOLUME 46 (2010), NUMBER 1, PAGES 50-67

A VALUE BASED ON MARGINAL CONTRIBUTIONS
FOR MULTI-ALTERNATIVE GAMES
WITH RESTRICTED COALITIONS

SATOSHI MASUYA AND MASAHIRO INUIGUCHI

This paper deals with cooperative games with n players and r alternatives which are
called multi-alternative games. In the conventional multi-alternative games initiated by
Bolger, each player can choose any alternative with equal possibilities. In actual social life,
there exist situations in which players have some restrictions on their choice of alternatives.
Considering such situations, we study restricted multi-alternative games. A value for a
given game is proposed.

Keywords: game theory, cooperative game, multi-alternative game, restricted game,
Banzhaf value

Classification: 91A12

1. INTRODUCTION

The cooperative game theory provides useful tools to analyze cost allocation, voting
power, and so on. The problems to be analyzed by the cooperative game theory
include n entities called players and are usually expressed by characteristic functions
called games which map each subset of players to a real number. The solutions to the
problems are given by value functions which assign a real number to each player.
The real number called a value can show the cost borne by the player, power of
influence, and so on depending on the problem setting. Several value functions have
been proposed. As representative examples of value functions, the Shapley value [9]
and the Banzhaf value [1, 6] are well-known. Each of them is uniquely specified by
reasonable axiom systems.

In the conventional cooperative games, each player can take one from two options:
cooperate and non-cooperate. However, in the real world problems, we may face a
decision problem to choose one from several options. From this point of view, it
is worthwhile to treat cooperative games in which each player has r options. Then
multi-alternative games also called games with r alternatives have been proposed
by Bolger [4]. A multi-alternative game is expressed by a generalized characteristic
function which maps an arrangement showing all players’ choices to an r-dimensional
real vector. Bolger [4] proposed a generalized value function which maps a multi-
alternative game to an n-dimensional real vector whose ¢th component shows the
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value of player i. This function is a generalization of the Shapley function. On the
other hand, Ono [8] proposed a multi-alternative Banzhaf value (an MBZ value) as
a generalization of the Banzhaf value.

The value functions/generalized value functions described above are considered
under the assumption that all coalitions/arrangements are formed with equal possi-
bilities. In the real world, there are many cases when this assumption does not hold.
For example, when each player has its own ideology, he/she would be difficult to
cooperate with players having totally different ideologies. Moreover, when a certain
license is necessary to choose an option in a multi-alternative game, players without
the licenses cannot choose it and then some arrangements cannot be realized.

Such asymmetries of players or restrictions on players’ behaviors have been treated
by introduction of the probability or restrictions on coalition/arrangement form-
ing [2, 7]. For example, Myerson [7] introduced a restricted cooperation model
derived from communication situations into the conventional cooperative games.
In this model, only the coalitions which induce connected subgraphs are feasible.
Other restricted cooperation models [2] were also proposed. However, no restricted
cooperation model has been proposed in the framework of multi-alternative games,
so far.

In this paper, we introduce a kind of restriction on arrangements into multi-
alternative games. In our model, the choice of an alternative is restricted, while
coalition forming is often restricted in the conventional restricted games. Such a
restriction can be found in the real world. For example, when a license/skill is
necessary for taking some alternatives, those alternatives cannot be chosen by un-
licensed /unskillful players. Under the restrictions on choices, we propose a value
based on marginal contributions for a given game. The value indicates an evalua-
tion of an alternative by a player under the given game. It is shown that the value
is proportional to the MBZ value when there is no restriction. Further, two axiom
systems are given for the proposed value. One is composed of four axioms concerning
null players, linearity, independence from unrelated players, and proportionality to
welcome degree difference for voting games. The other is composed of four axioms
concerning null players, linearity, proportionality to welcome degree difference for
voting games and relation with arbitrariness.

In Section 2, we briefly introduce an extended multi-alternative games and related
concepts given by Tsurumi et al. [10] and Bolger [4] and the Bolger value and the
MBZ value are presented. In Section 3, we propose a restricted situation which
is called a restricted choice situation and a value for multi-alternative games with
the restricted situation. Further, related concepts and properties are presented. In
Section 4, the proposed value is axiomatized. Two axiom systems are proposed. In
Section 5, we give a numerical example which is called “Job Selection Game” to
exemplify the usefulness of the restricted multi-alternative games and the proposed
value. The concluding remarks are given in Section 6.
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2. EXTENDED MULTI-ALTERNATIVE GAMES AND PREVIOUS VALUES
2.1. Extended multi-alternative games

In this section, we introduce the extended multi-alternative games proposed by
Tsurumi et al. [10] which are extensions of multi-alternative games (games with
r alternatives) by Bolger [4]. Extended multi-alternative games assume that each
player chooses one from r (r > 2) alternatives or none of them while original multi-
alternative games assume that each player always chooses one alternative. The
extended multi-alternative games are mathematically characterized as follows:

Let N = {1,...,n} be the set of players and R = {1, ..., r} the set of alternatives.
Let I'; be the set of players who have chosen the alternative j € R. A finite sequence
of subsets of players, I' = (I'1,...,I';), is called an arrangement. Each arrangement
I satisfies Ty U---UT,. C Nand Ty, NI, =0 (VE #£1). Let T'g be a subset of players
who have chosen none of alternatives. Then we have I'g = N — U,Ce r k. For the
sake of convenience, we define Ry = {0,1,...,r}. We denote 3k € R,S = T’y by
S eT. For any S € T', we call (S,T") an embedded coalition (ECL). Let E(N, R) be
the set of ECLs and A(N, R) the set of arrangements on N and R. Then a function
v : A(N,R) — R" such that v,(I') = 0 if I'y, = 0 is called an extended multi-
alternative game on N with r alternatives, where v(T') = (v1(T), v2(T),...,v.(T"))
and R is the set of real numbers. Let MG(N, R) be the set of extended multi-
alternative games on N and R.

We note that Bolger [4] defined a multi-alternative game as a function which
maps a pair of a set of players and an arrangement to a real number but we define
an extended multi-alternative game by a payoff function which maps an arrangement
to an r-dimensional vector following Tsurumi et al. [10]. Our definition as well as
Tsurumi et al.’s makes clearer the alternative we evaluate.

In order to exemplify an extended multi-alternative game, we present the follow-
ing example.

Example 1. [Job Selection Game] Three students A, B and C are considering to
work part-time. There are two jobs 1 and 2 but students cannot take both. Then
each student can take one job or nothing. They can take the same job. If only two
students would take different jobs, the remaining student would not get any payoff
but the students taking jobs would get some payoffs independently. The payoff does
not depend on the job taken but on the student taking a job. The payoffs of students
A, B and C would be 8, 6 and 4 units, respectively. If student A would work alone
while students B and C would make the same choice, independent of the job taken
by A, student A would get 5 units as a payoff. If students B and C would work
together while student A would not work with them, independent of the job taken
by them, students B and C would get 18 units as the total payoff. If student B would
work alone while students A and C would make the same choice, independent of the
job taken by B, student B would get 3 units as a payoff. If students A and C would
work together while student B would not work with them, independent of the job
taken by them, students A and C would get 25 units as the total payoff. If student C
would work alone while students A and B would make the same choice, independent
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of the job taken by C, student C would get 1 unit as a payoff. If students A and
B would work together while student C would not work with them, independent of
the job taken by them, students A and B would get 30 units as the total payoff. If
all students A, B and C would work together, independent of the job taken, they
would get 50 units as the total payoff.

This game can be represented by the following extended multi-alternative game
vior k=1,2 with N ={A,B,C} and R = {1,2}:

ve(T) =8, for Ty = {A} and |T';| =1,j=1,2,

() =6, for Ty = {B} and |I';| =1, = 1,2,
(D) =4, for Ty = {C} and |T'j| =1, = 1,2,
ve(T) =5, for Ty = {A} and ({B,C} €T or ) €T),
ve(T) =3, for Ty = {B} and ({4,C} €T or P eT),
ve(T) =1, for Ty = {C} and ({A,B} €T or ) €T),
v (') = 30, for I'y, = {4, B},

ve(T) = 25, for T'y, = {A4,C},

ve(T) = 18, for T'y, = {B,CY},

v (') = 50, for I'y, = N,

vg(T') = 0, for other cases,

where |I';| is the cardinality of T';.

An important class of extended multi-alternative games is the set of voting games
with r alternatives which are called extended multi-alternative voting games. Voting
games with r alternatives are first considered by Bolger [3]. It is assumed that play-
ers can choose none of alternatives in the following description of multi-alternative
voting games while the original multi-alternative voting games by Bolger do not
assume.

There are n players and r alternatives. Let N = {1,...,n} be the set of players
and R = {1,...,r} be the set of alternatives. Each player choose one of the r
alternatives or none of them. We assume that only one alternative is elected. Let
I'; be the set of players who choose alternative j € R. The vector I' = (I'y,...,T';)
becomes an arrangement.

Let ' = (T'y,...,T,) be an arbitrary arrangement. If alternative j € R is elected,
we call (I';,T") a pair of a winning coalition. If alternative j is not elected, we call
(I';,T) a pair of a losing coalition. Let WE be the set of pairs of winning coalitions.
Let LE be the set of pairs of losing coalitions. Then the triple (N, R, WE) is called
a voting game with r alternatives (or a multi-alternative voting game).

A multi-alternative voting game (N, R,WE) can be represented by a multi-
alternative game v as follows:

) 1 if (I'y,I') €e WE,
v =
. 0 otherwise,

(1)

where k € R.
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2.2. Previous axioms and values

We describe axioms proposed previously and previous values for extended multi-
alternative games. These axioms and values were proposed for multi-alternative
games but we describe those with modification suitable for the extended multi-
alternative games. In the modification, we regard an extended multi-alternative

game as a multi-alternative game with (r + 1) alternatives Ry = {0, 1,...,r} where
the set of players with no choice takes zero value for any arrangement.
Let 77 , j =1,...,r, be a vector function which maps a multi-alternative game

to an n-dimensional real vector whose i-th component shows the value of player i.
The ith component of 77 is denoted by 7.
Many axioms have been proposed as described in what follows.

Axiom 1. [j-efficiency] Value 77 satisfies

> wlw) = v(Cvg)s

iEN
where I'(n .y = (0,...,0,N,0,...,0) (N is the (j + 1)th component).

This axiom corresponds to the efficiency axiom in the conventional cooperative
games.

The following three axioms correspond to axioms of null player, linearity and
symmetry in the conventional cooperative games.

Axiom 2. [j-null player] Value n/ satisfies 7 (v) = 0 for any j-null player i € N,
where player ¢ is a j-null player in v if and only if for all arrangements I" satisfying
I'; >4 and for all k # j

v; (1) = v (T77F),

where I'" % is the arrangement obtained by changing player i’s selection to the kth

alternative in ' (i & T'y).

Axiom 3. [linearity] Value 7/ satisfies 7/ (v +w) = 7/ (v) + 7/ (w) and 7/ (cv) =
c-ml(v) for a sum of extended multi-alternative games v+w and a scalar multiplica-
tion of an extended multi-alternative game cv, where, for extended multi-alternative
games v and w, we define v + w and cv by (v + w);[T) = v;(T) + w;(T") and
(ev)j =c-v;(T);5=1,....r.

Axiom 4. [symmetry] Value 7/ satisfies 7/ (v) = 7d(v) if players i and s are
symmetric, where players ¢ € N and s € N are said to be symmetric if and only if
v;(I') = v;(I') with arrangement I obtained by interchange between players ¢ and
s in arrangement I'.

Bolger [4] added another axiom called a pivot move axiom.
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Axiom 5. [pivot move] Value 77 satisfies 7/ (v) = =7 (w) for extended multi-
alternative games v and w such that

Z (v;(T) —v;(T7F)) = Z (w;(T) — w;(T*7%)), for all I such that i € T;.
k#j k#j

This claims that the values of player i to alternative j in games v and w should be
same if sums of marginal contributions to jth alternative in those games are equal.
Moreover, the following axioms were considered.

Axiom 6. [mean of total contribution] Value 7/ satisfies

S ) = ———— i),

Vi

where 77 (v) is the sum of 7/ (v) which shows a contribution of player i to alternative
J by his/her choice, i.e.,

i (v)

>l (v),

iEN

Yo D (D) ().

DEA(N,R):ET; k#j

! (v)

Note that (r 4+ 1)"~!r is the number of all arrangements such that i € T';.

Before describing Axiom 7, let us introduce an S-unanimity game v with S C N.
An S-unanimity game v° is defined by

vS(F) _ 1 if Iy Q'S and j # 0,
0 otherwise.

This is an extended multi-alternative game in which the jth coalition I'; including
S wins regardless of what arrangement occurs.
Now we are ready to introduce two kinds of unanimity axioms.

Axiom 7. Value 7/ satisfies 7/ (v) = 1/|S| for all i € S(C N) and j # 0.

Axiom 8. Value 7/ satisfies 7/ (v5) = 1/(r 4+ 1)!I=1 for all i € S(C N) and j # 0.

The derivations of Axioms 7 and 8 can be explained by two different probabilities
to be a dictator for players in S, where a dictator for alternative j € R is a player
i € N such that v;(I') = 1 if and only if ¢ € T;.

One out of |S| players can be a dictator under the assumption that a coalition
including S forms at the end. Then 1/|S| in Axiom 7 shows the probability to
be a dictator. On the other hand, for a player in S to be a dictator without any
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assumption, he/she needs the agreements in choosing a common alternative of the
other (|S|—1) players in S. The probability of getting the agreements is 1/(r-+1)!511
which appears in Axiom 8. This is also a probability to be a dictator. The major
difference between Axioms 7 and 8 is the following: 7/ (v°) in Axiom 8 depends on
the number of alternatives, 7 while 77 (v%) in Axiom 7 does not.

The Bolger value [4] and the MBZ value [8] have been proposed for multi-
alternative games as extensions of the Shapley value and the Banzhaf value, re-
spectively. These values are axiomatized by some of the axioms described above as
shown below.

Theorem 1. [Bolger [4]] The value function 67 (v), j = 1,...,r defined as follows
is the unique function satisfying Axioms 1 through Axiom 5:

ZOEIED DI it oL U LS RO

DEA(N,R):T; i k#j

Vie N,j€R. (2)

Theorem 2. [Ono [8]] The value function 67(v), j = 1,...,r defined by (2) is the
unique function satisfying Axioms 2,3,5 and 7.

Theorem 3. [Ono [8]] The value function 37(v), j = 1,...,r defined as follows is
the unique function satisfying Axioms 2,3,4,5 and 6:

Bloy=" Y Z +1”1r [0;(T) — v;(T"F)], VieN,jeR. (3)

FeA(N,R):T'j>1 k:;ﬁj

Theorem 4. [Ono [8]] The value function 37 (v), j = 1,...,r defined by (3) is the
unique function satisfying Axioms 2,3,5 and 8.

The difference between the Bolger value and the MBZ value can simply be said as
follows: in the Bolger value, we consider permutations of players in coalitions while
in the MBZ value, we consider only combinations of players in coalitions.

3. THE PROPOSED VALUE FOR RESTRICTED MULTI-ALTERNATIVE
GAMES

In the conventional extended multi-alternative games, each player can choose any
alternative from a given set of alternatives. However, in the real world, there exists
a situation where some alternatives cannot be chosen by all players. For example,
in Job Selection Game described in the previous section, some students cannot take
some jobs due to their inabilities or conflicts with regular lessons. In order to treat
such situations, we formulate restricted games with r alternatives (restricted multi-
alternative games).

In this paper, we consider the restriction on the selection of alternatives for each
player. Let R; be the set of alternatives which player i € N can choose. Obviously,
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we have R, C Ry and 0 € R;, Vi € N. Especially, R; = Ry holds if player i can
choose any alternatives and R; = {0} holds if player i can choose none of alternatives.
Then the set of feasible arrangements, W, is defined by

W ={I'=(Ty,Ty,....,T) |Vje RVieT,; j € R;}. (4)

We call the set of feasible arrangement W a restricted choice situation. Let AR(N, R)
be the set of restricted choice situations. We characterize a multi-alternative game
with a restricted choice situation as a pair (v, W) where v € MG(N,R) and W €
AR(N, R).

In restricted games such as those derived from communication situations by My-
erson [7], restricted situations are focused on the relations among players. However,
in restricted games derived from restricted choice situations, restricted situations are
focused on the ability of each player.

Now, we propose a value for multi-alternative games with restricted choice sit-
uations. For convenience, we define a subset W; ; of a restricted choice situation
W € AR(N, R) where a player ¢ € N chooses the jth alternative by

Wi,j:{FEW|Z‘EI‘j}.

We define a function f7 : MG(N,R) — (RM)ARNR) (5 = 1., r) by its ith
component,

D ﬁ[w(ﬂ—mri%n, W5 £ 0,

{(0)(W) = { FeW keho—{7) (5)

0, otherwise,

Let us interpret the function defined by (5). The term v;(I") — v; (I'"7*) can be
interpreted as the marginal contribution of player ¢ to I'j. |W| shows the number of

feasible arrangements. Therefore, the weight ﬁ means that each feasible arrange-

ment is formed with equal probability. Then f7(v)(W) is the expected value of the
marginal contributions of player i to alternative j in restricted game (v, W).

Theorem 5. When W = A(N, R), the proposed value ) (W) is proportional
to the MBZ value §(v) in (3). More specifically, f/(v)(A(N,R)) = =705 (v).
Namely, the normalized f/(v)(W) equals to the normalized MBZ value of player i

to alternative j.

Proof. itis clear from the definitions of those values. O
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Proposition 1. Let v',v? € MG(N,R) and W € AR(N, R). Then the following
holds.

S @) o) = Y W(I) - ui(I)
keRo—{j} k€Ro—{j}
rizkew ri—zkeWw
for any I' € Wsatisfying ¢ € I';,

= fl (W) = fl(0*)(W) VieN,jeR.
Proof. itis clear from the definition of f7. 0

This proposition is a generalization of Axiom 5 to multi-alternative games with
restricted choice situations. When there are no restrictions of alternatives, this
property is one of axioms of the Bolger value and an MBZ value.

In the rest of this section, we give some concepts associated to the axiom system
of value f7.

First, a concept related to the basis of extended multi-alternative games is pro-
vided as a direct extension of Bolger’s concept. To describe this, we introduce a
game vT defined by

U}“,F(F*):{ 1 ifl :FandFj:T,

0 otherwise,

where v is an extended multi-alternative game, I' is an arrangement and 7T is a
coalition such that 7€ T (T # 0).

Lemma 1. [Bolger [4]] The collection {v7*!'} of all such games serves as a basis for
the vector space of all extended multi-alternative games. Namely, if v is an extended
multi-alternative game, we may write

T.r
U = Z Uj (F)Uj .

Tel, € A(N,R)

Now, we provide some modified concepts for extended multi-alternative games
with restricted choice situations.

Definition 1. [j-null player for restricted multi-alternative games|
Let v € MG(N,R), W € AR(N,R), i € N and j € R. Player i is called a j-null
player on (v, W) if and only if the following holds:

if W; ; # 0 then v;(T") — Uj(Fi_}k) =0, VI eWij,keRy— {j},Fi_’k cwW.
Note that player ¢ is a j-null player if W; ; = 0.

This concept is a generalization of j-null players of Bolger’s multi-alternative
games.
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Definition 2. Let v € MG(N,R), W € AR(N,R) and i € N. Then player i is
called an unrelated player if R; = {0}.

Unrelated players are the players who cannot choose any alternatives and j-null
players for all j € R because W; ; = 0 for all j € R.

4. AXIOMATIC APPROACHES

In this section, we give axioms which are reasonable for a value function to restricted
multi-alternative games. First, we consider four axioms concerning null players, lin-
earity, the independence from unrelated players, and the proportionality to total
deducted welcome difference in voting games. The first two axioms are generaliza-
tions of those of the Bolger value and the MBZ value. That is, Axiom 9 and 10 are
generalizations of Axiom 2 and 3 for multi-alternative games with restricted choice
situations.

Let 77 be a vector function from MG(N, R) into (R™)ARN5)_ The ith component
of 7/ is denoted by m/. Note that for any v,w € MG(N,R), v+w € MG(N,R)
holds.

Axiom 9. [j-null player] Givenv € MG(N,R),i € N,j€ Rand W € AR(N, R),
the following holds:
7 (V)(W) =0 & i is a j-null player on W

Axiom 10. [Linearity] Given v!, v2 € MG(N,R) c1, c2 € Rand W € AR(N, R),
the following holds:

7 (crvt + cav?) (W) = 1 (V1) (W) + con? () (W), j=1,...,7

Axiom 11. [Independence from unrelated players] Let v € MG(N,R) and W €
AR(N,R). Let us add an unrelated player n + 1 to the set of players N, and we
denote v’ the (n 4 1)-person game. Then, the following holds:

(v, W) =7l (v,W), VieN,VjeR.

Axiom 11 means that the value is not changed by the addition of unrelated players
to a game. Note that because R,,+1 = {0}, the set of feasible arrangements W does
not change between the (n 4 1)-person game v’ and the original n-person game v in
Axiom 11.

Axiom 12 described in what follows is a property with respect to multi-alternative
voting games. If I'; changed from a winning coalition to a losing coalition by player
i’s moving from I'; to T'y (kK € Ry — {j}), the movement is called a negatively
influential movement under arrangement I'. On the contrary, if I'; changed from a
losing coalition to a winning coalition by player i’s moving from I'; to I'y, (k € Ro —
{j}), the movement is called a positively influential movement under arrangement
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I'. Under an arrangement I', let M, ;(I'|v) be the number of negatively influential
movements of player ¢ from I'; and ij(l"\v) the number of positively influential
movements of player ¢ from I';. Using M, (I'|v) and Mlﬂ:j(l"\v), we define
Z (M, ;(L|v) = M;rj(l"\v)) if there exists I' such that I'; > 4,
Mij(v) =4 Tl
0 otherwise.

Then Axiom 12 is given as follows.

Axiom 12. [Proportionality to welcome degree difference] Let W € AR(N, R),
e W, i,s € N and j € R, and let v be a voting game with r alternatives. If
M; j(v) — M j(v) =, we have

Let us interpret Axiom 12. First, M, (I'|v) and M:“](F|v) can be interpreted
as welcome and unwelcome degrees of player ¢ to alternative j under arrangement
I, respectively. Then the difference M, (T'|v) — Mf](l"\v) can show the deducted
welcome degree of player i to alternative j under arrangement I'. Accordingly,
M; ;(v) stands for a total deducted welcome degree of ¢ to j, which may indicate
the power to victory of player i by choosing alternative j. Axiom 12 shows that the
difference of values between players 7 and s should be proportional to the difference
between their total deducted welcome degrees, more specifically, it should be the
ratio of the difference between their total deducted welcome degrees to the number
of feasible arrangements.

Theorem 6. Function f7, j =1,...,r defined by (5) is the unique function which
satisfies Axioms 9 through 12.

Proof. By definition of f7, it is easy to show that the function f7 satisfies Axioms 9

through 12. Hence, we prove that 7/ : MG(N, R) — (R™)AFNR) j — 1 7 which
satisfies Axioms 9 through 12 is nothing but f7, j =1,...,r.

Let v e MG(N,R), W € AR(N,R), T € W and T € T". From Axiom 11, we can
assume that at least one unrelated player is included in the set of players without loss
of generality. Note that the value of an unrelated player is zero, i.e., ! (v)(W) =0
from Axiom 9 because an unrelated player is a j-null player for all j € R.

First, we consider 7/ (vT"T')(W) for all i € N when T'=T;.

For player i € N, there are four possibilities: (i) ¢ is an unrelated player, (ii)
i€ T, (iii) i € I, =T for some I'' € W and (iv) j ¢ R;, where I} is the jth
component of T,

In case (i): because player i is an unrelated player, from definition, M; ;(v*!) = 0
(j # 0) and, from Axiom 9, 7 (v""F) (W) = 0.
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In case (ii): because i € T = T, we have M, (T[v"") = |R;| — 1 = =k
W,k € Ry — {j}}|. Moreover, for any T" € W such that i € T, N T and I # T,
M (T'[v"F) = 0 and, for any I'" € W such that i € T}, T M;'J-(F’|UT’F) = 0. Then
we have M; j(v"1) = M (T[o™") = [Ri| =1 = {T"7" € Wk € Ry — {j}}].

In case (iii), i.e., i € I'; = T for some I € W: we have two possibilities for such
[, " =T and I" # "7, When I" = T"7/, we have M, (I'[v""") = 0 and
M;rj(]f"\vT*F) =1. When I'" £ I/ we have MiTj(F’|vT’F) =0 and M;rj(]."'|vT’F) =
0 because i € 'y —T'. From those results, we have M; ;(v"'") = —Mﬁj(l"i”j [Tl =
—1.

In case (iv): because j ¢ R;, by the definition, M; ;(vT'T) = 0.

Let s € N be an unrelated player, we have

{7k e W,k e Ry — {j}}] ifieT,
M; (") — M (07T = —1 ifigT, T eW,
0 ifig T, 1" ¢ W.

Therefore, from Axiom 12, we obtain

1
— ifieT,
3 (TN (W Fi%eW%Ro{j} wi
o _ : o 6
w1 1T, T € W, (6)
0 ifi ¢ T, 177 ¢ W.

Next, we consider 77 (v/"I')(W) for all i € N when T # T';. In this case, for any
i € N such that ¢ is not an unrelated player, we have v;‘-F’F(F) = v;‘-r’r(l"iﬁk) =0
for any k such that i ¢ I'y and I'"?F € TW. Because an unrelated player is a j-null
player, all players are j-null players. Then, from Axiom 9, we have

o (WIY(W)=0 VieN. (7)

3

Unifying equation (6) and (7),

1 . .
j ri ’“eWzkéR {'}W Hheed
I (T W) = e ) 0—1J o 8
71'1(1} )( ) _ﬁ ifT:Fj,Z.gT,FI—UEW ( )
0 otherwise.

Using the values 7/ (vT'T)(W), we finally obtain 7/ (v)(W) for arbitrary v €

i

MG(N,R) and W € AR(N,R). From Axiom 10 and Lemma 1, for any v €
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MG(N,R) and W € AR(N, R) such that W; ; # 0,
m (0)(W)

7

— Z v(T,F)Wf(vT’F)(W)

rew,Trer

1 1
> > Uj(F)'W— > Uj(r)'m

PeEW,T;3i ke Ro—{j}, "~ FeW PeW,D; i, i"ieW

=ﬁ S wm- Y sy

FeWw,l'j3t ke Ro—{j} " 7FeW k€ERo—{j},Ii7keW
= [ (v)(W).

Moreover, for any v € MG(N, R) and W € AR(N, R) such that W; ; = 0, ﬂf(v)(W) -
1 (v)(W) =0 from Axiom 9.

This completes the proof. O

In the rest of this section, we show that the proposed value can be axiomatized
by another axiom system which contains a new axiom. The new axiom is related
to the arbitrariness in selection of an alternative. The arbitrariness is defined in the
following definition.

Definition 3. [Total Marginal Weakness and Arbitrariness] Let W € AR(N, R)
and I' € W. Then we define the total marginal weakness MW;(I', W) and the
arbitrariness AB;(v, W) by

MW;T,W) = Y (m/7HI,W) —m" (0, W), 9)
k€ERo—{j}

AB;(v, W) = EW‘ZMWJ-(F,W)UJ-(F), (10)
rew

where m/ =k, W) = [{i e I;[T"~*k e W}| Vke Ry— {j}.

mI~* (I, W) shows the number of players who can change his/her choice from al-
ternative j to alternative k under arrangement I' € W. The difference (m’ =% (I, W)—
mF=I(I,W)) can be interpreted as the marginal weakness in keeping the number
of supporters on alternative j. Then MW;(I',W) can be interpreted as the total
marginal weakness of alternative j. On the other hand, if a strong alternative j
provides a large payoff v;(I') players tend to select alternative j, while if a weak
alternative k provides a small payoff vy (I") players tend to avoid alternative k. How-
ever, if a weak alternative j provides a large payoff v;(I'), the selection of alternative
J is more arbitrary. From this point of view, AB;(v, W) can be understood as
arbitrariness.

With respect to the concept of the total marginal weakness, we obtain the fol-
lowing proposition.
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Proposition 2. Let W € AR(N,R) and I'',T? € W. If 1"? C 1"; for some j € R,
the following holds:

MW;(T?, W) < MW, (T, W).
Proof. Let W € AR(N, R) and consider two arrangements I'', I'* satisfying I'; C

I} for some j € R. Using the property of W defined by (4), from T'? C '}, we have
mI7HT2 W) <m? TN W), Yk e Ro — {j}-
Thus, we have

doomiTRrw) < Y w/ErLw). (11)
keRo—{s} k€Ro—{j}

On the other hand, because i € I'; — T'7 can move to the jth coalition in I'* while
he/she cannot in I'!, we have

dooomirtwy < Y mI et w). (12)
keRo—{j} k€Ro—{j}
Combining (11) and (12), we obtain the proposition. O

Proposition 2 shows that an alternative becomes weaker if the coalition choosing the
alternative larger.

Now, we describe a new axiom related to the arbitrariness.

Axiom 13. Let v € MG(N,R) and W € AR(N, R). Then the following holds:

> @) (W) = AB; (v, W).

i€EN

This axiom requires that the sum of values to alternative j of all players equals
to the arbitrariness in selection of alternative j. In this sense, we may regard the
value 7] (v)(W) as the degree of discretion.

In the Bolger value, the sum of the values of all players equals to the payoff of
the grand coalition as is given in Axiom 1. In the MBZ value, the sum of the values
of all players equals to the mean of total contributions of all players as is given in
Axiom 6. Axiom 13 corresponds to those axioms in the Bolger and MBZ values.

We obtain the following lemma.
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Lemma 2. Function f7, j = 1,...,r defined by (5) satisfies Axiom 13.

Proof. Givenv € MG(N,R) and W € AR(N, R), we obtain

> flww)

iEN

iz > Y o)

IENTEW,T;2i ke Ry—{j},TikeW

1 i
iz PPN SRR ED DD DEND DRl
FeWiel; keRo—{j}.Ti7*keW IeW i€l keRo—{j},Ii=keW

1
N PPN S (UED DD SIS DR
FeW i€l keRo—{j} . Ti7*keW IeW k€Ro—{j} i€y, >icW
1 ; j
=1 DD SER AU TIVED SIS DIl LG T
Wi reW keRo—{j} FeW keRo—{j}
:AB]‘(’U,W)

O

Now we have the following uniqueness theorem which shows another axiom system
of the proposed value.

Theorem 7. Function f7, j = 1,...,r defined by (5) is the unique function satis-
fying Axioms 9,10,12 and 13.

Proof. From Lemma 2, it suffices to prove the uniqueness of f7, j =1,...,7r.

To this end, we only prove 7 (vT>")(W) defined by (6) is the unique function
satisfying Axioms 12 and 13 for v € MG(N,R), W € AR(N,R), T e Wand T €T
when T' = T';. This is because the other part of the proof can be performed in the
same way as the proof of Theorem 6.

To satisfy Axiom 13, we should have

71_j vy _ mi =k (Tv W) —mh (T7 W)

We can verify that (6) satisfies Axiom 12 because (6) shows m (vI'I)(W) =
M; j(vT°1) /|W|. Moreover, because we have

. mi—k
AW = Y% wlv_f $ %,u@

€T i€l Ti=keW ke Ro—{j} k€Ro—{j}

. k=
SAHW) = Y Y g ¥ —%, (15)

igT igl; TimieWw k€Ro—{j}
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(6) satisfies Axiom 13.

Suppose that there exists another function 7r§j satisfying Axioms 12 and 13. Then
77 should be expressed by 7/ (vT"T) (W) = M; ;(vT1) /W |+ for some § € R—{0}
from Axiom 12. We obtain

>l @t W) (16)
1EN
B Z mI7R (T, W) — mF=I (T, W)

_keR —{J ‘W|
o—1{Jj}

+ nd. (17)

Because 0 # 0, (13) cannot be satisfied. This contradicts the fact that 7/’ satisfies
Axiom 13. O

5. NUMERICAL EXAMPLE

We calculate the proposed value fl] in Job Selection Game described in Example 1
and demonstrate the effect by a restriction. We compare the values in two different
situations: a situation where all students can choose all jobs and a situation when
student A cannot choose job 2.

Table 1. The proposed values
when all students can choose all jobs.

Job 1 Job 2
Player Value Normalized Value Normalized
A 11.407 0.413 11.407 0.413

B 8.963 0.327 8.963 0.327
C 6.963 0.254 6.963 0.254
Total  27.333 1 27.333 1

Table 2. The proposed values
when student A cannot choose job 2.

Job 1 Job 2
Player Value Normalized Value Normalized
A 8.555 0.309 0 0
B 10.722 0.387 5.444 0.569
C 8.388 0.303 4.111 0.430
Total  27.666 1 9.555 1

The proposed values are shown in Tables 1 and 2. Table 1 shows the proposed
values when all students can choose all jobs while Table 2 shows the proposed values
when student A cannot choose job 2. Because v is symmetric with respect to jobs,
the proposed values are same independent of the jobs students choose when all
students can choose all jobs. As shown in Table 2, the value of student A in Job 2
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is zero, this would be natural from the restriction that A cannot take Job 2. The
value of student A decreases not only in Job 2 but also in Job 1 by the restriction.
This would be a reflection of Axiom 12 by the decrement of possible movements
of student A. By the comparison between Tables 1 and 2, we can observe that the
restriction can strongly change the strength (value) of players (students).

6. CONCLUDING REMARKS

We have investigated extended multi-alternative games with restricted choice situ-
ations. We have proposed a value based on marginal contributions for restricted
multi-alternative games. Two systems of axioms have been given to characterize the
value uniquely. In numerical example, we observe that the restriction can strongly
change the strength of players.

Table 3. The comparison of axioms satisfied with
the values for multi-alternative games.

Axiom Bolger ~ MBZ fI
jnull player O 0O O O O O
Linearity O O O O O O
Symmetry O o O o ) )
j-efficiency O o x x x X
Mean of total contributions x x (O o x X
Arbitrariness of the selection x x x x o 0O
Pivot move O O O O o o
Proportionality to welcome degree difference x x x x O O
Independence from unrelated players - - - O o
7l (v%) = 1/|8| o O x x x X
(%) = 1/(r + 115171 x x o (O x x

In order to compare values proposed for extended multi-alternative games with
previously proposed Bolger and MBZ values, the satisfied axioms are shown in Ta-
ble 3. In Table 3, “()” means that the axiom is one of the axiom systems of the
value, “o” means that the value satisfies the axiom, “x” means that the value does
not satisfies the axiom and “~”’ means that the axiom cannot be applicable in the
setting of games on which values are considered.

The axioms of j-efficiency, mean of total contribution and arbitrariness of the
selection correspond with one another because they show the properties of the sum
of values. The last two axioms correspond with each other. Moreover, as we show
in Theorem 5, the proposed value is proportional to the MBZ value. Therefore, the
proposed value satisfies 77 (v%) = r/(r + 1)1l for all i € S.

Though the proposed value is proportional to the MBZ value, the systems of
axioms do not totally correspond with each other. This implies that we obtain new
systems of axioms for the MBZ value and those for the proposed values. The former
can be obtained rather easily by multiplying r/(r + 1) to constants in axioms of the
arbitrariness of the selection and the proportionality to total welcome difference.
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However, the latter needs more investigation because the proposed value is consid-
ered under a restricted situation. This would be one of the future topics about the
proposed value.

Moreover, we introduced a special restriction expressed by (4). The investigations
on value functions under more generalized restrictions would be also future topics.

(Received January 15, 2009)

REFERENCES

[1] J.F. Banzhaf: Weighted voting doesn’t work: a mathematical analysis. Rutgers Law
Review 19 (1965), 317-343.

[2] J.M. Bilbao, E. Lebrén, and N. Jiménez: Probabilistic values on convex geometries.
Ann. Oper. Res. 8/ (1998), 79-95.

[3] E.M. Bolger: Power indices for multicandidate voting games. Internat. J. Game The-
ory 15 (1986), 175-186.

[4] E.M. Bolger: A value for games with n players and r alternatives. Internat. J. Game
Theory 22 (1993), 319-334.

[5] E.M. Bolger: A consistent value for games with n players and r alternatives. Internat.
J. Game Theory 29 (2000), 93-99.

[6] E. Lehrer: An axiomatization of the Banzhaf value. Internat J. Game Theory 17
(1988), 89-99.

[7] R.B. Myerson: Graphs and cooperation in games. Math. Oper. Res. 2 (1977), 225-229.

[8] R. Ono: Values for multialternative games and multilinear extensions. In: Power
Indices and Coalition Formation (M. Holler and G. Owen, eds.), Kluwer Academic
Publishers, Dordrecht 2001, pp. 63-86.

[9] L.S. Shapley: A value for n-person games. In: Contributions to the Theory of Games
IT (H. Kuhn and A. Tucker, eds.), Princeton 1953, pp. 307-317.

[10] M. Tsurumi, M. Inuiguchi, and T. Tanino: A solution for fuzzy generalized multi-
alternative games. In: The 2006 NOLTA Proc. 2006, pp. 95-98.

Satoshi Masuya, Graduate School of Engineering Science, Osaka University, 1-3 Machika-
neyama-cho, Toyonaka, Osaka 560-8531. Japan.
e-mail: masuya@inulab.sys.es.osaka-u.ac.jp

Masahiro Inuiguchi, Graduate School of Engineering Science, Osaka University, 1-3 Ma-
chikaneyama-cho, Toyonaka, Osaka 560-8531. Japan.
e-mail: inuiguti@sys.es.osaka-u.ac.jp



		webmaster@dml.cz
	2013-09-21T15:47:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




